Home | History | Annotate | Download | only in files
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/files/file_path_watcher_kqueue.h"
      6 
      7 #include <fcntl.h>
      8 #include <stddef.h>
      9 #include <sys/param.h>
     10 
     11 #include "base/bind.h"
     12 #include "base/files/file_util.h"
     13 #include "base/logging.h"
     14 #include "base/strings/stringprintf.h"
     15 #include "base/threading/thread_task_runner_handle.h"
     16 
     17 // On some platforms these are not defined.
     18 #if !defined(EV_RECEIPT)
     19 #define EV_RECEIPT 0
     20 #endif
     21 #if !defined(O_EVTONLY)
     22 #define O_EVTONLY O_RDONLY
     23 #endif
     24 
     25 namespace base {
     26 
     27 FilePathWatcherKQueue::FilePathWatcherKQueue() : kqueue_(-1) {}
     28 
     29 FilePathWatcherKQueue::~FilePathWatcherKQueue() {}
     30 
     31 void FilePathWatcherKQueue::ReleaseEvent(struct kevent& event) {
     32   CloseFileDescriptor(&event.ident);
     33   EventData* entry = EventDataForKevent(event);
     34   delete entry;
     35   event.udata = NULL;
     36 }
     37 
     38 int FilePathWatcherKQueue::EventsForPath(FilePath path, EventVector* events) {
     39   DCHECK(MessageLoopForIO::current());
     40   // Make sure that we are working with a clean slate.
     41   DCHECK(events->empty());
     42 
     43   std::vector<FilePath::StringType> components;
     44   path.GetComponents(&components);
     45 
     46   if (components.size() < 1) {
     47     return -1;
     48   }
     49 
     50   int last_existing_entry = 0;
     51   FilePath built_path;
     52   bool path_still_exists = true;
     53   for (std::vector<FilePath::StringType>::iterator i = components.begin();
     54       i != components.end(); ++i) {
     55     if (i == components.begin()) {
     56       built_path = FilePath(*i);
     57     } else {
     58       built_path = built_path.Append(*i);
     59     }
     60     uintptr_t fd = kNoFileDescriptor;
     61     if (path_still_exists) {
     62       fd = FileDescriptorForPath(built_path);
     63       if (fd == kNoFileDescriptor) {
     64         path_still_exists = false;
     65       } else {
     66         ++last_existing_entry;
     67       }
     68     }
     69     FilePath::StringType subdir = (i != (components.end() - 1)) ? *(i + 1) : "";
     70     EventData* data = new EventData(built_path, subdir);
     71     struct kevent event;
     72     EV_SET(&event, fd, EVFILT_VNODE, (EV_ADD | EV_CLEAR | EV_RECEIPT),
     73            (NOTE_DELETE | NOTE_WRITE | NOTE_ATTRIB |
     74             NOTE_RENAME | NOTE_REVOKE | NOTE_EXTEND), 0, data);
     75     events->push_back(event);
     76   }
     77   return last_existing_entry;
     78 }
     79 
     80 uintptr_t FilePathWatcherKQueue::FileDescriptorForPath(const FilePath& path) {
     81   int fd = HANDLE_EINTR(open(path.value().c_str(), O_EVTONLY));
     82   if (fd == -1)
     83     return kNoFileDescriptor;
     84   return fd;
     85 }
     86 
     87 void FilePathWatcherKQueue::CloseFileDescriptor(uintptr_t* fd) {
     88   if (*fd == kNoFileDescriptor) {
     89     return;
     90   }
     91 
     92   if (IGNORE_EINTR(close(*fd)) != 0) {
     93     DPLOG(ERROR) << "close";
     94   }
     95   *fd = kNoFileDescriptor;
     96 }
     97 
     98 bool FilePathWatcherKQueue::AreKeventValuesValid(struct kevent* kevents,
     99                                                int count) {
    100   if (count < 0) {
    101     DPLOG(ERROR) << "kevent";
    102     return false;
    103   }
    104   bool valid = true;
    105   for (int i = 0; i < count; ++i) {
    106     if (kevents[i].flags & EV_ERROR && kevents[i].data) {
    107       // Find the kevent in |events_| that matches the kevent with the error.
    108       EventVector::iterator event = events_.begin();
    109       for (; event != events_.end(); ++event) {
    110         if (event->ident == kevents[i].ident) {
    111           break;
    112         }
    113       }
    114       std::string path_name;
    115       if (event != events_.end()) {
    116         EventData* event_data = EventDataForKevent(*event);
    117         if (event_data != NULL) {
    118           path_name = event_data->path_.value();
    119         }
    120       }
    121       if (path_name.empty()) {
    122         path_name = base::StringPrintf(
    123             "fd %ld", reinterpret_cast<long>(&kevents[i].ident));
    124       }
    125       DLOG(ERROR) << "Error: " << kevents[i].data << " for " << path_name;
    126       valid = false;
    127     }
    128   }
    129   return valid;
    130 }
    131 
    132 void FilePathWatcherKQueue::HandleAttributesChange(
    133     const EventVector::iterator& event,
    134     bool* target_file_affected,
    135     bool* update_watches) {
    136   EventVector::iterator next_event = event + 1;
    137   EventData* next_event_data = EventDataForKevent(*next_event);
    138   // Check to see if the next item in path is still accessible.
    139   uintptr_t have_access = FileDescriptorForPath(next_event_data->path_);
    140   if (have_access == kNoFileDescriptor) {
    141     *target_file_affected = true;
    142     *update_watches = true;
    143     EventVector::iterator local_event(event);
    144     for (; local_event != events_.end(); ++local_event) {
    145       // Close all nodes from the event down. This has the side effect of
    146       // potentially rendering other events in |updates| invalid.
    147       // There is no need to remove the events from |kqueue_| because this
    148       // happens as a side effect of closing the file descriptor.
    149       CloseFileDescriptor(&local_event->ident);
    150     }
    151   } else {
    152     CloseFileDescriptor(&have_access);
    153   }
    154 }
    155 
    156 void FilePathWatcherKQueue::HandleDeleteOrMoveChange(
    157     const EventVector::iterator& event,
    158     bool* target_file_affected,
    159     bool* update_watches) {
    160   *target_file_affected = true;
    161   *update_watches = true;
    162   EventVector::iterator local_event(event);
    163   for (; local_event != events_.end(); ++local_event) {
    164     // Close all nodes from the event down. This has the side effect of
    165     // potentially rendering other events in |updates| invalid.
    166     // There is no need to remove the events from |kqueue_| because this
    167     // happens as a side effect of closing the file descriptor.
    168     CloseFileDescriptor(&local_event->ident);
    169   }
    170 }
    171 
    172 void FilePathWatcherKQueue::HandleCreateItemChange(
    173     const EventVector::iterator& event,
    174     bool* target_file_affected,
    175     bool* update_watches) {
    176   // Get the next item in the path.
    177   EventVector::iterator next_event = event + 1;
    178   // Check to see if it already has a valid file descriptor.
    179   if (!IsKeventFileDescriptorOpen(*next_event)) {
    180     EventData* next_event_data = EventDataForKevent(*next_event);
    181     // If not, attempt to open a file descriptor for it.
    182     next_event->ident = FileDescriptorForPath(next_event_data->path_);
    183     if (IsKeventFileDescriptorOpen(*next_event)) {
    184       *update_watches = true;
    185       if (next_event_data->subdir_.empty()) {
    186         *target_file_affected = true;
    187       }
    188     }
    189   }
    190 }
    191 
    192 bool FilePathWatcherKQueue::UpdateWatches(bool* target_file_affected) {
    193   // Iterate over events adding kevents for items that exist to the kqueue.
    194   // Then check to see if new components in the path have been created.
    195   // Repeat until no new components in the path are detected.
    196   // This is to get around races in directory creation in a watched path.
    197   bool update_watches = true;
    198   while (update_watches) {
    199     size_t valid;
    200     for (valid = 0; valid < events_.size(); ++valid) {
    201       if (!IsKeventFileDescriptorOpen(events_[valid])) {
    202         break;
    203       }
    204     }
    205     if (valid == 0) {
    206       // The root of the file path is inaccessible?
    207       return false;
    208     }
    209 
    210     EventVector updates(valid);
    211     int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], valid, &updates[0],
    212                                     valid, NULL));
    213     if (!AreKeventValuesValid(&updates[0], count)) {
    214       return false;
    215     }
    216     update_watches = false;
    217     for (; valid < events_.size(); ++valid) {
    218       EventData* event_data = EventDataForKevent(events_[valid]);
    219       events_[valid].ident = FileDescriptorForPath(event_data->path_);
    220       if (IsKeventFileDescriptorOpen(events_[valid])) {
    221         update_watches = true;
    222         if (event_data->subdir_.empty()) {
    223           *target_file_affected = true;
    224         }
    225       } else {
    226         break;
    227       }
    228     }
    229   }
    230   return true;
    231 }
    232 
    233 void FilePathWatcherKQueue::OnFileCanReadWithoutBlocking(int fd) {
    234   DCHECK(MessageLoopForIO::current());
    235   DCHECK_EQ(fd, kqueue_);
    236   DCHECK(events_.size());
    237 
    238   // Request the file system update notifications that have occurred and return
    239   // them in |updates|. |count| will contain the number of updates that have
    240   // occurred.
    241   EventVector updates(events_.size());
    242   struct timespec timeout = {0, 0};
    243   int count = HANDLE_EINTR(kevent(kqueue_, NULL, 0, &updates[0], updates.size(),
    244                                   &timeout));
    245 
    246   // Error values are stored within updates, so check to make sure that no
    247   // errors occurred.
    248   if (!AreKeventValuesValid(&updates[0], count)) {
    249     callback_.Run(target_, true /* error */);
    250     Cancel();
    251     return;
    252   }
    253 
    254   bool update_watches = false;
    255   bool send_notification = false;
    256 
    257   // Iterate through each of the updates and react to them.
    258   for (int i = 0; i < count; ++i) {
    259     // Find our kevent record that matches the update notification.
    260     EventVector::iterator event = events_.begin();
    261     for (; event != events_.end(); ++event) {
    262       if (!IsKeventFileDescriptorOpen(*event) ||
    263           event->ident == updates[i].ident) {
    264         break;
    265       }
    266     }
    267     if (event == events_.end() || !IsKeventFileDescriptorOpen(*event)) {
    268       // The event may no longer exist in |events_| because another event
    269       // modified |events_| in such a way to make it invalid. For example if
    270       // the path is /foo/bar/bam and foo is deleted, NOTE_DELETE events for
    271       // foo, bar and bam will be sent. If foo is processed first, then
    272       // the file descriptors for bar and bam will already be closed and set
    273       // to -1 before they get a chance to be processed.
    274       continue;
    275     }
    276 
    277     EventData* event_data = EventDataForKevent(*event);
    278 
    279     // If the subdir is empty, this is the last item on the path and is the
    280     // target file.
    281     bool target_file_affected = event_data->subdir_.empty();
    282     if ((updates[i].fflags & NOTE_ATTRIB) && !target_file_affected) {
    283       HandleAttributesChange(event, &target_file_affected, &update_watches);
    284     }
    285     if (updates[i].fflags & (NOTE_DELETE | NOTE_REVOKE | NOTE_RENAME)) {
    286       HandleDeleteOrMoveChange(event, &target_file_affected, &update_watches);
    287     }
    288     if ((updates[i].fflags & NOTE_WRITE) && !target_file_affected) {
    289       HandleCreateItemChange(event, &target_file_affected, &update_watches);
    290     }
    291     send_notification |= target_file_affected;
    292   }
    293 
    294   if (update_watches) {
    295     if (!UpdateWatches(&send_notification)) {
    296       callback_.Run(target_, true /* error */);
    297       Cancel();
    298     }
    299   }
    300 
    301   if (send_notification) {
    302     callback_.Run(target_, false);
    303   }
    304 }
    305 
    306 void FilePathWatcherKQueue::OnFileCanWriteWithoutBlocking(int /* fd */) {
    307   NOTREACHED();
    308 }
    309 
    310 void FilePathWatcherKQueue::WillDestroyCurrentMessageLoop() {
    311   CancelOnMessageLoopThread();
    312 }
    313 
    314 bool FilePathWatcherKQueue::Watch(const FilePath& path,
    315                                   bool recursive,
    316                                   const FilePathWatcher::Callback& callback) {
    317   DCHECK(MessageLoopForIO::current());
    318   DCHECK(target_.value().empty());  // Can only watch one path.
    319   DCHECK(!callback.is_null());
    320   DCHECK_EQ(kqueue_, -1);
    321 
    322   if (recursive) {
    323     // Recursive watch is not supported using kqueue.
    324     NOTIMPLEMENTED();
    325     return false;
    326   }
    327 
    328   callback_ = callback;
    329   target_ = path;
    330 
    331   MessageLoop::current()->AddDestructionObserver(this);
    332   io_task_runner_ = ThreadTaskRunnerHandle::Get();
    333 
    334   kqueue_ = kqueue();
    335   if (kqueue_ == -1) {
    336     DPLOG(ERROR) << "kqueue";
    337     return false;
    338   }
    339 
    340   int last_entry = EventsForPath(target_, &events_);
    341   DCHECK_NE(last_entry, 0);
    342 
    343   EventVector responses(last_entry);
    344 
    345   int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], last_entry,
    346                                   &responses[0], last_entry, NULL));
    347   if (!AreKeventValuesValid(&responses[0], count)) {
    348     // Calling Cancel() here to close any file descriptors that were opened.
    349     // This would happen in the destructor anyways, but FilePathWatchers tend to
    350     // be long lived, and if an error has occurred, there is no reason to waste
    351     // the file descriptors.
    352     Cancel();
    353     return false;
    354   }
    355 
    356   return MessageLoopForIO::current()->WatchFileDescriptor(
    357       kqueue_, true, MessageLoopForIO::WATCH_READ, &kqueue_watcher_, this);
    358 }
    359 
    360 void FilePathWatcherKQueue::Cancel() {
    361   SingleThreadTaskRunner* task_runner = io_task_runner_.get();
    362   if (!task_runner) {
    363     set_cancelled();
    364     return;
    365   }
    366   if (!task_runner->BelongsToCurrentThread()) {
    367     task_runner->PostTask(FROM_HERE,
    368                           base::Bind(&FilePathWatcherKQueue::Cancel, this));
    369     return;
    370   }
    371   CancelOnMessageLoopThread();
    372 }
    373 
    374 void FilePathWatcherKQueue::CancelOnMessageLoopThread() {
    375   DCHECK(MessageLoopForIO::current());
    376   if (!is_cancelled()) {
    377     set_cancelled();
    378     kqueue_watcher_.StopWatchingFileDescriptor();
    379     if (IGNORE_EINTR(close(kqueue_)) != 0) {
    380       DPLOG(ERROR) << "close kqueue";
    381     }
    382     kqueue_ = -1;
    383     std::for_each(events_.begin(), events_.end(), ReleaseEvent);
    384     events_.clear();
    385     io_task_runner_ = NULL;
    386     MessageLoop::current()->RemoveDestructionObserver(this);
    387     callback_.Reset();
    388   }
    389 }
    390 
    391 }  // namespace base
    392