Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stddef.h>
      6 #include <stdint.h>
      7 
      8 #include <vector>
      9 
     10 #include "base/bind.h"
     11 #include "base/bind_helpers.h"
     12 #include "base/compiler_specific.h"
     13 #include "base/logging.h"
     14 #include "base/macros.h"
     15 #include "base/memory/ref_counted.h"
     16 #include "base/message_loop/message_loop.h"
     17 #include "base/message_loop/message_loop_test.h"
     18 #include "base/pending_task.h"
     19 #include "base/posix/eintr_wrapper.h"
     20 #include "base/run_loop.h"
     21 #include "base/single_thread_task_runner.h"
     22 #include "base/synchronization/waitable_event.h"
     23 #include "base/test/test_simple_task_runner.h"
     24 #include "base/threading/platform_thread.h"
     25 #include "base/threading/thread.h"
     26 #include "base/threading/thread_task_runner_handle.h"
     27 #include "build/build_config.h"
     28 #include "testing/gtest/include/gtest/gtest.h"
     29 
     30 #if defined(OS_WIN)
     31 #include "base/message_loop/message_pump_win.h"
     32 #include "base/process/memory.h"
     33 #include "base/strings/string16.h"
     34 #include "base/win/current_module.h"
     35 #include "base/win/scoped_handle.h"
     36 #endif
     37 
     38 namespace base {
     39 
     40 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
     41 // to avoid chopping this file up with so many #ifdefs.
     42 
     43 namespace {
     44 
     45 std::unique_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
     46   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
     47 }
     48 
     49 std::unique_ptr<MessagePump> TypeIOMessagePumpFactory() {
     50   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
     51 }
     52 
     53 std::unique_ptr<MessagePump> TypeUIMessagePumpFactory() {
     54   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
     55 }
     56 
     57 class Foo : public RefCounted<Foo> {
     58  public:
     59   Foo() : test_count_(0) {
     60   }
     61 
     62   void Test1ConstRef(const std::string& a) {
     63     ++test_count_;
     64     result_.append(a);
     65   }
     66 
     67   int test_count() const { return test_count_; }
     68   const std::string& result() const { return result_; }
     69 
     70  private:
     71   friend class RefCounted<Foo>;
     72 
     73   ~Foo() {}
     74 
     75   int test_count_;
     76   std::string result_;
     77 };
     78 
     79 #if defined(OS_WIN)
     80 
     81 // This function runs slowly to simulate a large amount of work being done.
     82 static void SlowFunc(TimeDelta pause, int* quit_counter) {
     83     PlatformThread::Sleep(pause);
     84     if (--(*quit_counter) == 0)
     85       MessageLoop::current()->QuitWhenIdle();
     86 }
     87 
     88 // This function records the time when Run was called in a Time object, which is
     89 // useful for building a variety of MessageLoop tests.
     90 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
     91   *run_time = Time::Now();
     92 
     93     // Cause our Run function to take some time to execute.  As a result we can
     94     // count on subsequent RecordRunTimeFunc()s running at a future time,
     95     // without worry about the resolution of our system clock being an issue.
     96   SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
     97 }
     98 
     99 void SubPumpFunc() {
    100   MessageLoop::current()->SetNestableTasksAllowed(true);
    101   MSG msg;
    102   while (GetMessage(&msg, NULL, 0, 0)) {
    103     TranslateMessage(&msg);
    104     DispatchMessage(&msg);
    105   }
    106   MessageLoop::current()->QuitWhenIdle();
    107 }
    108 
    109 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
    110   MessageLoop loop(MessageLoop::TYPE_UI);
    111 
    112   // Test that the interval of the timer, used to run the next delayed task, is
    113   // set to a value corresponding to when the next delayed task should run.
    114 
    115   // By setting num_tasks to 1, we ensure that the first task to run causes the
    116   // run loop to exit.
    117   int num_tasks = 1;
    118   Time run_time;
    119 
    120   loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
    121 
    122   // This very delayed task should never run.
    123   loop.PostDelayedTask(
    124       FROM_HERE,
    125       Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
    126       TimeDelta::FromSeconds(1000));
    127 
    128   // This slightly delayed task should run from within SubPumpFunc.
    129   loop.PostDelayedTask(
    130       FROM_HERE,
    131       Bind(&PostQuitMessage, 0),
    132       TimeDelta::FromMilliseconds(10));
    133 
    134   Time start_time = Time::Now();
    135 
    136   loop.Run();
    137   EXPECT_EQ(1, num_tasks);
    138 
    139   // Ensure that we ran in far less time than the slower timer.
    140   TimeDelta total_time = Time::Now() - start_time;
    141   EXPECT_GT(5000, total_time.InMilliseconds());
    142 
    143   // In case both timers somehow run at nearly the same time, sleep a little
    144   // and then run all pending to force them both to have run.  This is just
    145   // encouraging flakiness if there is any.
    146   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    147   RunLoop().RunUntilIdle();
    148 
    149   EXPECT_TRUE(run_time.is_null());
    150 }
    151 
    152 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
    153 
    154 enum TaskType {
    155   MESSAGEBOX,
    156   ENDDIALOG,
    157   RECURSIVE,
    158   TIMEDMESSAGELOOP,
    159   QUITMESSAGELOOP,
    160   ORDERED,
    161   PUMPS,
    162   SLEEP,
    163   RUNS,
    164 };
    165 
    166 // Saves the order in which the tasks executed.
    167 struct TaskItem {
    168   TaskItem(TaskType t, int c, bool s)
    169       : type(t),
    170         cookie(c),
    171         start(s) {
    172   }
    173 
    174   TaskType type;
    175   int cookie;
    176   bool start;
    177 
    178   bool operator == (const TaskItem& other) const {
    179     return type == other.type && cookie == other.cookie && start == other.start;
    180   }
    181 };
    182 
    183 std::ostream& operator <<(std::ostream& os, TaskType type) {
    184   switch (type) {
    185   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
    186   case ENDDIALOG:         os << "ENDDIALOG"; break;
    187   case RECURSIVE:         os << "RECURSIVE"; break;
    188   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
    189   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
    190   case ORDERED:          os << "ORDERED"; break;
    191   case PUMPS:             os << "PUMPS"; break;
    192   case SLEEP:             os << "SLEEP"; break;
    193   default:
    194     NOTREACHED();
    195     os << "Unknown TaskType";
    196     break;
    197   }
    198   return os;
    199 }
    200 
    201 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
    202   if (item.start)
    203     return os << item.type << " " << item.cookie << " starts";
    204   else
    205     return os << item.type << " " << item.cookie << " ends";
    206 }
    207 
    208 class TaskList {
    209  public:
    210   void RecordStart(TaskType type, int cookie) {
    211     TaskItem item(type, cookie, true);
    212     DVLOG(1) << item;
    213     task_list_.push_back(item);
    214   }
    215 
    216   void RecordEnd(TaskType type, int cookie) {
    217     TaskItem item(type, cookie, false);
    218     DVLOG(1) << item;
    219     task_list_.push_back(item);
    220   }
    221 
    222   size_t Size() {
    223     return task_list_.size();
    224   }
    225 
    226   TaskItem Get(int n)  {
    227     return task_list_[n];
    228   }
    229 
    230  private:
    231   std::vector<TaskItem> task_list_;
    232 };
    233 
    234 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
    235 // common controls (like OpenFile) and StartDoc printing function can cause
    236 // implicit message loops.
    237 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
    238   order->RecordStart(MESSAGEBOX, cookie);
    239   if (is_reentrant)
    240     MessageLoop::current()->SetNestableTasksAllowed(true);
    241   MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    242   order->RecordEnd(MESSAGEBOX, cookie);
    243 }
    244 
    245 // Will end the MessageBox.
    246 void EndDialogFunc(TaskList* order, int cookie) {
    247   order->RecordStart(ENDDIALOG, cookie);
    248   HWND window = GetActiveWindow();
    249   if (window != NULL) {
    250     EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
    251     // Cheap way to signal that the window wasn't found if RunEnd() isn't
    252     // called.
    253     order->RecordEnd(ENDDIALOG, cookie);
    254   }
    255 }
    256 
    257 void RecursiveFunc(TaskList* order, int cookie, int depth,
    258                    bool is_reentrant) {
    259   order->RecordStart(RECURSIVE, cookie);
    260   if (depth > 0) {
    261     if (is_reentrant)
    262       MessageLoop::current()->SetNestableTasksAllowed(true);
    263     MessageLoop::current()->PostTask(
    264         FROM_HERE,
    265         Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
    266   }
    267   order->RecordEnd(RECURSIVE, cookie);
    268 }
    269 
    270 void QuitFunc(TaskList* order, int cookie) {
    271   order->RecordStart(QUITMESSAGELOOP, cookie);
    272   MessageLoop::current()->QuitWhenIdle();
    273   order->RecordEnd(QUITMESSAGELOOP, cookie);
    274 }
    275 
    276 void RecursiveFuncWin(MessageLoop* target,
    277                       HANDLE event,
    278                       bool expect_window,
    279                       TaskList* order,
    280                       bool is_reentrant) {
    281   target->PostTask(FROM_HERE,
    282                    Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
    283   target->PostTask(FROM_HERE,
    284                    Bind(&MessageBoxFunc, order, 2, is_reentrant));
    285   target->PostTask(FROM_HERE,
    286                    Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
    287   // The trick here is that for recursive task processing, this task will be
    288   // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    289   // without a chance.
    290   // For non-recursive task processing, this will be executed _after_ the
    291   // MessageBox will have been dismissed by the code below, where
    292   // expect_window_ is true.
    293   target->PostTask(FROM_HERE,
    294                    Bind(&EndDialogFunc, order, 4));
    295   target->PostTask(FROM_HERE,
    296                    Bind(&QuitFunc, order, 5));
    297 
    298   // Enforce that every tasks are sent before starting to run the main thread
    299   // message loop.
    300   ASSERT_TRUE(SetEvent(event));
    301 
    302   // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    303   // you will never realize one MessageBox was shown.
    304   for (; expect_window;) {
    305     HWND window = FindWindow(L"#32770", kMessageBoxTitle);
    306     if (window) {
    307       // Dismiss it.
    308       for (;;) {
    309         HWND button = FindWindowEx(window, NULL, L"Button", NULL);
    310         if (button != NULL) {
    311           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
    312           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
    313           break;
    314         }
    315       }
    316       break;
    317     }
    318   }
    319 }
    320 
    321 // TODO(darin): These tests need to be ported since they test critical
    322 // message loop functionality.
    323 
    324 // A side effect of this test is the generation a beep. Sorry.
    325 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
    326   MessageLoop loop(message_loop_type);
    327 
    328   Thread worker("RecursiveDenial2_worker");
    329   Thread::Options options;
    330   options.message_loop_type = message_loop_type;
    331   ASSERT_EQ(true, worker.StartWithOptions(options));
    332   TaskList order;
    333   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    334   worker.message_loop()->PostTask(FROM_HERE,
    335                                   Bind(&RecursiveFuncWin,
    336                                              MessageLoop::current(),
    337                                              event.Get(),
    338                                              true,
    339                                              &order,
    340                                              false));
    341   // Let the other thread execute.
    342   WaitForSingleObject(event.Get(), INFINITE);
    343   MessageLoop::current()->Run();
    344 
    345   ASSERT_EQ(17u, order.Size());
    346   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    347   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    348   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    349   EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
    350   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
    351   EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
    352   // When EndDialogFunc is processed, the window is already dismissed, hence no
    353   // "end" entry.
    354   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
    355   EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
    356   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
    357   EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
    358   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
    359   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
    360   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
    361   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
    362   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
    363   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
    364   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
    365 }
    366 
    367 // A side effect of this test is the generation a beep. Sorry.  This test also
    368 // needs to process windows messages on the current thread.
    369 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
    370   MessageLoop loop(message_loop_type);
    371 
    372   Thread worker("RecursiveSupport2_worker");
    373   Thread::Options options;
    374   options.message_loop_type = message_loop_type;
    375   ASSERT_EQ(true, worker.StartWithOptions(options));
    376   TaskList order;
    377   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    378   worker.message_loop()->PostTask(FROM_HERE,
    379                                   Bind(&RecursiveFuncWin,
    380                                              MessageLoop::current(),
    381                                              event.Get(),
    382                                              false,
    383                                              &order,
    384                                              true));
    385   // Let the other thread execute.
    386   WaitForSingleObject(event.Get(), INFINITE);
    387   MessageLoop::current()->Run();
    388 
    389   ASSERT_EQ(18u, order.Size());
    390   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    391   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    392   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    393   // Note that this executes in the MessageBox modal loop.
    394   EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
    395   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
    396   EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
    397   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
    398   EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
    399   /* The order can subtly change here. The reason is that when RecursiveFunc(1)
    400      is called in the main thread, if it is faster than getting to the
    401      PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
    402      execution can change. We don't care anyway that the order isn't correct.
    403   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
    404   EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
    405   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
    406   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
    407   */
    408   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
    409   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
    410   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
    411   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
    412   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
    413   EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
    414 }
    415 
    416 #endif  // defined(OS_WIN)
    417 
    418 void PostNTasksThenQuit(int posts_remaining) {
    419   if (posts_remaining > 1) {
    420     MessageLoop::current()->task_runner()->PostTask(
    421         FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1));
    422   } else {
    423     MessageLoop::current()->QuitWhenIdle();
    424   }
    425 }
    426 
    427 #if defined(OS_WIN)
    428 
    429 class TestIOHandler : public MessageLoopForIO::IOHandler {
    430  public:
    431   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
    432 
    433   void OnIOCompleted(MessageLoopForIO::IOContext* context,
    434                      DWORD bytes_transfered,
    435                      DWORD error) override;
    436 
    437   void Init();
    438   void WaitForIO();
    439   OVERLAPPED* context() { return &context_.overlapped; }
    440   DWORD size() { return sizeof(buffer_); }
    441 
    442  private:
    443   char buffer_[48];
    444   MessageLoopForIO::IOContext context_;
    445   HANDLE signal_;
    446   win::ScopedHandle file_;
    447   bool wait_;
    448 };
    449 
    450 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
    451     : signal_(signal), wait_(wait) {
    452   memset(buffer_, 0, sizeof(buffer_));
    453 
    454   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
    455                        FILE_FLAG_OVERLAPPED, NULL));
    456   EXPECT_TRUE(file_.IsValid());
    457 }
    458 
    459 void TestIOHandler::Init() {
    460   MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
    461 
    462   DWORD read;
    463   EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
    464   EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
    465   if (wait_)
    466     WaitForIO();
    467 }
    468 
    469 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
    470                                   DWORD bytes_transfered, DWORD error) {
    471   ASSERT_TRUE(context == &context_);
    472   ASSERT_TRUE(SetEvent(signal_));
    473 }
    474 
    475 void TestIOHandler::WaitForIO() {
    476   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
    477   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
    478 }
    479 
    480 void RunTest_IOHandler() {
    481   win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
    482   ASSERT_TRUE(callback_called.IsValid());
    483 
    484   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
    485   win::ScopedHandle server(
    486       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    487   ASSERT_TRUE(server.IsValid());
    488 
    489   Thread thread("IOHandler test");
    490   Thread::Options options;
    491   options.message_loop_type = MessageLoop::TYPE_IO;
    492   ASSERT_TRUE(thread.StartWithOptions(options));
    493 
    494   MessageLoop* thread_loop = thread.message_loop();
    495   ASSERT_TRUE(NULL != thread_loop);
    496 
    497   TestIOHandler handler(kPipeName, callback_called.Get(), false);
    498   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    499                                               Unretained(&handler)));
    500   // Make sure the thread runs and sleeps for lack of work.
    501   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    502 
    503   const char buffer[] = "Hello there!";
    504   DWORD written;
    505   EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
    506 
    507   DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
    508   EXPECT_EQ(WAIT_OBJECT_0, result);
    509 
    510   thread.Stop();
    511 }
    512 
    513 void RunTest_WaitForIO() {
    514   win::ScopedHandle callback1_called(
    515       CreateEvent(NULL, TRUE, FALSE, NULL));
    516   win::ScopedHandle callback2_called(
    517       CreateEvent(NULL, TRUE, FALSE, NULL));
    518   ASSERT_TRUE(callback1_called.IsValid());
    519   ASSERT_TRUE(callback2_called.IsValid());
    520 
    521   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
    522   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
    523   win::ScopedHandle server1(
    524       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    525   win::ScopedHandle server2(
    526       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    527   ASSERT_TRUE(server1.IsValid());
    528   ASSERT_TRUE(server2.IsValid());
    529 
    530   Thread thread("IOHandler test");
    531   Thread::Options options;
    532   options.message_loop_type = MessageLoop::TYPE_IO;
    533   ASSERT_TRUE(thread.StartWithOptions(options));
    534 
    535   MessageLoop* thread_loop = thread.message_loop();
    536   ASSERT_TRUE(NULL != thread_loop);
    537 
    538   TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
    539   TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
    540   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    541                                               Unretained(&handler1)));
    542   // TODO(ajwong): Do we really need such long Sleeps in this function?
    543   // Make sure the thread runs and sleeps for lack of work.
    544   TimeDelta delay = TimeDelta::FromMilliseconds(100);
    545   PlatformThread::Sleep(delay);
    546   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
    547                                               Unretained(&handler2)));
    548   PlatformThread::Sleep(delay);
    549 
    550   // At this time handler1 is waiting to be called, and the thread is waiting
    551   // on the Init method of handler2, filtering only handler2 callbacks.
    552 
    553   const char buffer[] = "Hello there!";
    554   DWORD written;
    555   EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
    556   PlatformThread::Sleep(2 * delay);
    557   EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
    558             WaitForSingleObject(callback1_called.Get(), 0))
    559       << "handler1 has not been called";
    560 
    561   EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
    562 
    563   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
    564   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
    565   EXPECT_EQ(WAIT_OBJECT_0, result);
    566 
    567   thread.Stop();
    568 }
    569 
    570 #endif  // defined(OS_WIN)
    571 
    572 }  // namespace
    573 
    574 //-----------------------------------------------------------------------------
    575 // Each test is run against each type of MessageLoop.  That way we are sure
    576 // that message loops work properly in all configurations.  Of course, in some
    577 // cases, a unit test may only be for a particular type of loop.
    578 
    579 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
    580 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
    581 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
    582 
    583 #if defined(OS_WIN)
    584 // Additional set of tests for GPU version of UI message loop.
    585 RUN_MESSAGE_LOOP_TESTS(GPU, &MessagePumpForGpu::CreateMessagePumpForGpu);
    586 
    587 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
    588   RunTest_PostDelayedTask_SharedTimer_SubPump();
    589 }
    590 
    591 // This test occasionally hangs. See http://crbug.com/44567.
    592 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
    593   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
    594   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
    595   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
    596 }
    597 
    598 TEST(MessageLoopTest, RecursiveSupport2) {
    599   // This test requires a UI loop.
    600   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
    601 }
    602 #endif  // defined(OS_WIN)
    603 
    604 class DummyTaskObserver : public MessageLoop::TaskObserver {
    605  public:
    606   explicit DummyTaskObserver(int num_tasks)
    607       : num_tasks_started_(0),
    608         num_tasks_processed_(0),
    609         num_tasks_(num_tasks) {}
    610 
    611   ~DummyTaskObserver() override {}
    612 
    613   void WillProcessTask(const PendingTask& pending_task) override {
    614     num_tasks_started_++;
    615     EXPECT_LE(num_tasks_started_, num_tasks_);
    616     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
    617   }
    618 
    619   void DidProcessTask(const PendingTask& pending_task) override {
    620     num_tasks_processed_++;
    621     EXPECT_LE(num_tasks_started_, num_tasks_);
    622     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
    623   }
    624 
    625   int num_tasks_started() const { return num_tasks_started_; }
    626   int num_tasks_processed() const { return num_tasks_processed_; }
    627 
    628  private:
    629   int num_tasks_started_;
    630   int num_tasks_processed_;
    631   const int num_tasks_;
    632 
    633   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
    634 };
    635 
    636 TEST(MessageLoopTest, TaskObserver) {
    637   const int kNumPosts = 6;
    638   DummyTaskObserver observer(kNumPosts);
    639 
    640   MessageLoop loop;
    641   loop.AddTaskObserver(&observer);
    642   loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
    643   RunLoop().Run();
    644   loop.RemoveTaskObserver(&observer);
    645 
    646   EXPECT_EQ(kNumPosts, observer.num_tasks_started());
    647   EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
    648 }
    649 
    650 #if defined(OS_WIN)
    651 TEST(MessageLoopTest, IOHandler) {
    652   RunTest_IOHandler();
    653 }
    654 
    655 TEST(MessageLoopTest, WaitForIO) {
    656   RunTest_WaitForIO();
    657 }
    658 
    659 TEST(MessageLoopTest, HighResolutionTimer) {
    660   MessageLoop loop;
    661   Time::EnableHighResolutionTimer(true);
    662 
    663   const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
    664   const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
    665 
    666   EXPECT_FALSE(loop.HasHighResolutionTasks());
    667   // Post a fast task to enable the high resolution timers.
    668   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
    669                        kFastTimer);
    670   EXPECT_TRUE(loop.HasHighResolutionTasks());
    671   loop.Run();
    672   EXPECT_FALSE(loop.HasHighResolutionTasks());
    673   EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
    674   // Check that a slow task does not trigger the high resolution logic.
    675   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
    676                        kSlowTimer);
    677   EXPECT_FALSE(loop.HasHighResolutionTasks());
    678   loop.Run();
    679   EXPECT_FALSE(loop.HasHighResolutionTasks());
    680   Time::EnableHighResolutionTimer(false);
    681 }
    682 
    683 #endif  // defined(OS_WIN)
    684 
    685 #if defined(OS_POSIX) && !defined(OS_NACL)
    686 
    687 namespace {
    688 
    689 class QuitDelegate : public MessageLoopForIO::Watcher {
    690  public:
    691   void OnFileCanWriteWithoutBlocking(int fd) override {
    692     MessageLoop::current()->QuitWhenIdle();
    693   }
    694   void OnFileCanReadWithoutBlocking(int fd) override {
    695     MessageLoop::current()->QuitWhenIdle();
    696   }
    697 };
    698 
    699 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
    700   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
    701   // This could happen when people use the Singleton pattern or atexit.
    702 
    703   // Create a file descriptor.  Doesn't need to be readable or writable,
    704   // as we don't need to actually get any notifications.
    705   // pipe() is just the easiest way to do it.
    706   int pipefds[2];
    707   int err = pipe(pipefds);
    708   ASSERT_EQ(0, err);
    709   int fd = pipefds[1];
    710   {
    711     // Arrange for controller to live longer than message loop.
    712     MessageLoopForIO::FileDescriptorWatcher controller;
    713     {
    714       MessageLoopForIO message_loop;
    715 
    716       QuitDelegate delegate;
    717       message_loop.WatchFileDescriptor(fd,
    718           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    719       // and don't run the message loop, just destroy it.
    720     }
    721   }
    722   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    723     PLOG(ERROR) << "close";
    724   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    725     PLOG(ERROR) << "close";
    726 }
    727 
    728 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
    729   // Verify that it's ok to call StopWatchingFileDescriptor().
    730   // (Errors only showed up in valgrind.)
    731   int pipefds[2];
    732   int err = pipe(pipefds);
    733   ASSERT_EQ(0, err);
    734   int fd = pipefds[1];
    735   {
    736     // Arrange for message loop to live longer than controller.
    737     MessageLoopForIO message_loop;
    738     {
    739       MessageLoopForIO::FileDescriptorWatcher controller;
    740 
    741       QuitDelegate delegate;
    742       message_loop.WatchFileDescriptor(fd,
    743           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    744       controller.StopWatchingFileDescriptor();
    745     }
    746   }
    747   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    748     PLOG(ERROR) << "close";
    749   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    750     PLOG(ERROR) << "close";
    751 }
    752 
    753 }  // namespace
    754 
    755 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
    756 
    757 namespace {
    758 // Inject a test point for recording the destructor calls for Closure objects
    759 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
    760 // hook the actual destruction, which is not a common operation.
    761 class DestructionObserverProbe :
    762   public RefCounted<DestructionObserverProbe> {
    763  public:
    764   DestructionObserverProbe(bool* task_destroyed,
    765                            bool* destruction_observer_called)
    766       : task_destroyed_(task_destroyed),
    767         destruction_observer_called_(destruction_observer_called) {
    768   }
    769   virtual void Run() {
    770     // This task should never run.
    771     ADD_FAILURE();
    772   }
    773  private:
    774   friend class RefCounted<DestructionObserverProbe>;
    775 
    776   virtual ~DestructionObserverProbe() {
    777     EXPECT_FALSE(*destruction_observer_called_);
    778     *task_destroyed_ = true;
    779   }
    780 
    781   bool* task_destroyed_;
    782   bool* destruction_observer_called_;
    783 };
    784 
    785 class MLDestructionObserver : public MessageLoop::DestructionObserver {
    786  public:
    787   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
    788       : task_destroyed_(task_destroyed),
    789         destruction_observer_called_(destruction_observer_called),
    790         task_destroyed_before_message_loop_(false) {
    791   }
    792   void WillDestroyCurrentMessageLoop() override {
    793     task_destroyed_before_message_loop_ = *task_destroyed_;
    794     *destruction_observer_called_ = true;
    795   }
    796   bool task_destroyed_before_message_loop() const {
    797     return task_destroyed_before_message_loop_;
    798   }
    799  private:
    800   bool* task_destroyed_;
    801   bool* destruction_observer_called_;
    802   bool task_destroyed_before_message_loop_;
    803 };
    804 
    805 }  // namespace
    806 
    807 TEST(MessageLoopTest, DestructionObserverTest) {
    808   // Verify that the destruction observer gets called at the very end (after
    809   // all the pending tasks have been destroyed).
    810   MessageLoop* loop = new MessageLoop;
    811   const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
    812 
    813   bool task_destroyed = false;
    814   bool destruction_observer_called = false;
    815 
    816   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
    817   loop->AddDestructionObserver(&observer);
    818   loop->task_runner()->PostDelayedTask(
    819       FROM_HERE, Bind(&DestructionObserverProbe::Run,
    820                       new DestructionObserverProbe(
    821                           &task_destroyed, &destruction_observer_called)),
    822       kDelay);
    823   delete loop;
    824   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
    825   // The task should have been destroyed when we deleted the loop.
    826   EXPECT_TRUE(task_destroyed);
    827   EXPECT_TRUE(destruction_observer_called);
    828 }
    829 
    830 
    831 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
    832 // posts tasks on that message loop.
    833 TEST(MessageLoopTest, ThreadMainTaskRunner) {
    834   MessageLoop loop;
    835 
    836   scoped_refptr<Foo> foo(new Foo());
    837   std::string a("a");
    838   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
    839       &Foo::Test1ConstRef, foo.get(), a));
    840 
    841   // Post quit task;
    842   MessageLoop::current()->task_runner()->PostTask(
    843       FROM_HERE,
    844       Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
    845 
    846   // Now kick things off
    847   RunLoop().Run();
    848 
    849   EXPECT_EQ(foo->test_count(), 1);
    850   EXPECT_EQ(foo->result(), "a");
    851 }
    852 
    853 TEST(MessageLoopTest, IsType) {
    854   MessageLoop loop(MessageLoop::TYPE_UI);
    855   EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
    856   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
    857   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
    858 }
    859 
    860 #if defined(OS_WIN)
    861 void EmptyFunction() {}
    862 
    863 void PostMultipleTasks() {
    864   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
    865   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
    866 }
    867 
    868 static const int kSignalMsg = WM_USER + 2;
    869 
    870 void PostWindowsMessage(HWND message_hwnd) {
    871   PostMessage(message_hwnd, kSignalMsg, 0, 2);
    872 }
    873 
    874 void EndTest(bool* did_run, HWND hwnd) {
    875   *did_run = true;
    876   PostMessage(hwnd, WM_CLOSE, 0, 0);
    877 }
    878 
    879 int kMyMessageFilterCode = 0x5002;
    880 
    881 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
    882                                   WPARAM wparam, LPARAM lparam) {
    883   if (message == WM_CLOSE)
    884     EXPECT_TRUE(DestroyWindow(hwnd));
    885   if (message != kSignalMsg)
    886     return DefWindowProc(hwnd, message, wparam, lparam);
    887 
    888   switch (lparam) {
    889   case 1:
    890     // First, we post a task that will post multiple no-op tasks to make sure
    891     // that the pump's incoming task queue does not become empty during the
    892     // test.
    893     MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
    894     // Next, we post a task that posts a windows message to trigger the second
    895     // stage of the test.
    896     MessageLoop::current()->PostTask(FROM_HERE,
    897                                      base::Bind(&PostWindowsMessage, hwnd));
    898     break;
    899   case 2:
    900     // Since we're about to enter a modal loop, tell the message loop that we
    901     // intend to nest tasks.
    902     MessageLoop::current()->SetNestableTasksAllowed(true);
    903     bool did_run = false;
    904     MessageLoop::current()->PostTask(FROM_HERE,
    905                                      base::Bind(&EndTest, &did_run, hwnd));
    906     // Run a nested windows-style message loop and verify that our task runs. If
    907     // it doesn't, then we'll loop here until the test times out.
    908     MSG msg;
    909     while (GetMessage(&msg, 0, 0, 0)) {
    910       if (!CallMsgFilter(&msg, kMyMessageFilterCode))
    911         DispatchMessage(&msg);
    912       // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
    913       // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
    914       // WM_QUIT messages even when running inside a modal loop.
    915       if (msg.message == WM_CLOSE)
    916         break;
    917     }
    918     EXPECT_TRUE(did_run);
    919     MessageLoop::current()->QuitWhenIdle();
    920     break;
    921   }
    922   return 0;
    923 }
    924 
    925 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
    926   MessageLoop loop(MessageLoop::TYPE_UI);
    927   HINSTANCE instance = CURRENT_MODULE();
    928   WNDCLASSEX wc = {0};
    929   wc.cbSize = sizeof(wc);
    930   wc.lpfnWndProc = TestWndProcThunk;
    931   wc.hInstance = instance;
    932   wc.lpszClassName = L"MessageLoopTest_HWND";
    933   ATOM atom = RegisterClassEx(&wc);
    934   ASSERT_TRUE(atom);
    935 
    936   HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
    937                                    HWND_MESSAGE, 0, instance, 0);
    938   ASSERT_TRUE(message_hwnd) << GetLastError();
    939 
    940   ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
    941 
    942   loop.Run();
    943 
    944   ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
    945 }
    946 #endif  // defined(OS_WIN)
    947 
    948 TEST(MessageLoopTest, SetTaskRunner) {
    949   MessageLoop loop;
    950   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
    951 
    952   loop.SetTaskRunner(new_runner);
    953   EXPECT_EQ(new_runner, loop.task_runner());
    954   EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
    955 }
    956 
    957 TEST(MessageLoopTest, OriginalRunnerWorks) {
    958   MessageLoop loop;
    959   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
    960   scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
    961   loop.SetTaskRunner(new_runner);
    962 
    963   scoped_refptr<Foo> foo(new Foo());
    964   original_runner->PostTask(FROM_HERE,
    965                             Bind(&Foo::Test1ConstRef, foo.get(), "a"));
    966   RunLoop().RunUntilIdle();
    967   EXPECT_EQ(1, foo->test_count());
    968 }
    969 
    970 TEST(MessageLoopTest, DeleteUnboundLoop) {
    971   // It should be possible to delete an unbound message loop on a thread which
    972   // already has another active loop. This happens when thread creation fails.
    973   MessageLoop loop;
    974   std::unique_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
    975       MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
    976   unbound_loop.reset();
    977   EXPECT_EQ(&loop, MessageLoop::current());
    978   EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
    979 }
    980 
    981 TEST(MessageLoopTest, ThreadName) {
    982   {
    983     std::string kThreadName("foo");
    984     MessageLoop loop;
    985     PlatformThread::SetName(kThreadName);
    986     EXPECT_EQ(kThreadName, loop.GetThreadName());
    987   }
    988 
    989   {
    990     std::string kThreadName("bar");
    991     base::Thread thread(kThreadName);
    992     ASSERT_TRUE(thread.StartAndWaitForTesting());
    993     EXPECT_EQ(kThreadName, thread.message_loop()->GetThreadName());
    994   }
    995 }
    996 
    997 }  // namespace base
    998