Home | History | Annotate | Download | only in tests
      1 /* xf86drmHash.c -- Small hash table support for integer -> integer mapping
      2  * Created: Sun Apr 18 09:35:45 1999 by faith (at) precisioninsight.com
      3  *
      4  * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     24  * DEALINGS IN THE SOFTWARE.
     25  *
     26  * Authors: Rickard E. (Rik) Faith <faith (at) valinux.com>
     27  *
     28  * DESCRIPTION
     29  *
     30  * This file contains a straightforward implementation of a fixed-sized
     31  * hash table using self-organizing linked lists [Knuth73, pp. 398-399] for
     32  * collision resolution.  There are two potentially interesting things
     33  * about this implementation:
     34  *
     35  * 1) The table is power-of-two sized.  Prime sized tables are more
     36  * traditional, but do not have a significant advantage over power-of-two
     37  * sized table, especially when double hashing is not used for collision
     38  * resolution.
     39  *
     40  * 2) The hash computation uses a table of random integers [Hanson97,
     41  * pp. 39-41].
     42  *
     43  * FUTURE ENHANCEMENTS
     44  *
     45  * With a table size of 512, the current implementation is sufficient for a
     46  * few hundred keys.  Since this is well above the expected size of the
     47  * tables for which this implementation was designed, the implementation of
     48  * dynamic hash tables was postponed until the need arises.  A common (and
     49  * naive) approach to dynamic hash table implementation simply creates a
     50  * new hash table when necessary, rehashes all the data into the new table,
     51  * and destroys the old table.  The approach in [Larson88] is superior in
     52  * two ways: 1) only a portion of the table is expanded when needed,
     53  * distributing the expansion cost over several insertions, and 2) portions
     54  * of the table can be locked, enabling a scalable thread-safe
     55  * implementation.
     56  *
     57  * REFERENCES
     58  *
     59  * [Hanson97] David R. Hanson.  C Interfaces and Implementations:
     60  * Techniques for Creating Reusable Software.  Reading, Massachusetts:
     61  * Addison-Wesley, 1997.
     62  *
     63  * [Knuth73] Donald E. Knuth. The Art of Computer Programming.  Volume 3:
     64  * Sorting and Searching.  Reading, Massachusetts: Addison-Wesley, 1973.
     65  *
     66  * [Larson88] Per-Ake Larson. "Dynamic Hash Tables".  CACM 31(4), April
     67  * 1988, pp. 446-457.
     68  *
     69  */
     70 
     71 #include <stdio.h>
     72 #include <stdlib.h>
     73 
     74 #include "xf86drm.h"
     75 #include "xf86drmHash.h"
     76 
     77 #define DIST_LIMIT 10
     78 static int dist[DIST_LIMIT];
     79 
     80 static void clear_dist(void) {
     81     int i;
     82 
     83     for (i = 0; i < DIST_LIMIT; i++)
     84         dist[i] = 0;
     85 }
     86 
     87 static int count_entries(HashBucketPtr bucket)
     88 {
     89     int count = 0;
     90 
     91     for (; bucket; bucket = bucket->next)
     92         ++count;
     93     return count;
     94 }
     95 
     96 static void update_dist(int count)
     97 {
     98     if (count >= DIST_LIMIT)
     99         ++dist[DIST_LIMIT-1];
    100     else
    101         ++dist[count];
    102 }
    103 
    104 static void compute_dist(HashTablePtr table)
    105 {
    106     int           i;
    107     HashBucketPtr bucket;
    108 
    109     printf("Entries = %ld, hits = %ld, partials = %ld, misses = %ld\n",
    110           table->entries, table->hits, table->partials, table->misses);
    111     clear_dist();
    112     for (i = 0; i < HASH_SIZE; i++) {
    113         bucket = table->buckets[i];
    114         update_dist(count_entries(bucket));
    115     }
    116     for (i = 0; i < DIST_LIMIT; i++) {
    117         if (i != DIST_LIMIT-1)
    118             printf("%5d %10d\n", i, dist[i]);
    119         else
    120             printf("other %10d\n", dist[i]);
    121     }
    122 }
    123 
    124 static int check_table(HashTablePtr table,
    125                        unsigned long key, void * value)
    126 {
    127     void *retval;
    128     int   retcode = drmHashLookup(table, key, &retval);
    129 
    130     switch (retcode) {
    131     case -1:
    132         printf("Bad magic = 0x%08lx:"
    133                " key = %lu, expected = %p, returned = %p\n",
    134                table->magic, key, value, retval);
    135         break;
    136     case 1:
    137         printf("Not found: key = %lu, expected = %p, returned = %p\n",
    138                key, value, retval);
    139         break;
    140     case 0:
    141         if (value != retval) {
    142             printf("Bad value: key = %lu, expected = %p, returned = %p\n",
    143                    key, value, retval);
    144             retcode = -1;
    145         }
    146         break;
    147     default:
    148         printf("Bad retcode = %d: key = %lu, expected = %p, returned = %p\n",
    149                retcode, key, value, retval);
    150         break;
    151     }
    152     return retcode;
    153 }
    154 
    155 int main(void)
    156 {
    157     HashTablePtr  table;
    158     unsigned long i;
    159     int           ret = 0;
    160 
    161     printf("\n***** 256 consecutive integers ****\n");
    162     table = drmHashCreate();
    163     for (i = 0; i < 256; i++)
    164         drmHashInsert(table, i, (void *)(i << 16 | i));
    165     for (i = 0; i < 256; i++)
    166         ret |= check_table(table, i, (void *)(i << 16 | i));
    167     compute_dist(table);
    168     drmHashDestroy(table);
    169 
    170     printf("\n***** 1024 consecutive integers ****\n");
    171     table = drmHashCreate();
    172     for (i = 0; i < 1024; i++)
    173         drmHashInsert(table, i, (void *)(i << 16 | i));
    174     for (i = 0; i < 1024; i++)
    175         ret |= check_table(table, i, (void *)(i << 16 | i));
    176     compute_dist(table);
    177     drmHashDestroy(table);
    178 
    179     printf("\n***** 1024 consecutive page addresses (4k pages) ****\n");
    180     table = drmHashCreate();
    181     for (i = 0; i < 1024; i++)
    182         drmHashInsert(table, i*4096, (void *)(i << 16 | i));
    183     for (i = 0; i < 1024; i++)
    184         ret |= check_table(table, i*4096, (void *)(i << 16 | i));
    185     compute_dist(table);
    186     drmHashDestroy(table);
    187 
    188     printf("\n***** 1024 random integers ****\n");
    189     table = drmHashCreate();
    190     srandom(0xbeefbeef);
    191     for (i = 0; i < 1024; i++)
    192         drmHashInsert(table, random(), (void *)(i << 16 | i));
    193     srandom(0xbeefbeef);
    194     for (i = 0; i < 1024; i++)
    195         ret |= check_table(table, random(), (void *)(i << 16 | i));
    196     srandom(0xbeefbeef);
    197     for (i = 0; i < 1024; i++)
    198         ret |= check_table(table, random(), (void *)(i << 16 | i));
    199     compute_dist(table);
    200     drmHashDestroy(table);
    201 
    202     printf("\n***** 5000 random integers ****\n");
    203     table = drmHashCreate();
    204     srandom(0xbeefbeef);
    205     for (i = 0; i < 5000; i++)
    206         drmHashInsert(table, random(), (void *)(i << 16 | i));
    207     srandom(0xbeefbeef);
    208     for (i = 0; i < 5000; i++)
    209         ret |= check_table(table, random(), (void *)(i << 16 | i));
    210     srandom(0xbeefbeef);
    211     for (i = 0; i < 5000; i++)
    212         ret |= check_table(table, random(), (void *)(i << 16 | i));
    213     compute_dist(table);
    214     drmHashDestroy(table);
    215 
    216     return ret;
    217 }
    218