Home | History | Annotate | Download | only in synchronization
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stddef.h>
      6 
      7 #include <algorithm>
      8 #include <vector>
      9 
     10 #include "base/logging.h"
     11 #include "base/synchronization/condition_variable.h"
     12 #include "base/synchronization/lock.h"
     13 #include "base/synchronization/waitable_event.h"
     14 #include "base/threading/thread_restrictions.h"
     15 
     16 // -----------------------------------------------------------------------------
     17 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
     18 // support cross-process events (where one process can signal an event which
     19 // others are waiting on). Because of this, we can avoid having one thread per
     20 // listener in several cases.
     21 //
     22 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
     23 // waiter is either an async wait, in which case we have a Task and the
     24 // MessageLoop to run it on, or a blocking wait, in which case we have the
     25 // condition variable to signal.
     26 //
     27 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
     28 // waits can be canceled, which means grabbing the lock and removing oneself
     29 // from the list.
     30 //
     31 // Waiting on multiple events is handled by adding a single, synchronous wait to
     32 // the wait-list of many events. An event passes a pointer to itself when
     33 // firing a waiter and so we can store that pointer to find out which event
     34 // triggered.
     35 // -----------------------------------------------------------------------------
     36 
     37 namespace base {
     38 
     39 // -----------------------------------------------------------------------------
     40 // This is just an abstract base class for waking the two types of waiters
     41 // -----------------------------------------------------------------------------
     42 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
     43                              InitialState initial_state)
     44     : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
     45 
     46 WaitableEvent::~WaitableEvent() = default;
     47 
     48 void WaitableEvent::Reset() {
     49   base::AutoLock locked(kernel_->lock_);
     50   kernel_->signaled_ = false;
     51 }
     52 
     53 void WaitableEvent::Signal() {
     54   base::AutoLock locked(kernel_->lock_);
     55 
     56   if (kernel_->signaled_)
     57     return;
     58 
     59   if (kernel_->manual_reset_) {
     60     SignalAll();
     61     kernel_->signaled_ = true;
     62   } else {
     63     // In the case of auto reset, if no waiters were woken, we remain
     64     // signaled.
     65     if (!SignalOne())
     66       kernel_->signaled_ = true;
     67   }
     68 }
     69 
     70 bool WaitableEvent::IsSignaled() {
     71   base::AutoLock locked(kernel_->lock_);
     72 
     73   const bool result = kernel_->signaled_;
     74   if (result && !kernel_->manual_reset_)
     75     kernel_->signaled_ = false;
     76   return result;
     77 }
     78 
     79 // -----------------------------------------------------------------------------
     80 // Synchronous waits
     81 
     82 // -----------------------------------------------------------------------------
     83 // This is a synchronous waiter. The thread is waiting on the given condition
     84 // variable and the fired flag in this object.
     85 // -----------------------------------------------------------------------------
     86 class SyncWaiter : public WaitableEvent::Waiter {
     87  public:
     88   SyncWaiter()
     89       : fired_(false),
     90         signaling_event_(NULL),
     91         lock_(),
     92         cv_(&lock_) {
     93   }
     94 
     95   bool Fire(WaitableEvent* signaling_event) override {
     96     base::AutoLock locked(lock_);
     97 
     98     if (fired_)
     99       return false;
    100 
    101     fired_ = true;
    102     signaling_event_ = signaling_event;
    103 
    104     cv_.Broadcast();
    105 
    106     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
    107     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
    108     // SyncWaiter object is destroyed when it goes out of scope.
    109 
    110     return true;
    111   }
    112 
    113   WaitableEvent* signaling_event() const {
    114     return signaling_event_;
    115   }
    116 
    117   // ---------------------------------------------------------------------------
    118   // These waiters are always stack allocated and don't delete themselves. Thus
    119   // there's no problem and the ABA tag is the same as the object pointer.
    120   // ---------------------------------------------------------------------------
    121   bool Compare(void* tag) override { return this == tag; }
    122 
    123   // ---------------------------------------------------------------------------
    124   // Called with lock held.
    125   // ---------------------------------------------------------------------------
    126   bool fired() const {
    127     return fired_;
    128   }
    129 
    130   // ---------------------------------------------------------------------------
    131   // During a TimedWait, we need a way to make sure that an auto-reset
    132   // WaitableEvent doesn't think that this event has been signaled between
    133   // unlocking it and removing it from the wait-list. Called with lock held.
    134   // ---------------------------------------------------------------------------
    135   void Disable() {
    136     fired_ = true;
    137   }
    138 
    139   base::Lock* lock() {
    140     return &lock_;
    141   }
    142 
    143   base::ConditionVariable* cv() {
    144     return &cv_;
    145   }
    146 
    147  private:
    148   bool fired_;
    149   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
    150   base::Lock lock_;
    151   base::ConditionVariable cv_;
    152 };
    153 
    154 void WaitableEvent::Wait() {
    155   bool result = TimedWait(TimeDelta::FromSeconds(-1));
    156   DCHECK(result) << "TimedWait() should never fail with infinite timeout";
    157 }
    158 
    159 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
    160   base::ThreadRestrictions::AssertWaitAllowed();
    161   const TimeTicks end_time(TimeTicks::Now() + max_time);
    162   const bool finite_time = max_time.ToInternalValue() >= 0;
    163 
    164   kernel_->lock_.Acquire();
    165   if (kernel_->signaled_) {
    166     if (!kernel_->manual_reset_) {
    167       // In this case we were signaled when we had no waiters. Now that
    168       // someone has waited upon us, we can automatically reset.
    169       kernel_->signaled_ = false;
    170     }
    171 
    172     kernel_->lock_.Release();
    173     return true;
    174   }
    175 
    176   SyncWaiter sw;
    177   sw.lock()->Acquire();
    178 
    179   Enqueue(&sw);
    180   kernel_->lock_.Release();
    181   // We are violating locking order here by holding the SyncWaiter lock but not
    182   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
    183   // again before unlocking it.
    184 
    185   for (;;) {
    186     const TimeTicks current_time(TimeTicks::Now());
    187 
    188     if (sw.fired() || (finite_time && current_time >= end_time)) {
    189       const bool return_value = sw.fired();
    190 
    191       // We can't acquire @lock_ before releasing the SyncWaiter lock (because
    192       // of locking order), however, in between the two a signal could be fired
    193       // and @sw would accept it, however we will still return false, so the
    194       // signal would be lost on an auto-reset WaitableEvent. Thus we call
    195       // Disable which makes sw::Fire return false.
    196       sw.Disable();
    197       sw.lock()->Release();
    198 
    199       // This is a bug that has been enshrined in the interface of
    200       // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
    201       // even though it'll always return false in that case. However, taking
    202       // the lock ensures that |Signal| has completed before we return and
    203       // means that a WaitableEvent can synchronise its own destruction.
    204       kernel_->lock_.Acquire();
    205       kernel_->Dequeue(&sw, &sw);
    206       kernel_->lock_.Release();
    207 
    208       return return_value;
    209     }
    210 
    211     if (finite_time) {
    212       const TimeDelta max_wait(end_time - current_time);
    213       sw.cv()->TimedWait(max_wait);
    214     } else {
    215       sw.cv()->Wait();
    216     }
    217   }
    218 }
    219 
    220 // -----------------------------------------------------------------------------
    221 // Synchronous waiting on multiple objects.
    222 
    223 static bool  // StrictWeakOrdering
    224 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
    225              const std::pair<WaitableEvent*, unsigned> &b) {
    226   return a.first < b.first;
    227 }
    228 
    229 // static
    230 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
    231                                size_t count) {
    232   base::ThreadRestrictions::AssertWaitAllowed();
    233   DCHECK(count) << "Cannot wait on no events";
    234 
    235   // We need to acquire the locks in a globally consistent order. Thus we sort
    236   // the array of waitables by address. We actually sort a pairs so that we can
    237   // map back to the original index values later.
    238   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
    239   waitables.reserve(count);
    240   for (size_t i = 0; i < count; ++i)
    241     waitables.push_back(std::make_pair(raw_waitables[i], i));
    242 
    243   DCHECK_EQ(count, waitables.size());
    244 
    245   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
    246 
    247   // The set of waitables must be distinct. Since we have just sorted by
    248   // address, we can check this cheaply by comparing pairs of consecutive
    249   // elements.
    250   for (size_t i = 0; i < waitables.size() - 1; ++i) {
    251     DCHECK(waitables[i].first != waitables[i+1].first);
    252   }
    253 
    254   SyncWaiter sw;
    255 
    256   const size_t r = EnqueueMany(&waitables[0], count, &sw);
    257   if (r) {
    258     // One of the events is already signaled. The SyncWaiter has not been
    259     // enqueued anywhere. EnqueueMany returns the count of remaining waitables
    260     // when the signaled one was seen, so the index of the signaled event is
    261     // @count - @r.
    262     return waitables[count - r].second;
    263   }
    264 
    265   // At this point, we hold the locks on all the WaitableEvents and we have
    266   // enqueued our waiter in them all.
    267   sw.lock()->Acquire();
    268     // Release the WaitableEvent locks in the reverse order
    269     for (size_t i = 0; i < count; ++i) {
    270       waitables[count - (1 + i)].first->kernel_->lock_.Release();
    271     }
    272 
    273     for (;;) {
    274       if (sw.fired())
    275         break;
    276 
    277       sw.cv()->Wait();
    278     }
    279   sw.lock()->Release();
    280 
    281   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
    282   WaitableEvent *const signaled_event = sw.signaling_event();
    283   // This will store the index of the raw_waitables which fired.
    284   size_t signaled_index = 0;
    285 
    286   // Take the locks of each WaitableEvent in turn (except the signaled one) and
    287   // remove our SyncWaiter from the wait-list
    288   for (size_t i = 0; i < count; ++i) {
    289     if (raw_waitables[i] != signaled_event) {
    290       raw_waitables[i]->kernel_->lock_.Acquire();
    291         // There's no possible ABA issue with the address of the SyncWaiter here
    292         // because it lives on the stack. Thus the tag value is just the pointer
    293         // value again.
    294         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
    295       raw_waitables[i]->kernel_->lock_.Release();
    296     } else {
    297       // By taking this lock here we ensure that |Signal| has completed by the
    298       // time we return, because |Signal| holds this lock. This matches the
    299       // behaviour of |Wait| and |TimedWait|.
    300       raw_waitables[i]->kernel_->lock_.Acquire();
    301       raw_waitables[i]->kernel_->lock_.Release();
    302       signaled_index = i;
    303     }
    304   }
    305 
    306   return signaled_index;
    307 }
    308 
    309 // -----------------------------------------------------------------------------
    310 // If return value == 0:
    311 //   The locks of the WaitableEvents have been taken in order and the Waiter has
    312 //   been enqueued in the wait-list of each. None of the WaitableEvents are
    313 //   currently signaled
    314 // else:
    315 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
    316 //   in any of them and the return value is the index of the first WaitableEvent
    317 //   which was signaled, from the end of the array.
    318 // -----------------------------------------------------------------------------
    319 // static
    320 size_t WaitableEvent::EnqueueMany
    321     (std::pair<WaitableEvent*, size_t>* waitables,
    322      size_t count, Waiter* waiter) {
    323   if (!count)
    324     return 0;
    325 
    326   waitables[0].first->kernel_->lock_.Acquire();
    327     if (waitables[0].first->kernel_->signaled_) {
    328       if (!waitables[0].first->kernel_->manual_reset_)
    329         waitables[0].first->kernel_->signaled_ = false;
    330       waitables[0].first->kernel_->lock_.Release();
    331       return count;
    332     }
    333 
    334     const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
    335     if (r) {
    336       waitables[0].first->kernel_->lock_.Release();
    337     } else {
    338       waitables[0].first->Enqueue(waiter);
    339     }
    340 
    341     return r;
    342 }
    343 
    344 // -----------------------------------------------------------------------------
    345 
    346 
    347 // -----------------------------------------------------------------------------
    348 // Private functions...
    349 
    350 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
    351     ResetPolicy reset_policy,
    352     InitialState initial_state)
    353     : manual_reset_(reset_policy == ResetPolicy::MANUAL),
    354       signaled_(initial_state == InitialState::SIGNALED) {}
    355 
    356 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
    357 
    358 // -----------------------------------------------------------------------------
    359 // Wake all waiting waiters. Called with lock held.
    360 // -----------------------------------------------------------------------------
    361 bool WaitableEvent::SignalAll() {
    362   bool signaled_at_least_one = false;
    363 
    364   for (std::list<Waiter*>::iterator
    365        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
    366     if ((*i)->Fire(this))
    367       signaled_at_least_one = true;
    368   }
    369 
    370   kernel_->waiters_.clear();
    371   return signaled_at_least_one;
    372 }
    373 
    374 // ---------------------------------------------------------------------------
    375 // Try to wake a single waiter. Return true if one was woken. Called with lock
    376 // held.
    377 // ---------------------------------------------------------------------------
    378 bool WaitableEvent::SignalOne() {
    379   for (;;) {
    380     if (kernel_->waiters_.empty())
    381       return false;
    382 
    383     const bool r = (*kernel_->waiters_.begin())->Fire(this);
    384     kernel_->waiters_.pop_front();
    385     if (r)
    386       return true;
    387   }
    388 }
    389 
    390 // -----------------------------------------------------------------------------
    391 // Add a waiter to the list of those waiting. Called with lock held.
    392 // -----------------------------------------------------------------------------
    393 void WaitableEvent::Enqueue(Waiter* waiter) {
    394   kernel_->waiters_.push_back(waiter);
    395 }
    396 
    397 // -----------------------------------------------------------------------------
    398 // Remove a waiter from the list of those waiting. Return true if the waiter was
    399 // actually removed. Called with lock held.
    400 // -----------------------------------------------------------------------------
    401 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
    402   for (std::list<Waiter*>::iterator
    403        i = waiters_.begin(); i != waiters_.end(); ++i) {
    404     if (*i == waiter && (*i)->Compare(tag)) {
    405       waiters_.erase(i);
    406       return true;
    407     }
    408   }
    409 
    410   return false;
    411 }
    412 
    413 // -----------------------------------------------------------------------------
    414 
    415 }  // namespace base
    416