Home | History | Annotate | Download | only in metrics
      1 // Copyright 2015 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/metrics/persistent_memory_allocator.h"
      6 
      7 #include <memory>
      8 
      9 #include "base/files/file.h"
     10 #include "base/files/file_util.h"
     11 #include "base/files/memory_mapped_file.h"
     12 #include "base/files/scoped_temp_dir.h"
     13 #include "base/memory/shared_memory.h"
     14 #include "base/metrics/histogram.h"
     15 #include "base/rand_util.h"
     16 #include "base/strings/safe_sprintf.h"
     17 #include "base/synchronization/condition_variable.h"
     18 #include "base/synchronization/lock.h"
     19 #include "base/threading/simple_thread.h"
     20 #include "testing/gmock/include/gmock/gmock.h"
     21 
     22 namespace {
     23 
     24 const uint32_t TEST_MEMORY_SIZE = 1 << 20;   // 1 MiB
     25 const uint32_t TEST_MEMORY_PAGE = 64 << 10;  // 64 KiB
     26 const uint32_t TEST_ID = 12345;
     27 const char TEST_NAME[] = "TestAllocator";
     28 
     29 }  // namespace
     30 
     31 namespace base {
     32 
     33 typedef PersistentMemoryAllocator::Reference Reference;
     34 
     35 class PersistentMemoryAllocatorTest : public testing::Test {
     36  public:
     37   // This can't be statically initialized because it's value isn't defined
     38   // in the PersistentMemoryAllocator header file. Instead, it's simply set
     39   // in the constructor.
     40   uint32_t kAllocAlignment;
     41 
     42   struct TestObject1 {
     43     int onething;
     44     char oranother;
     45   };
     46 
     47   struct TestObject2 {
     48     int thiis;
     49     long that;
     50     float andthe;
     51     char other;
     52     double thing;
     53   };
     54 
     55   PersistentMemoryAllocatorTest() {
     56     kAllocAlignment = GetAllocAlignment();
     57     mem_segment_.reset(new char[TEST_MEMORY_SIZE]);
     58   }
     59 
     60   void SetUp() override {
     61     allocator_.reset();
     62     ::memset(mem_segment_.get(), 0, TEST_MEMORY_SIZE);
     63     allocator_.reset(new PersistentMemoryAllocator(
     64         mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE,
     65         TEST_ID, TEST_NAME, false));
     66     allocator_->CreateTrackingHistograms(allocator_->Name());
     67   }
     68 
     69   void TearDown() override {
     70     allocator_.reset();
     71   }
     72 
     73   unsigned CountIterables() {
     74     PersistentMemoryAllocator::Iterator iter(allocator_.get());
     75     uint32_t type;
     76     unsigned count = 0;
     77     while (iter.GetNext(&type) != 0) {
     78       ++count;
     79     }
     80     return count;
     81   }
     82 
     83   static uint32_t GetAllocAlignment() {
     84     return PersistentMemoryAllocator::kAllocAlignment;
     85   }
     86 
     87  protected:
     88   std::unique_ptr<char[]> mem_segment_;
     89   std::unique_ptr<PersistentMemoryAllocator> allocator_;
     90 };
     91 
     92 TEST_F(PersistentMemoryAllocatorTest, AllocateAndIterate) {
     93   std::string base_name(TEST_NAME);
     94   EXPECT_EQ(TEST_ID, allocator_->Id());
     95   EXPECT_TRUE(allocator_->used_histogram_);
     96   EXPECT_EQ("UMA.PersistentAllocator." + base_name + ".UsedPct",
     97             allocator_->used_histogram_->histogram_name());
     98   EXPECT_TRUE(allocator_->allocs_histogram_);
     99   EXPECT_EQ("UMA.PersistentAllocator." + base_name + ".Allocs",
    100             allocator_->allocs_histogram_->histogram_name());
    101 
    102   // Get base memory info for later comparison.
    103   PersistentMemoryAllocator::MemoryInfo meminfo0;
    104   allocator_->GetMemoryInfo(&meminfo0);
    105   EXPECT_EQ(TEST_MEMORY_SIZE, meminfo0.total);
    106   EXPECT_GT(meminfo0.total, meminfo0.free);
    107 
    108   // Validate allocation of test object and make sure it can be referenced
    109   // and all metadata looks correct.
    110   Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
    111   EXPECT_NE(0U, block1);
    112   EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject1>(block1, 1));
    113   EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block1, 1));
    114   EXPECT_LE(sizeof(TestObject1), allocator_->GetAllocSize(block1));
    115   EXPECT_GT(sizeof(TestObject1) + kAllocAlignment,
    116             allocator_->GetAllocSize(block1));
    117   PersistentMemoryAllocator::MemoryInfo meminfo1;
    118   allocator_->GetMemoryInfo(&meminfo1);
    119   EXPECT_EQ(meminfo0.total, meminfo1.total);
    120   EXPECT_GT(meminfo0.free, meminfo1.free);
    121 
    122   // Ensure that the test-object can be made iterable.
    123   PersistentMemoryAllocator::Iterator iter1a(allocator_.get());
    124   uint32_t type;
    125   EXPECT_EQ(0U, iter1a.GetNext(&type));
    126   allocator_->MakeIterable(block1);
    127   EXPECT_EQ(block1, iter1a.GetNext(&type));
    128   EXPECT_EQ(1U, type);
    129   EXPECT_EQ(0U, iter1a.GetNext(&type));
    130 
    131   // Create second test-object and ensure everything is good and it cannot
    132   // be confused with test-object of another type.
    133   Reference block2 = allocator_->Allocate(sizeof(TestObject2), 2);
    134   EXPECT_NE(0U, block2);
    135   EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject2>(block2, 2));
    136   EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block2, 1));
    137   EXPECT_LE(sizeof(TestObject2), allocator_->GetAllocSize(block2));
    138   EXPECT_GT(sizeof(TestObject2) + kAllocAlignment,
    139             allocator_->GetAllocSize(block2));
    140   PersistentMemoryAllocator::MemoryInfo meminfo2;
    141   allocator_->GetMemoryInfo(&meminfo2);
    142   EXPECT_EQ(meminfo1.total, meminfo2.total);
    143   EXPECT_GT(meminfo1.free, meminfo2.free);
    144 
    145   // Ensure that second test-object can also be made iterable.
    146   allocator_->MakeIterable(block2);
    147   EXPECT_EQ(block2, iter1a.GetNext(&type));
    148   EXPECT_EQ(2U, type);
    149   EXPECT_EQ(0U, iter1a.GetNext(&type));
    150 
    151   // Check that iteration can begin after an arbitrary location.
    152   PersistentMemoryAllocator::Iterator iter1b(allocator_.get(), block1);
    153   EXPECT_EQ(block2, iter1b.GetNext(&type));
    154   EXPECT_EQ(0U, iter1b.GetNext(&type));
    155 
    156   // Ensure nothing has gone noticably wrong.
    157   EXPECT_FALSE(allocator_->IsFull());
    158   EXPECT_FALSE(allocator_->IsCorrupt());
    159 
    160   // Check the internal histogram record of used memory.
    161   allocator_->UpdateTrackingHistograms();
    162   std::unique_ptr<HistogramSamples> used_samples(
    163       allocator_->used_histogram_->SnapshotSamples());
    164   EXPECT_TRUE(used_samples);
    165   EXPECT_EQ(1, used_samples->TotalCount());
    166 
    167   // Check the internal histogram record of allocation requests.
    168   std::unique_ptr<HistogramSamples> allocs_samples(
    169       allocator_->allocs_histogram_->SnapshotSamples());
    170   EXPECT_TRUE(allocs_samples);
    171   EXPECT_EQ(2, allocs_samples->TotalCount());
    172   EXPECT_EQ(0, allocs_samples->GetCount(0));
    173   EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject1)));
    174   EXPECT_EQ(1, allocs_samples->GetCount(sizeof(TestObject2)));
    175 #if !DCHECK_IS_ON()  // DCHECK builds will die at a NOTREACHED().
    176   EXPECT_EQ(0U, allocator_->Allocate(TEST_MEMORY_SIZE + 1, 0));
    177   allocs_samples = allocator_->allocs_histogram_->SnapshotSamples();
    178   EXPECT_EQ(3, allocs_samples->TotalCount());
    179   EXPECT_EQ(1, allocs_samples->GetCount(0));
    180 #endif
    181 
    182   // Check that an objcet's type can be changed.
    183   EXPECT_EQ(2U, allocator_->GetType(block2));
    184   allocator_->ChangeType(block2, 3, 2);
    185   EXPECT_EQ(3U, allocator_->GetType(block2));
    186   allocator_->ChangeType(block2, 2, 3);
    187   EXPECT_EQ(2U, allocator_->GetType(block2));
    188 
    189   // Create second allocator (read/write) using the same memory segment.
    190   std::unique_ptr<PersistentMemoryAllocator> allocator2(
    191       new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
    192                                     TEST_MEMORY_PAGE, 0, "", false));
    193   EXPECT_EQ(TEST_ID, allocator2->Id());
    194   EXPECT_FALSE(allocator2->used_histogram_);
    195   EXPECT_FALSE(allocator2->allocs_histogram_);
    196   EXPECT_NE(allocator2->allocs_histogram_, allocator_->allocs_histogram_);
    197 
    198   // Ensure that iteration and access through second allocator works.
    199   PersistentMemoryAllocator::Iterator iter2(allocator2.get());
    200   EXPECT_EQ(block1, iter2.GetNext(&type));
    201   EXPECT_EQ(block2, iter2.GetNext(&type));
    202   EXPECT_EQ(0U, iter2.GetNext(&type));
    203   EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject1>(block1, 1));
    204   EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject2>(block2, 2));
    205 
    206   // Create a third allocator (read-only) using the same memory segment.
    207   std::unique_ptr<const PersistentMemoryAllocator> allocator3(
    208       new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
    209                                     TEST_MEMORY_PAGE, 0, "", true));
    210   EXPECT_EQ(TEST_ID, allocator3->Id());
    211   EXPECT_FALSE(allocator3->used_histogram_);
    212   EXPECT_FALSE(allocator3->allocs_histogram_);
    213 
    214   // Ensure that iteration and access through third allocator works.
    215   PersistentMemoryAllocator::Iterator iter3(allocator3.get());
    216   EXPECT_EQ(block1, iter3.GetNext(&type));
    217   EXPECT_EQ(block2, iter3.GetNext(&type));
    218   EXPECT_EQ(0U, iter3.GetNext(&type));
    219   EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject1>(block1, 1));
    220   EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject2>(block2, 2));
    221 
    222   // Ensure that GetNextOfType works.
    223   PersistentMemoryAllocator::Iterator iter1c(allocator_.get());
    224   EXPECT_EQ(block2, iter1c.GetNextOfType(2));
    225   EXPECT_EQ(0U, iter1c.GetNextOfType(2));
    226 }
    227 
    228 TEST_F(PersistentMemoryAllocatorTest, PageTest) {
    229   // This allocation will go into the first memory page.
    230   Reference block1 = allocator_->Allocate(TEST_MEMORY_PAGE / 2, 1);
    231   EXPECT_LT(0U, block1);
    232   EXPECT_GT(TEST_MEMORY_PAGE, block1);
    233 
    234   // This allocation won't fit in same page as previous block.
    235   Reference block2 =
    236       allocator_->Allocate(TEST_MEMORY_PAGE - 2 * kAllocAlignment, 2);
    237   EXPECT_EQ(TEST_MEMORY_PAGE, block2);
    238 
    239   // This allocation will also require a new page.
    240   Reference block3 = allocator_->Allocate(2 * kAllocAlignment + 99, 3);
    241   EXPECT_EQ(2U * TEST_MEMORY_PAGE, block3);
    242 }
    243 
    244 // A simple thread that takes an allocator and repeatedly allocates random-
    245 // sized chunks from it until no more can be done.
    246 class AllocatorThread : public SimpleThread {
    247  public:
    248   AllocatorThread(const std::string& name,
    249                   void* base,
    250                   uint32_t size,
    251                   uint32_t page_size)
    252       : SimpleThread(name, Options()),
    253         count_(0),
    254         iterable_(0),
    255         allocator_(base, size, page_size, 0, std::string(), false) {}
    256 
    257   void Run() override {
    258     for (;;) {
    259       uint32_t size = RandInt(1, 99);
    260       uint32_t type = RandInt(100, 999);
    261       Reference block = allocator_.Allocate(size, type);
    262       if (!block)
    263         break;
    264 
    265       count_++;
    266       if (RandInt(0, 1)) {
    267         allocator_.MakeIterable(block);
    268         iterable_++;
    269       }
    270     }
    271   }
    272 
    273   unsigned iterable() { return iterable_; }
    274   unsigned count() { return count_; }
    275 
    276  private:
    277   unsigned count_;
    278   unsigned iterable_;
    279   PersistentMemoryAllocator allocator_;
    280 };
    281 
    282 // Test parallel allocation/iteration and ensure consistency across all
    283 // instances.
    284 TEST_F(PersistentMemoryAllocatorTest, ParallelismTest) {
    285   void* memory = mem_segment_.get();
    286   AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    287   AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    288   AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    289   AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    290   AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    291 
    292   t1.Start();
    293   t2.Start();
    294   t3.Start();
    295   t4.Start();
    296   t5.Start();
    297 
    298   unsigned last_count = 0;
    299   do {
    300     unsigned count = CountIterables();
    301     EXPECT_LE(last_count, count);
    302   } while (!allocator_->IsCorrupt() && !allocator_->IsFull());
    303 
    304   t1.Join();
    305   t2.Join();
    306   t3.Join();
    307   t4.Join();
    308   t5.Join();
    309 
    310   EXPECT_FALSE(allocator_->IsCorrupt());
    311   EXPECT_TRUE(allocator_->IsFull());
    312   EXPECT_EQ(CountIterables(),
    313             t1.iterable() + t2.iterable() + t3.iterable() + t4.iterable() +
    314             t5.iterable());
    315 }
    316 
    317 // A simple thread that counts objects by iterating through an allocator.
    318 class CounterThread : public SimpleThread {
    319  public:
    320   CounterThread(const std::string& name,
    321                 PersistentMemoryAllocator::Iterator* iterator,
    322                 Lock* lock,
    323                 ConditionVariable* condition,
    324                 bool* wake_up)
    325       : SimpleThread(name, Options()),
    326         iterator_(iterator),
    327         lock_(lock),
    328         condition_(condition),
    329         count_(0),
    330         wake_up_(wake_up) {}
    331 
    332   void Run() override {
    333     // Wait so all threads can start at approximately the same time.
    334     // Best performance comes from releasing a single worker which then
    335     // releases the next, etc., etc.
    336     {
    337       AutoLock autolock(*lock_);
    338 
    339       // Before calling Wait(), make sure that the wake up condition
    340       // has not already passed.  Also, since spurious signal events
    341       // are possible, check the condition in a while loop to make
    342       // sure that the wake up condition is met when this thread
    343       // returns from the Wait().
    344       // See usage comments in src/base/synchronization/condition_variable.h.
    345       while (!*wake_up_) {
    346         condition_->Wait();
    347         condition_->Signal();
    348       }
    349     }
    350 
    351     uint32_t type;
    352     while (iterator_->GetNext(&type) != 0) {
    353       ++count_;
    354     }
    355   }
    356 
    357   unsigned count() { return count_; }
    358 
    359  private:
    360   PersistentMemoryAllocator::Iterator* iterator_;
    361   Lock* lock_;
    362   ConditionVariable* condition_;
    363   unsigned count_;
    364   bool* wake_up_;
    365 
    366   DISALLOW_COPY_AND_ASSIGN(CounterThread);
    367 };
    368 
    369 // Ensure that parallel iteration returns the same number of objects as
    370 // single-threaded iteration.
    371 TEST_F(PersistentMemoryAllocatorTest, IteratorParallelismTest) {
    372   // Fill the memory segment with random allocations.
    373   unsigned iterable_count = 0;
    374   for (;;) {
    375     uint32_t size = RandInt(1, 99);
    376     uint32_t type = RandInt(100, 999);
    377     Reference block = allocator_->Allocate(size, type);
    378     if (!block)
    379       break;
    380     allocator_->MakeIterable(block);
    381     ++iterable_count;
    382   }
    383   EXPECT_FALSE(allocator_->IsCorrupt());
    384   EXPECT_TRUE(allocator_->IsFull());
    385   EXPECT_EQ(iterable_count, CountIterables());
    386 
    387   PersistentMemoryAllocator::Iterator iter(allocator_.get());
    388   Lock lock;
    389   ConditionVariable condition(&lock);
    390   bool wake_up = false;
    391 
    392   CounterThread t1("t1", &iter, &lock, &condition, &wake_up);
    393   CounterThread t2("t2", &iter, &lock, &condition, &wake_up);
    394   CounterThread t3("t3", &iter, &lock, &condition, &wake_up);
    395   CounterThread t4("t4", &iter, &lock, &condition, &wake_up);
    396   CounterThread t5("t5", &iter, &lock, &condition, &wake_up);
    397 
    398   t1.Start();
    399   t2.Start();
    400   t3.Start();
    401   t4.Start();
    402   t5.Start();
    403 
    404   // Take the lock and set the wake up condition to true.  This helps to
    405   // avoid a race condition where the Signal() event is called before
    406   // all the threads have reached the Wait() and thus never get woken up.
    407   {
    408     AutoLock autolock(lock);
    409     wake_up = true;
    410   }
    411 
    412   // This will release all the waiting threads.
    413   condition.Signal();
    414 
    415   t1.Join();
    416   t2.Join();
    417   t3.Join();
    418   t4.Join();
    419   t5.Join();
    420 
    421   EXPECT_EQ(iterable_count,
    422             t1.count() + t2.count() + t3.count() + t4.count() + t5.count());
    423 
    424 #if 0
    425   // These ensure that the threads don't run sequentially. It shouldn't be
    426   // enabled in general because it could lead to a flaky test if it happens
    427   // simply by chance but it is useful during development to ensure that the
    428   // test is working correctly.
    429   EXPECT_NE(iterable_count, t1.count());
    430   EXPECT_NE(iterable_count, t2.count());
    431   EXPECT_NE(iterable_count, t3.count());
    432   EXPECT_NE(iterable_count, t4.count());
    433   EXPECT_NE(iterable_count, t5.count());
    434 #endif
    435 }
    436 
    437 // This test doesn't verify anything other than it doesn't crash. Its goal
    438 // is to find coding errors that aren't otherwise tested for, much like a
    439 // "fuzzer" would.
    440 // This test is suppsoed to fail on TSAN bot (crbug.com/579867).
    441 #if defined(THREAD_SANITIZER)
    442 #define MAYBE_CorruptionTest DISABLED_CorruptionTest
    443 #else
    444 #define MAYBE_CorruptionTest CorruptionTest
    445 #endif
    446 TEST_F(PersistentMemoryAllocatorTest, MAYBE_CorruptionTest) {
    447   char* memory = mem_segment_.get();
    448   AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    449   AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    450   AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    451   AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    452   AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
    453 
    454   t1.Start();
    455   t2.Start();
    456   t3.Start();
    457   t4.Start();
    458   t5.Start();
    459 
    460   do {
    461     size_t offset = RandInt(0, TEST_MEMORY_SIZE - 1);
    462     char value = RandInt(0, 255);
    463     memory[offset] = value;
    464   } while (!allocator_->IsCorrupt() && !allocator_->IsFull());
    465 
    466   t1.Join();
    467   t2.Join();
    468   t3.Join();
    469   t4.Join();
    470   t5.Join();
    471 
    472   CountIterables();
    473 }
    474 
    475 // Attempt to cause crashes or loops by expressly creating dangerous conditions.
    476 TEST_F(PersistentMemoryAllocatorTest, MaliciousTest) {
    477   Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
    478   Reference block2 = allocator_->Allocate(sizeof(TestObject1), 2);
    479   Reference block3 = allocator_->Allocate(sizeof(TestObject1), 3);
    480   Reference block4 = allocator_->Allocate(sizeof(TestObject1), 3);
    481   Reference block5 = allocator_->Allocate(sizeof(TestObject1), 3);
    482   allocator_->MakeIterable(block1);
    483   allocator_->MakeIterable(block2);
    484   allocator_->MakeIterable(block3);
    485   allocator_->MakeIterable(block4);
    486   allocator_->MakeIterable(block5);
    487   EXPECT_EQ(5U, CountIterables());
    488   EXPECT_FALSE(allocator_->IsCorrupt());
    489 
    490   // Create loop in iterable list and ensure it doesn't hang. The return value
    491   // from CountIterables() in these cases is unpredictable. If there is a
    492   // failure, the call will hang and the test killed for taking too long.
    493   uint32_t* header4 = (uint32_t*)(mem_segment_.get() + block4);
    494   EXPECT_EQ(block5, header4[3]);
    495   header4[3] = block4;
    496   CountIterables();  // loop: 1-2-3-4-4
    497   EXPECT_TRUE(allocator_->IsCorrupt());
    498 
    499   // Test where loop goes back to previous block.
    500   header4[3] = block3;
    501   CountIterables();  // loop: 1-2-3-4-3
    502 
    503   // Test where loop goes back to the beginning.
    504   header4[3] = block1;
    505   CountIterables();  // loop: 1-2-3-4-1
    506 }
    507 
    508 
    509 //----- LocalPersistentMemoryAllocator -----------------------------------------
    510 
    511 TEST(LocalPersistentMemoryAllocatorTest, CreationTest) {
    512   LocalPersistentMemoryAllocator allocator(TEST_MEMORY_SIZE, 42, "");
    513   EXPECT_EQ(42U, allocator.Id());
    514   EXPECT_NE(0U, allocator.Allocate(24, 1));
    515   EXPECT_FALSE(allocator.IsFull());
    516   EXPECT_FALSE(allocator.IsCorrupt());
    517 }
    518 
    519 
    520 //----- SharedPersistentMemoryAllocator ----------------------------------------
    521 
    522 TEST(SharedPersistentMemoryAllocatorTest, CreationTest) {
    523   SharedMemoryHandle shared_handle_1;
    524   SharedMemoryHandle shared_handle_2;
    525 
    526   PersistentMemoryAllocator::MemoryInfo meminfo1;
    527   Reference r123, r456, r789;
    528   {
    529     std::unique_ptr<SharedMemory> shmem1(new SharedMemory());
    530     ASSERT_TRUE(shmem1->CreateAndMapAnonymous(TEST_MEMORY_SIZE));
    531     SharedPersistentMemoryAllocator local(std::move(shmem1), TEST_ID, "",
    532                                           false);
    533     EXPECT_FALSE(local.IsReadonly());
    534     r123 = local.Allocate(123, 123);
    535     r456 = local.Allocate(456, 456);
    536     r789 = local.Allocate(789, 789);
    537     local.MakeIterable(r123);
    538     local.ChangeType(r456, 654, 456);
    539     local.MakeIterable(r789);
    540     local.GetMemoryInfo(&meminfo1);
    541     EXPECT_FALSE(local.IsFull());
    542     EXPECT_FALSE(local.IsCorrupt());
    543 
    544     ASSERT_TRUE(local.shared_memory()->ShareToProcess(GetCurrentProcessHandle(),
    545                                                       &shared_handle_1));
    546     ASSERT_TRUE(local.shared_memory()->ShareToProcess(GetCurrentProcessHandle(),
    547                                                       &shared_handle_2));
    548   }
    549 
    550   // Read-only test.
    551   std::unique_ptr<SharedMemory> shmem2(new SharedMemory(shared_handle_1,
    552                                                         /*readonly=*/true));
    553   ASSERT_TRUE(shmem2->Map(TEST_MEMORY_SIZE));
    554 
    555   SharedPersistentMemoryAllocator shalloc2(std::move(shmem2), 0, "", true);
    556   EXPECT_TRUE(shalloc2.IsReadonly());
    557   EXPECT_EQ(TEST_ID, shalloc2.Id());
    558   EXPECT_FALSE(shalloc2.IsFull());
    559   EXPECT_FALSE(shalloc2.IsCorrupt());
    560 
    561   PersistentMemoryAllocator::Iterator iter2(&shalloc2);
    562   uint32_t type;
    563   EXPECT_EQ(r123, iter2.GetNext(&type));
    564   EXPECT_EQ(r789, iter2.GetNext(&type));
    565   EXPECT_EQ(0U, iter2.GetNext(&type));
    566 
    567   EXPECT_EQ(123U, shalloc2.GetType(r123));
    568   EXPECT_EQ(654U, shalloc2.GetType(r456));
    569   EXPECT_EQ(789U, shalloc2.GetType(r789));
    570 
    571   PersistentMemoryAllocator::MemoryInfo meminfo2;
    572   shalloc2.GetMemoryInfo(&meminfo2);
    573   EXPECT_EQ(meminfo1.total, meminfo2.total);
    574   EXPECT_EQ(meminfo1.free, meminfo2.free);
    575 
    576   // Read/write test.
    577   std::unique_ptr<SharedMemory> shmem3(new SharedMemory(shared_handle_2,
    578                                                         /*readonly=*/false));
    579   ASSERT_TRUE(shmem3->Map(TEST_MEMORY_SIZE));
    580 
    581   SharedPersistentMemoryAllocator shalloc3(std::move(shmem3), 0, "", false);
    582   EXPECT_FALSE(shalloc3.IsReadonly());
    583   EXPECT_EQ(TEST_ID, shalloc3.Id());
    584   EXPECT_FALSE(shalloc3.IsFull());
    585   EXPECT_FALSE(shalloc3.IsCorrupt());
    586 
    587   PersistentMemoryAllocator::Iterator iter3(&shalloc3);
    588   EXPECT_EQ(r123, iter3.GetNext(&type));
    589   EXPECT_EQ(r789, iter3.GetNext(&type));
    590   EXPECT_EQ(0U, iter3.GetNext(&type));
    591 
    592   EXPECT_EQ(123U, shalloc3.GetType(r123));
    593   EXPECT_EQ(654U, shalloc3.GetType(r456));
    594   EXPECT_EQ(789U, shalloc3.GetType(r789));
    595 
    596   PersistentMemoryAllocator::MemoryInfo meminfo3;
    597   shalloc3.GetMemoryInfo(&meminfo3);
    598   EXPECT_EQ(meminfo1.total, meminfo3.total);
    599   EXPECT_EQ(meminfo1.free, meminfo3.free);
    600 
    601   // Interconnectivity test.
    602   Reference obj = shalloc3.Allocate(42, 42);
    603   ASSERT_TRUE(obj);
    604   shalloc3.MakeIterable(obj);
    605   EXPECT_EQ(obj, iter2.GetNext(&type));
    606   EXPECT_EQ(42U, type);
    607 }
    608 
    609 
    610 #if !defined(OS_NACL)
    611 //----- FilePersistentMemoryAllocator ------------------------------------------
    612 
    613 TEST(FilePersistentMemoryAllocatorTest, CreationTest) {
    614   ScopedTempDir temp_dir;
    615   ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
    616   FilePath file_path = temp_dir.path().AppendASCII("persistent_memory");
    617 
    618   PersistentMemoryAllocator::MemoryInfo meminfo1;
    619   Reference r123, r456, r789;
    620   {
    621     LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
    622     EXPECT_FALSE(local.IsReadonly());
    623     r123 = local.Allocate(123, 123);
    624     r456 = local.Allocate(456, 456);
    625     r789 = local.Allocate(789, 789);
    626     local.MakeIterable(r123);
    627     local.ChangeType(r456, 654, 456);
    628     local.MakeIterable(r789);
    629     local.GetMemoryInfo(&meminfo1);
    630     EXPECT_FALSE(local.IsFull());
    631     EXPECT_FALSE(local.IsCorrupt());
    632 
    633     File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
    634     ASSERT_TRUE(writer.IsValid());
    635     writer.Write(0, (const char*)local.data(), local.used());
    636   }
    637 
    638   std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
    639   mmfile->Initialize(file_path);
    640   EXPECT_TRUE(mmfile->IsValid());
    641   const size_t mmlength = mmfile->length();
    642   EXPECT_GE(meminfo1.total, mmlength);
    643 
    644   FilePersistentMemoryAllocator file(std::move(mmfile), 0, 0, "", true);
    645   EXPECT_TRUE(file.IsReadonly());
    646   EXPECT_EQ(TEST_ID, file.Id());
    647   EXPECT_FALSE(file.IsFull());
    648   EXPECT_FALSE(file.IsCorrupt());
    649 
    650   PersistentMemoryAllocator::Iterator iter(&file);
    651   uint32_t type;
    652   EXPECT_EQ(r123, iter.GetNext(&type));
    653   EXPECT_EQ(r789, iter.GetNext(&type));
    654   EXPECT_EQ(0U, iter.GetNext(&type));
    655 
    656   EXPECT_EQ(123U, file.GetType(r123));
    657   EXPECT_EQ(654U, file.GetType(r456));
    658   EXPECT_EQ(789U, file.GetType(r789));
    659 
    660   PersistentMemoryAllocator::MemoryInfo meminfo2;
    661   file.GetMemoryInfo(&meminfo2);
    662   EXPECT_GE(meminfo1.total, meminfo2.total);
    663   EXPECT_GE(meminfo1.free, meminfo2.free);
    664   EXPECT_EQ(mmlength, meminfo2.total);
    665   EXPECT_EQ(0U, meminfo2.free);
    666 }
    667 
    668 TEST(FilePersistentMemoryAllocatorTest, ExtendTest) {
    669   ScopedTempDir temp_dir;
    670   ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
    671   FilePath file_path = temp_dir.path().AppendASCII("extend_test");
    672   MemoryMappedFile::Region region = {0, 16 << 10};  // 16KiB maximum size.
    673 
    674   // Start with a small but valid file of persistent data.
    675   ASSERT_FALSE(PathExists(file_path));
    676   {
    677     LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
    678     local.Allocate(1, 1);
    679     local.Allocate(11, 11);
    680 
    681     File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
    682     ASSERT_TRUE(writer.IsValid());
    683     writer.Write(0, (const char*)local.data(), local.used());
    684   }
    685   ASSERT_TRUE(PathExists(file_path));
    686   int64_t before_size;
    687   ASSERT_TRUE(GetFileSize(file_path, &before_size));
    688 
    689   // Map it as an extendable read/write file and append to it.
    690   {
    691     std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
    692     mmfile->Initialize(
    693         File(file_path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE),
    694         region, MemoryMappedFile::READ_WRITE_EXTEND);
    695     FilePersistentMemoryAllocator allocator(std::move(mmfile), region.size, 0,
    696                                             "", false);
    697     EXPECT_EQ(static_cast<size_t>(before_size), allocator.used());
    698 
    699     allocator.Allocate(111, 111);
    700     EXPECT_LT(static_cast<size_t>(before_size), allocator.used());
    701   }
    702 
    703   // Validate that append worked.
    704   int64_t after_size;
    705   ASSERT_TRUE(GetFileSize(file_path, &after_size));
    706   EXPECT_LT(before_size, after_size);
    707 
    708   // Verify that it's still an acceptable file.
    709   {
    710     std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
    711     mmfile->Initialize(
    712         File(file_path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE),
    713         region, MemoryMappedFile::READ_WRITE_EXTEND);
    714     EXPECT_TRUE(FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, true));
    715     EXPECT_TRUE(
    716         FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, false));
    717   }
    718 }
    719 
    720 TEST(FilePersistentMemoryAllocatorTest, AcceptableTest) {
    721   const uint32_t kAllocAlignment =
    722       PersistentMemoryAllocatorTest::GetAllocAlignment();
    723   ScopedTempDir temp_dir;
    724   ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
    725 
    726   LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
    727   local.MakeIterable(local.Allocate(1, 1));
    728   local.MakeIterable(local.Allocate(11, 11));
    729   const size_t minsize = local.used();
    730   std::unique_ptr<char[]> garbage(new char[minsize]);
    731   RandBytes(garbage.get(), minsize);
    732 
    733   std::unique_ptr<MemoryMappedFile> mmfile;
    734   char filename[100];
    735   for (size_t filesize = minsize; filesize > 0; --filesize) {
    736     strings::SafeSPrintf(filename, "memory_%d_A", filesize);
    737     FilePath file_path = temp_dir.path().AppendASCII(filename);
    738     ASSERT_FALSE(PathExists(file_path));
    739     {
    740       File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
    741       ASSERT_TRUE(writer.IsValid());
    742       writer.Write(0, (const char*)local.data(), filesize);
    743     }
    744     ASSERT_TRUE(PathExists(file_path));
    745 
    746     // Request read/write access for some sizes that are a multple of the
    747     // allocator's alignment size. The allocator is strict about file size
    748     // being a multiple of its internal alignment when doing read/write access.
    749     const bool read_only = (filesize % (2 * kAllocAlignment)) != 0;
    750     const uint32_t file_flags =
    751         File::FLAG_OPEN | File::FLAG_READ | (read_only ? 0 : File::FLAG_WRITE);
    752     const MemoryMappedFile::Access map_access =
    753         read_only ? MemoryMappedFile::READ_ONLY : MemoryMappedFile::READ_WRITE;
    754 
    755     mmfile.reset(new MemoryMappedFile());
    756     mmfile->Initialize(File(file_path, file_flags), map_access);
    757     EXPECT_EQ(filesize, mmfile->length());
    758     if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, read_only)) {
    759       // Make sure construction doesn't crash. It will, however, cause
    760       // error messages warning about about a corrupted memory segment.
    761       FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, 0, "",
    762                                               read_only);
    763       // Also make sure that iteration doesn't crash.
    764       PersistentMemoryAllocator::Iterator iter(&allocator);
    765       uint32_t type_id;
    766       Reference ref;
    767       while ((ref = iter.GetNext(&type_id)) != 0) {
    768         const char* data = allocator.GetAsObject<char>(ref, 0);
    769         uint32_t type = allocator.GetType(ref);
    770         size_t size = allocator.GetAllocSize(ref);
    771         // Ensure compiler can't optimize-out above variables.
    772         (void)data;
    773         (void)type;
    774         (void)size;
    775       }
    776 
    777       // Ensure that short files are detected as corrupt and full files are not.
    778       EXPECT_EQ(filesize != minsize, allocator.IsCorrupt());
    779     } else {
    780       // For filesize >= minsize, the file must be acceptable. This
    781       // else clause (file-not-acceptable) should be reached only if
    782       // filesize < minsize.
    783       EXPECT_LT(filesize, minsize);
    784     }
    785 
    786     strings::SafeSPrintf(filename, "memory_%d_B", filesize);
    787     file_path = temp_dir.path().AppendASCII(filename);
    788     ASSERT_FALSE(PathExists(file_path));
    789     {
    790       File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
    791       ASSERT_TRUE(writer.IsValid());
    792       writer.Write(0, (const char*)garbage.get(), filesize);
    793     }
    794     ASSERT_TRUE(PathExists(file_path));
    795 
    796     mmfile.reset(new MemoryMappedFile());
    797     mmfile->Initialize(File(file_path, file_flags), map_access);
    798     EXPECT_EQ(filesize, mmfile->length());
    799     if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, read_only)) {
    800       // Make sure construction doesn't crash. It will, however, cause
    801       // error messages warning about about a corrupted memory segment.
    802       FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, 0, "",
    803                                               read_only);
    804       EXPECT_TRUE(allocator.IsCorrupt());  // Garbage data so it should be.
    805     } else {
    806       // For filesize >= minsize, the file must be acceptable. This
    807       // else clause (file-not-acceptable) should be reached only if
    808       // filesize < minsize.
    809       EXPECT_GT(minsize, filesize);
    810     }
    811   }
    812 }
    813 #endif  // !defined(OS_NACL)
    814 
    815 }  // namespace base
    816