Home | History | Annotate | Download | only in threading
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/threading/worker_pool_posix.h"
      6 
      7 #include <set>
      8 
      9 #include "base/bind.h"
     10 #include "base/callback.h"
     11 #include "base/macros.h"
     12 #include "base/synchronization/condition_variable.h"
     13 #include "base/synchronization/lock.h"
     14 #include "base/synchronization/waitable_event.h"
     15 #include "base/threading/platform_thread.h"
     16 #include "testing/gtest/include/gtest/gtest.h"
     17 
     18 namespace base {
     19 
     20 // Peer class to provide passthrough access to PosixDynamicThreadPool internals.
     21 class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer {
     22  public:
     23   explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool)
     24       : pool_(pool) {}
     25 
     26   Lock* lock() { return &pool_->lock_; }
     27   ConditionVariable* pending_tasks_available_cv() {
     28     return &pool_->pending_tasks_available_cv_;
     29   }
     30   const std::queue<PendingTask>& pending_tasks() const {
     31     return pool_->pending_tasks_;
     32   }
     33   int num_idle_threads() const { return pool_->num_idle_threads_; }
     34   ConditionVariable* num_idle_threads_cv() {
     35     return pool_->num_idle_threads_cv_.get();
     36   }
     37   void set_num_idle_threads_cv(ConditionVariable* cv) {
     38     pool_->num_idle_threads_cv_.reset(cv);
     39   }
     40 
     41  private:
     42   PosixDynamicThreadPool* pool_;
     43 
     44   DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer);
     45 };
     46 
     47 namespace {
     48 
     49 // IncrementingTask's main purpose is to increment a counter.  It also updates a
     50 // set of unique thread ids, and signals a ConditionVariable on completion.
     51 // Note that since it does not block, there is no way to control the number of
     52 // threads used if more than one IncrementingTask is consecutively posted to the
     53 // thread pool, since the first one might finish executing before the subsequent
     54 // PostTask() calls get invoked.
     55 void IncrementingTask(Lock* counter_lock,
     56                       int* counter,
     57                       Lock* unique_threads_lock,
     58                       std::set<PlatformThreadId>* unique_threads) {
     59   {
     60     base::AutoLock locked(*unique_threads_lock);
     61     unique_threads->insert(PlatformThread::CurrentId());
     62   }
     63   base::AutoLock locked(*counter_lock);
     64   (*counter)++;
     65 }
     66 
     67 // BlockingIncrementingTask is a simple wrapper around IncrementingTask that
     68 // allows for waiting at the start of Run() for a WaitableEvent to be signalled.
     69 struct BlockingIncrementingTaskArgs {
     70   Lock* counter_lock;
     71   int* counter;
     72   Lock* unique_threads_lock;
     73   std::set<PlatformThreadId>* unique_threads;
     74   Lock* num_waiting_to_start_lock;
     75   int* num_waiting_to_start;
     76   ConditionVariable* num_waiting_to_start_cv;
     77   base::WaitableEvent* start;
     78 };
     79 
     80 void BlockingIncrementingTask(const BlockingIncrementingTaskArgs& args) {
     81   {
     82     base::AutoLock num_waiting_to_start_locked(*args.num_waiting_to_start_lock);
     83     (*args.num_waiting_to_start)++;
     84   }
     85   args.num_waiting_to_start_cv->Signal();
     86   args.start->Wait();
     87   IncrementingTask(args.counter_lock, args.counter, args.unique_threads_lock,
     88                    args.unique_threads);
     89 }
     90 
     91 class PosixDynamicThreadPoolTest : public testing::Test {
     92  protected:
     93   PosixDynamicThreadPoolTest()
     94       : pool_(new base::PosixDynamicThreadPool("dynamic_pool", 60 * 60)),
     95         peer_(pool_.get()),
     96         counter_(0),
     97         num_waiting_to_start_(0),
     98         num_waiting_to_start_cv_(&num_waiting_to_start_lock_),
     99         start_(WaitableEvent::ResetPolicy::MANUAL,
    100                WaitableEvent::InitialState::NOT_SIGNALED) {}
    101 
    102   void SetUp() override {
    103     peer_.set_num_idle_threads_cv(new ConditionVariable(peer_.lock()));
    104   }
    105 
    106   void TearDown() override {
    107     // Wake up the idle threads so they can terminate.
    108     if (pool_.get())
    109       pool_->Terminate();
    110   }
    111 
    112   void WaitForTasksToStart(int num_tasks) {
    113     base::AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_);
    114     while (num_waiting_to_start_ < num_tasks) {
    115       num_waiting_to_start_cv_.Wait();
    116     }
    117   }
    118 
    119   void WaitForIdleThreads(int num_idle_threads) {
    120     base::AutoLock pool_locked(*peer_.lock());
    121     while (peer_.num_idle_threads() < num_idle_threads) {
    122       peer_.num_idle_threads_cv()->Wait();
    123     }
    124   }
    125 
    126   base::Closure CreateNewIncrementingTaskCallback() {
    127     return base::Bind(&IncrementingTask, &counter_lock_, &counter_,
    128                       &unique_threads_lock_, &unique_threads_);
    129   }
    130 
    131   base::Closure CreateNewBlockingIncrementingTaskCallback() {
    132     BlockingIncrementingTaskArgs args = {
    133         &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_,
    134         &num_waiting_to_start_lock_, &num_waiting_to_start_,
    135         &num_waiting_to_start_cv_, &start_
    136     };
    137     return base::Bind(&BlockingIncrementingTask, args);
    138   }
    139 
    140   scoped_refptr<base::PosixDynamicThreadPool> pool_;
    141   base::PosixDynamicThreadPool::PosixDynamicThreadPoolPeer peer_;
    142   Lock counter_lock_;
    143   int counter_;
    144   Lock unique_threads_lock_;
    145   std::set<PlatformThreadId> unique_threads_;
    146   Lock num_waiting_to_start_lock_;
    147   int num_waiting_to_start_;
    148   ConditionVariable num_waiting_to_start_cv_;
    149   base::WaitableEvent start_;
    150 };
    151 
    152 }  // namespace
    153 
    154 TEST_F(PosixDynamicThreadPoolTest, Basic) {
    155   EXPECT_EQ(0, peer_.num_idle_threads());
    156   EXPECT_EQ(0U, unique_threads_.size());
    157   EXPECT_EQ(0U, peer_.pending_tasks().size());
    158 
    159   // Add one task and wait for it to be completed.
    160   pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
    161 
    162   WaitForIdleThreads(1);
    163 
    164   EXPECT_EQ(1U, unique_threads_.size()) <<
    165       "There should be only one thread allocated for one task.";
    166   EXPECT_EQ(1, counter_);
    167 }
    168 
    169 TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) {
    170   // Add one task and wait for it to be completed.
    171   pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
    172 
    173   WaitForIdleThreads(1);
    174 
    175   // Add another 2 tasks.  One should reuse the existing worker thread.
    176   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    177   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    178 
    179   WaitForTasksToStart(2);
    180   start_.Signal();
    181   WaitForIdleThreads(2);
    182 
    183   EXPECT_EQ(2U, unique_threads_.size());
    184   EXPECT_EQ(2, peer_.num_idle_threads());
    185   EXPECT_EQ(3, counter_);
    186 }
    187 
    188 TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) {
    189   // Add two blocking tasks.
    190   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    191   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    192 
    193   EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet.";
    194 
    195   WaitForTasksToStart(2);
    196   start_.Signal();
    197   WaitForIdleThreads(2);
    198 
    199   EXPECT_EQ(2U, unique_threads_.size());
    200   EXPECT_EQ(2, peer_.num_idle_threads()) << "Existing threads are now idle.";
    201   EXPECT_EQ(2, counter_);
    202 }
    203 
    204 TEST_F(PosixDynamicThreadPoolTest, Complex) {
    205   // Add two non blocking tasks and wait for them to finish.
    206   pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
    207 
    208   WaitForIdleThreads(1);
    209 
    210   // Add two blocking tasks, start them simultaneously, and wait for them to
    211   // finish.
    212   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    213   pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
    214 
    215   WaitForTasksToStart(2);
    216   start_.Signal();
    217   WaitForIdleThreads(2);
    218 
    219   EXPECT_EQ(3, counter_);
    220   EXPECT_EQ(2, peer_.num_idle_threads());
    221   EXPECT_EQ(2U, unique_threads_.size());
    222 
    223   // Wake up all idle threads so they can exit.
    224   {
    225     base::AutoLock locked(*peer_.lock());
    226     while (peer_.num_idle_threads() > 0) {
    227       peer_.pending_tasks_available_cv()->Signal();
    228       peer_.num_idle_threads_cv()->Wait();
    229     }
    230   }
    231 
    232   // Add another non blocking task.  There are no threads to reuse.
    233   pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
    234   WaitForIdleThreads(1);
    235 
    236   // The POSIX implementation of PlatformThread::CurrentId() uses pthread_self()
    237   // which is not guaranteed to be unique after a thread joins. The OS X
    238   // implemntation of pthread_self() returns the address of the pthread_t, which
    239   // is merely a malloc()ed pointer stored in the first TLS slot. When a thread
    240   // joins and that structure is freed, the block of memory can be put on the
    241   // OS free list, meaning the same address could be reused in a subsequent
    242   // allocation. This in fact happens when allocating in a loop as this test
    243   // does.
    244   //
    245   // Because there are two concurrent threads, there's at least the guarantee
    246   // of having two unique thread IDs in the set. But after those two threads are
    247   // joined, the next-created thread can get a re-used ID if the allocation of
    248   // the pthread_t structure is taken from the free list. Therefore, there can
    249   // be either 2 or 3 unique thread IDs in the set at this stage in the test.
    250   EXPECT_TRUE(unique_threads_.size() >= 2 && unique_threads_.size() <= 3)
    251       << "unique_threads_.size() = " << unique_threads_.size();
    252   EXPECT_EQ(1, peer_.num_idle_threads());
    253   EXPECT_EQ(4, counter_);
    254 }
    255 
    256 }  // namespace base
    257