Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/rand_util.h"
      6 
      7 #include <stddef.h>
      8 #include <stdint.h>
      9 
     10 #include <algorithm>
     11 #include <limits>
     12 #include <memory>
     13 
     14 #include "base/logging.h"
     15 #include "base/time/time.h"
     16 #include "testing/gtest/include/gtest/gtest.h"
     17 
     18 namespace {
     19 
     20 const int kIntMin = std::numeric_limits<int>::min();
     21 const int kIntMax = std::numeric_limits<int>::max();
     22 
     23 }  // namespace
     24 
     25 TEST(RandUtilTest, RandInt) {
     26   EXPECT_EQ(base::RandInt(0, 0), 0);
     27   EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
     28   EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
     29 
     30   // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
     31   // There was a 50% chance of that happening, so calling it 40 times means
     32   // the chances of this passing by accident are tiny (9e-13).
     33   for (int i = 0; i < 40; ++i)
     34     base::RandInt(kIntMin, kIntMax);
     35 }
     36 
     37 TEST(RandUtilTest, RandDouble) {
     38   // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
     39   volatile double number = base::RandDouble();
     40   EXPECT_GT(1.0, number);
     41   EXPECT_LE(0.0, number);
     42 }
     43 
     44 TEST(RandUtilTest, RandBytes) {
     45   const size_t buffer_size = 50;
     46   char buffer[buffer_size];
     47   memset(buffer, 0, buffer_size);
     48   base::RandBytes(buffer, buffer_size);
     49   std::sort(buffer, buffer + buffer_size);
     50   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
     51   // is below 10^-25.
     52   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
     53 }
     54 
     55 TEST(RandUtilTest, RandBytesAsString) {
     56   std::string random_string = base::RandBytesAsString(1);
     57   EXPECT_EQ(1U, random_string.size());
     58   random_string = base::RandBytesAsString(145);
     59   EXPECT_EQ(145U, random_string.size());
     60   char accumulator = 0;
     61   for (size_t i = 0; i < random_string.size(); ++i)
     62     accumulator |= random_string[i];
     63   // In theory this test can fail, but it won't before the universe dies of
     64   // heat death.
     65   EXPECT_NE(0, accumulator);
     66 }
     67 
     68 // Make sure that it is still appropriate to use RandGenerator in conjunction
     69 // with std::random_shuffle().
     70 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
     71   EXPECT_EQ(base::RandGenerator(1), 0U);
     72   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
     73             std::numeric_limits<int64_t>::max());
     74 }
     75 
     76 TEST(RandUtilTest, RandGeneratorIsUniform) {
     77   // Verify that RandGenerator has a uniform distribution. This is a
     78   // regression test that consistently failed when RandGenerator was
     79   // implemented this way:
     80   //
     81   //   return base::RandUint64() % max;
     82   //
     83   // A degenerate case for such an implementation is e.g. a top of
     84   // range that is 2/3rds of the way to MAX_UINT64, in which case the
     85   // bottom half of the range would be twice as likely to occur as the
     86   // top half. A bit of calculus care of jar@ shows that the largest
     87   // measurable delta is when the top of the range is 3/4ths of the
     88   // way, so that's what we use in the test.
     89   const uint64_t kTopOfRange =
     90       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
     91   const uint64_t kExpectedAverage = kTopOfRange / 2ULL;
     92   const uint64_t kAllowedVariance = kExpectedAverage / 50ULL;  // +/- 2%
     93   const int kMinAttempts = 1000;
     94   const int kMaxAttempts = 1000000;
     95 
     96   double cumulative_average = 0.0;
     97   int count = 0;
     98   while (count < kMaxAttempts) {
     99     uint64_t value = base::RandGenerator(kTopOfRange);
    100     cumulative_average = (count * cumulative_average + value) / (count + 1);
    101 
    102     // Don't quit too quickly for things to start converging, or we may have
    103     // a false positive.
    104     if (count > kMinAttempts &&
    105         kExpectedAverage - kAllowedVariance < cumulative_average &&
    106         cumulative_average < kExpectedAverage + kAllowedVariance) {
    107       break;
    108     }
    109 
    110     ++count;
    111   }
    112 
    113   ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
    114       kExpectedAverage << ", average ended at " << cumulative_average;
    115 }
    116 
    117 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
    118   // This tests to see that our underlying random generator is good
    119   // enough, for some value of good enough.
    120   uint64_t kAllZeros = 0ULL;
    121   uint64_t kAllOnes = ~kAllZeros;
    122   uint64_t found_ones = kAllZeros;
    123   uint64_t found_zeros = kAllOnes;
    124 
    125   for (size_t i = 0; i < 1000; ++i) {
    126     uint64_t value = base::RandUint64();
    127     found_ones |= value;
    128     found_zeros &= value;
    129 
    130     if (found_zeros == kAllZeros && found_ones == kAllOnes)
    131       return;
    132   }
    133 
    134   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
    135 }
    136 
    137 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
    138 // does not test anything that isn't already tested by the existing RandBytes()
    139 // tests.
    140 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
    141   // Benchmark the performance of |kTestIterations| of RandBytes() using a
    142   // buffer size of |kTestBufferSize|.
    143   const int kTestIterations = 10;
    144   const size_t kTestBufferSize = 1 * 1024 * 1024;
    145 
    146   std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
    147   const base::TimeTicks now = base::TimeTicks::Now();
    148   for (int i = 0; i < kTestIterations; ++i)
    149     base::RandBytes(buffer.get(), kTestBufferSize);
    150   const base::TimeTicks end = base::TimeTicks::Now();
    151 
    152   LOG(INFO) << "RandBytes(" << kTestBufferSize << ") took: "
    153             << (end - now).InMicroseconds() << "s";
    154 }
    155