Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jidctfst.asm - fast integer IDCT (MMX)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ;
      6 ; Based on the x86 SIMD extension for IJG JPEG library
      7 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      8 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
      9 ;
     10 ; This file should be assembled with NASM (Netwide Assembler),
     11 ; can *not* be assembled with Microsoft's MASM or any compatible
     12 ; assembler (including Borland's Turbo Assembler).
     13 ; NASM is available from http://nasm.sourceforge.net/ or
     14 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     15 ;
     16 ; This file contains a fast, not so accurate integer implementation of
     17 ; the inverse DCT (Discrete Cosine Transform). The following code is
     18 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
     19 ; for more details.
     20 ;
     21 ; [TAB8]
     22 
     23 %include "jsimdext.inc"
     24 %include "jdct.inc"
     25 
     26 ; --------------------------------------------------------------------------
     27 
     28 %define CONST_BITS      8       ; 14 is also OK.
     29 %define PASS1_BITS      2
     30 
     31 %if IFAST_SCALE_BITS != PASS1_BITS
     32 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
     33 %endif
     34 
     35 %if CONST_BITS == 8
     36 F_1_082 equ     277             ; FIX(1.082392200)
     37 F_1_414 equ     362             ; FIX(1.414213562)
     38 F_1_847 equ     473             ; FIX(1.847759065)
     39 F_2_613 equ     669             ; FIX(2.613125930)
     40 F_1_613 equ     (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
     41 %else
     42 ; NASM cannot do compile-time arithmetic on floating-point constants.
     43 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     44 F_1_082 equ     DESCALE(1162209775,30-CONST_BITS)       ; FIX(1.082392200)
     45 F_1_414 equ     DESCALE(1518500249,30-CONST_BITS)       ; FIX(1.414213562)
     46 F_1_847 equ     DESCALE(1984016188,30-CONST_BITS)       ; FIX(1.847759065)
     47 F_2_613 equ     DESCALE(2805822602,30-CONST_BITS)       ; FIX(2.613125930)
     48 F_1_613 equ     (F_2_613 - (1 << CONST_BITS))   ; FIX(2.613125930) - FIX(1)
     49 %endif
     50 
     51 ; --------------------------------------------------------------------------
     52         SECTION SEG_CONST
     53 
     54 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     55 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     56 
     57 %define PRE_MULTIPLY_SCALE_BITS   2
     58 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     59 
     60         alignz  16
     61         global  EXTN(jconst_idct_ifast_mmx)
     62 
     63 EXTN(jconst_idct_ifast_mmx):
     64 
     65 PW_F1414        times 4 dw  F_1_414 << CONST_SHIFT
     66 PW_F1847        times 4 dw  F_1_847 << CONST_SHIFT
     67 PW_MF1613       times 4 dw -F_1_613 << CONST_SHIFT
     68 PW_F1082        times 4 dw  F_1_082 << CONST_SHIFT
     69 PB_CENTERJSAMP  times 8 db  CENTERJSAMPLE
     70 
     71         alignz  16
     72 
     73 ; --------------------------------------------------------------------------
     74         SECTION SEG_TEXT
     75         BITS    32
     76 ;
     77 ; Perform dequantization and inverse DCT on one block of coefficients.
     78 ;
     79 ; GLOBAL(void)
     80 ; jsimd_idct_ifast_mmx (void *dct_table, JCOEFPTR coef_block,
     81 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
     82 ;
     83 
     84 %define dct_table(b)    (b)+8           ; jpeg_component_info *compptr
     85 %define coef_block(b)   (b)+12          ; JCOEFPTR coef_block
     86 %define output_buf(b)   (b)+16          ; JSAMPARRAY output_buf
     87 %define output_col(b)   (b)+20          ; JDIMENSION output_col
     88 
     89 %define original_ebp    ebp+0
     90 %define wk(i)           ebp-(WK_NUM-(i))*SIZEOF_MMWORD  ; mmword wk[WK_NUM]
     91 %define WK_NUM          2
     92 %define workspace       wk(0)-DCTSIZE2*SIZEOF_JCOEF
     93                                         ; JCOEF workspace[DCTSIZE2]
     94 
     95         align   16
     96         global  EXTN(jsimd_idct_ifast_mmx)
     97 
     98 EXTN(jsimd_idct_ifast_mmx):
     99         push    ebp
    100         mov     eax,esp                         ; eax = original ebp
    101         sub     esp, byte 4
    102         and     esp, byte (-SIZEOF_MMWORD)      ; align to 64 bits
    103         mov     [esp],eax
    104         mov     ebp,esp                         ; ebp = aligned ebp
    105         lea     esp, [workspace]
    106         push    ebx
    107 ;       push    ecx             ; need not be preserved
    108 ;       push    edx             ; need not be preserved
    109         push    esi
    110         push    edi
    111 
    112         get_GOT ebx             ; get GOT address
    113 
    114         ; ---- Pass 1: process columns from input, store into work array.
    115 
    116 ;       mov     eax, [original_ebp]
    117         mov     edx, POINTER [dct_table(eax)]           ; quantptr
    118         mov     esi, JCOEFPTR [coef_block(eax)]         ; inptr
    119         lea     edi, [workspace]                        ; JCOEF *wsptr
    120         mov     ecx, DCTSIZE/4                          ; ctr
    121         alignx  16,7
    122 .columnloop:
    123 %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX
    124         mov     eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
    125         or      eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
    126         jnz     short .columnDCT
    127 
    128         movq    mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    129         movq    mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    130         por     mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    131         por     mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    132         por     mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    133         por     mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    134         por     mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    135         por     mm1,mm0
    136         packsswb mm1,mm1
    137         movd    eax,mm1
    138         test    eax,eax
    139         jnz     short .columnDCT
    140 
    141         ; -- AC terms all zero
    142 
    143         movq    mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    144         pmullw  mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    145 
    146         movq      mm2,mm0               ; mm0=in0=(00 01 02 03)
    147         punpcklwd mm0,mm0               ; mm0=(00 00 01 01)
    148         punpckhwd mm2,mm2               ; mm2=(02 02 03 03)
    149 
    150         movq      mm1,mm0
    151         punpckldq mm0,mm0               ; mm0=(00 00 00 00)
    152         punpckhdq mm1,mm1               ; mm1=(01 01 01 01)
    153         movq      mm3,mm2
    154         punpckldq mm2,mm2               ; mm2=(02 02 02 02)
    155         punpckhdq mm3,mm3               ; mm3=(03 03 03 03)
    156 
    157         movq    MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0
    158         movq    MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
    159         movq    MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
    160         movq    MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1
    161         movq    MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
    162         movq    MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
    163         movq    MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3
    164         movq    MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3
    165         jmp     near .nextcolumn
    166         alignx  16,7
    167 %endif
    168 .columnDCT:
    169 
    170         ; -- Even part
    171 
    172         movq    mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    173         movq    mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    174         pmullw  mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    175         pmullw  mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    176         movq    mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    177         movq    mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    178         pmullw  mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    179         pmullw  mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    180 
    181         movq    mm4,mm0
    182         movq    mm5,mm1
    183         psubw   mm0,mm2                 ; mm0=tmp11
    184         psubw   mm1,mm3
    185         paddw   mm4,mm2                 ; mm4=tmp10
    186         paddw   mm5,mm3                 ; mm5=tmp13
    187 
    188         psllw   mm1,PRE_MULTIPLY_SCALE_BITS
    189         pmulhw  mm1,[GOTOFF(ebx,PW_F1414)]
    190         psubw   mm1,mm5                 ; mm1=tmp12
    191 
    192         movq    mm6,mm4
    193         movq    mm7,mm0
    194         psubw   mm4,mm5                 ; mm4=tmp3
    195         psubw   mm0,mm1                 ; mm0=tmp2
    196         paddw   mm6,mm5                 ; mm6=tmp0
    197         paddw   mm7,mm1                 ; mm7=tmp1
    198 
    199         movq    MMWORD [wk(1)], mm4     ; wk(1)=tmp3
    200         movq    MMWORD [wk(0)], mm0     ; wk(0)=tmp2
    201 
    202         ; -- Odd part
    203 
    204         movq    mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    205         movq    mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    206         pmullw  mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    207         pmullw  mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    208         movq    mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    209         movq    mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    210         pmullw  mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    211         pmullw  mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    212 
    213         movq    mm4,mm2
    214         movq    mm0,mm5
    215         psubw   mm2,mm1                 ; mm2=z12
    216         psubw   mm5,mm3                 ; mm5=z10
    217         paddw   mm4,mm1                 ; mm4=z11
    218         paddw   mm0,mm3                 ; mm0=z13
    219 
    220         movq    mm1,mm5                 ; mm1=z10(unscaled)
    221         psllw   mm2,PRE_MULTIPLY_SCALE_BITS
    222         psllw   mm5,PRE_MULTIPLY_SCALE_BITS
    223 
    224         movq    mm3,mm4
    225         psubw   mm4,mm0
    226         paddw   mm3,mm0                 ; mm3=tmp7
    227 
    228         psllw   mm4,PRE_MULTIPLY_SCALE_BITS
    229         pmulhw  mm4,[GOTOFF(ebx,PW_F1414)]      ; mm4=tmp11
    230 
    231         ; To avoid overflow...
    232         ;
    233         ; (Original)
    234         ; tmp12 = -2.613125930 * z10 + z5;
    235         ;
    236         ; (This implementation)
    237         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    238         ;       = -1.613125930 * z10 - z10 + z5;
    239 
    240         movq    mm0,mm5
    241         paddw   mm5,mm2
    242         pmulhw  mm5,[GOTOFF(ebx,PW_F1847)]      ; mm5=z5
    243         pmulhw  mm0,[GOTOFF(ebx,PW_MF1613)]
    244         pmulhw  mm2,[GOTOFF(ebx,PW_F1082)]
    245         psubw   mm0,mm1
    246         psubw   mm2,mm5                 ; mm2=tmp10
    247         paddw   mm0,mm5                 ; mm0=tmp12
    248 
    249         ; -- Final output stage
    250 
    251         psubw   mm0,mm3                 ; mm0=tmp6
    252         movq    mm1,mm6
    253         movq    mm5,mm7
    254         paddw   mm6,mm3                 ; mm6=data0=(00 01 02 03)
    255         paddw   mm7,mm0                 ; mm7=data1=(10 11 12 13)
    256         psubw   mm1,mm3                 ; mm1=data7=(70 71 72 73)
    257         psubw   mm5,mm0                 ; mm5=data6=(60 61 62 63)
    258         psubw   mm4,mm0                 ; mm4=tmp5
    259 
    260         movq      mm3,mm6               ; transpose coefficients(phase 1)
    261         punpcklwd mm6,mm7               ; mm6=(00 10 01 11)
    262         punpckhwd mm3,mm7               ; mm3=(02 12 03 13)
    263         movq      mm0,mm5               ; transpose coefficients(phase 1)
    264         punpcklwd mm5,mm1               ; mm5=(60 70 61 71)
    265         punpckhwd mm0,mm1               ; mm0=(62 72 63 73)
    266 
    267         movq    mm7, MMWORD [wk(0)]     ; mm7=tmp2
    268         movq    mm1, MMWORD [wk(1)]     ; mm1=tmp3
    269 
    270         movq    MMWORD [wk(0)], mm5     ; wk(0)=(60 70 61 71)
    271         movq    MMWORD [wk(1)], mm0     ; wk(1)=(62 72 63 73)
    272 
    273         paddw   mm2,mm4                 ; mm2=tmp4
    274         movq    mm5,mm7
    275         movq    mm0,mm1
    276         paddw   mm7,mm4                 ; mm7=data2=(20 21 22 23)
    277         paddw   mm1,mm2                 ; mm1=data4=(40 41 42 43)
    278         psubw   mm5,mm4                 ; mm5=data5=(50 51 52 53)
    279         psubw   mm0,mm2                 ; mm0=data3=(30 31 32 33)
    280 
    281         movq      mm4,mm7               ; transpose coefficients(phase 1)
    282         punpcklwd mm7,mm0               ; mm7=(20 30 21 31)
    283         punpckhwd mm4,mm0               ; mm4=(22 32 23 33)
    284         movq      mm2,mm1               ; transpose coefficients(phase 1)
    285         punpcklwd mm1,mm5               ; mm1=(40 50 41 51)
    286         punpckhwd mm2,mm5               ; mm2=(42 52 43 53)
    287 
    288         movq      mm0,mm6               ; transpose coefficients(phase 2)
    289         punpckldq mm6,mm7               ; mm6=(00 10 20 30)
    290         punpckhdq mm0,mm7               ; mm0=(01 11 21 31)
    291         movq      mm5,mm3               ; transpose coefficients(phase 2)
    292         punpckldq mm3,mm4               ; mm3=(02 12 22 32)
    293         punpckhdq mm5,mm4               ; mm5=(03 13 23 33)
    294 
    295         movq    mm7, MMWORD [wk(0)]     ; mm7=(60 70 61 71)
    296         movq    mm4, MMWORD [wk(1)]     ; mm4=(62 72 63 73)
    297 
    298         movq    MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6
    299         movq    MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0
    300         movq    MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3
    301         movq    MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5
    302 
    303         movq      mm6,mm1               ; transpose coefficients(phase 2)
    304         punpckldq mm1,mm7               ; mm1=(40 50 60 70)
    305         punpckhdq mm6,mm7               ; mm6=(41 51 61 71)
    306         movq      mm0,mm2               ; transpose coefficients(phase 2)
    307         punpckldq mm2,mm4               ; mm2=(42 52 62 72)
    308         punpckhdq mm0,mm4               ; mm0=(43 53 63 73)
    309 
    310         movq    MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1
    311         movq    MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6
    312         movq    MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
    313         movq    MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0
    314 
    315 .nextcolumn:
    316         add     esi, byte 4*SIZEOF_JCOEF                ; coef_block
    317         add     edx, byte 4*SIZEOF_IFAST_MULT_TYPE      ; quantptr
    318         add     edi, byte 4*DCTSIZE*SIZEOF_JCOEF        ; wsptr
    319         dec     ecx                                     ; ctr
    320         jnz     near .columnloop
    321 
    322         ; ---- Pass 2: process rows from work array, store into output array.
    323 
    324         mov     eax, [original_ebp]
    325         lea     esi, [workspace]                        ; JCOEF *wsptr
    326         mov     edi, JSAMPARRAY [output_buf(eax)]       ; (JSAMPROW *)
    327         mov     eax, JDIMENSION [output_col(eax)]
    328         mov     ecx, DCTSIZE/4                          ; ctr
    329         alignx  16,7
    330 .rowloop:
    331 
    332         ; -- Even part
    333 
    334         movq    mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    335         movq    mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    336         movq    mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    337         movq    mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    338 
    339         movq    mm4,mm0
    340         movq    mm5,mm1
    341         psubw   mm0,mm2                 ; mm0=tmp11
    342         psubw   mm1,mm3
    343         paddw   mm4,mm2                 ; mm4=tmp10
    344         paddw   mm5,mm3                 ; mm5=tmp13
    345 
    346         psllw   mm1,PRE_MULTIPLY_SCALE_BITS
    347         pmulhw  mm1,[GOTOFF(ebx,PW_F1414)]
    348         psubw   mm1,mm5                 ; mm1=tmp12
    349 
    350         movq    mm6,mm4
    351         movq    mm7,mm0
    352         psubw   mm4,mm5                 ; mm4=tmp3
    353         psubw   mm0,mm1                 ; mm0=tmp2
    354         paddw   mm6,mm5                 ; mm6=tmp0
    355         paddw   mm7,mm1                 ; mm7=tmp1
    356 
    357         movq    MMWORD [wk(1)], mm4     ; wk(1)=tmp3
    358         movq    MMWORD [wk(0)], mm0     ; wk(0)=tmp2
    359 
    360         ; -- Odd part
    361 
    362         movq    mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    363         movq    mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    364         movq    mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    365         movq    mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    366 
    367         movq    mm4,mm2
    368         movq    mm0,mm5
    369         psubw   mm2,mm1                 ; mm2=z12
    370         psubw   mm5,mm3                 ; mm5=z10
    371         paddw   mm4,mm1                 ; mm4=z11
    372         paddw   mm0,mm3                 ; mm0=z13
    373 
    374         movq    mm1,mm5                 ; mm1=z10(unscaled)
    375         psllw   mm2,PRE_MULTIPLY_SCALE_BITS
    376         psllw   mm5,PRE_MULTIPLY_SCALE_BITS
    377 
    378         movq    mm3,mm4
    379         psubw   mm4,mm0
    380         paddw   mm3,mm0                 ; mm3=tmp7
    381 
    382         psllw   mm4,PRE_MULTIPLY_SCALE_BITS
    383         pmulhw  mm4,[GOTOFF(ebx,PW_F1414)]      ; mm4=tmp11
    384 
    385         ; To avoid overflow...
    386         ;
    387         ; (Original)
    388         ; tmp12 = -2.613125930 * z10 + z5;
    389         ;
    390         ; (This implementation)
    391         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    392         ;       = -1.613125930 * z10 - z10 + z5;
    393 
    394         movq    mm0,mm5
    395         paddw   mm5,mm2
    396         pmulhw  mm5,[GOTOFF(ebx,PW_F1847)]      ; mm5=z5
    397         pmulhw  mm0,[GOTOFF(ebx,PW_MF1613)]
    398         pmulhw  mm2,[GOTOFF(ebx,PW_F1082)]
    399         psubw   mm0,mm1
    400         psubw   mm2,mm5                 ; mm2=tmp10
    401         paddw   mm0,mm5                 ; mm0=tmp12
    402 
    403         ; -- Final output stage
    404 
    405         psubw   mm0,mm3                 ; mm0=tmp6
    406         movq    mm1,mm6
    407         movq    mm5,mm7
    408         paddw   mm6,mm3                 ; mm6=data0=(00 10 20 30)
    409         paddw   mm7,mm0                 ; mm7=data1=(01 11 21 31)
    410         psraw   mm6,(PASS1_BITS+3)      ; descale
    411         psraw   mm7,(PASS1_BITS+3)      ; descale
    412         psubw   mm1,mm3                 ; mm1=data7=(07 17 27 37)
    413         psubw   mm5,mm0                 ; mm5=data6=(06 16 26 36)
    414         psraw   mm1,(PASS1_BITS+3)      ; descale
    415         psraw   mm5,(PASS1_BITS+3)      ; descale
    416         psubw   mm4,mm0                 ; mm4=tmp5
    417 
    418         packsswb  mm6,mm5               ; mm6=(00 10 20 30 06 16 26 36)
    419         packsswb  mm7,mm1               ; mm7=(01 11 21 31 07 17 27 37)
    420 
    421         movq    mm3, MMWORD [wk(0)]     ; mm3=tmp2
    422         movq    mm0, MMWORD [wk(1)]     ; mm0=tmp3
    423 
    424         paddw   mm2,mm4                 ; mm2=tmp4
    425         movq    mm5,mm3
    426         movq    mm1,mm0
    427         paddw   mm3,mm4                 ; mm3=data2=(02 12 22 32)
    428         paddw   mm0,mm2                 ; mm0=data4=(04 14 24 34)
    429         psraw   mm3,(PASS1_BITS+3)      ; descale
    430         psraw   mm0,(PASS1_BITS+3)      ; descale
    431         psubw   mm5,mm4                 ; mm5=data5=(05 15 25 35)
    432         psubw   mm1,mm2                 ; mm1=data3=(03 13 23 33)
    433         psraw   mm5,(PASS1_BITS+3)      ; descale
    434         psraw   mm1,(PASS1_BITS+3)      ; descale
    435 
    436         movq      mm4,[GOTOFF(ebx,PB_CENTERJSAMP)]      ; mm4=[PB_CENTERJSAMP]
    437 
    438         packsswb  mm3,mm0               ; mm3=(02 12 22 32 04 14 24 34)
    439         packsswb  mm1,mm5               ; mm1=(03 13 23 33 05 15 25 35)
    440 
    441         paddb     mm6,mm4
    442         paddb     mm7,mm4
    443         paddb     mm3,mm4
    444         paddb     mm1,mm4
    445 
    446         movq      mm2,mm6               ; transpose coefficients(phase 1)
    447         punpcklbw mm6,mm7               ; mm6=(00 01 10 11 20 21 30 31)
    448         punpckhbw mm2,mm7               ; mm2=(06 07 16 17 26 27 36 37)
    449         movq      mm0,mm3               ; transpose coefficients(phase 1)
    450         punpcklbw mm3,mm1               ; mm3=(02 03 12 13 22 23 32 33)
    451         punpckhbw mm0,mm1               ; mm0=(04 05 14 15 24 25 34 35)
    452 
    453         movq      mm5,mm6               ; transpose coefficients(phase 2)
    454         punpcklwd mm6,mm3               ; mm6=(00 01 02 03 10 11 12 13)
    455         punpckhwd mm5,mm3               ; mm5=(20 21 22 23 30 31 32 33)
    456         movq      mm4,mm0               ; transpose coefficients(phase 2)
    457         punpcklwd mm0,mm2               ; mm0=(04 05 06 07 14 15 16 17)
    458         punpckhwd mm4,mm2               ; mm4=(24 25 26 27 34 35 36 37)
    459 
    460         movq      mm7,mm6               ; transpose coefficients(phase 3)
    461         punpckldq mm6,mm0               ; mm6=(00 01 02 03 04 05 06 07)
    462         punpckhdq mm7,mm0               ; mm7=(10 11 12 13 14 15 16 17)
    463         movq      mm1,mm5               ; transpose coefficients(phase 3)
    464         punpckldq mm5,mm4               ; mm5=(20 21 22 23 24 25 26 27)
    465         punpckhdq mm1,mm4               ; mm1=(30 31 32 33 34 35 36 37)
    466 
    467         pushpic ebx                     ; save GOT address
    468 
    469         mov     edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
    470         mov     ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
    471         movq    MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6
    472         movq    MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7
    473         mov     edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
    474         mov     ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
    475         movq    MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5
    476         movq    MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1
    477 
    478         poppic  ebx                     ; restore GOT address
    479 
    480         add     esi, byte 4*SIZEOF_JCOEF        ; wsptr
    481         add     edi, byte 4*SIZEOF_JSAMPROW
    482         dec     ecx                             ; ctr
    483         jnz     near .rowloop
    484 
    485         emms            ; empty MMX state
    486 
    487         pop     edi
    488         pop     esi
    489 ;       pop     edx             ; need not be preserved
    490 ;       pop     ecx             ; need not be preserved
    491         pop     ebx
    492         mov     esp,ebp         ; esp <- aligned ebp
    493         pop     esp             ; esp <- original ebp
    494         pop     ebp
    495         ret
    496 
    497 ; For some reason, the OS X linker does not honor the request to align the
    498 ; segment unless we do this.
    499         align   16
    500