Home | History | Annotate | Download | only in src
      1 //===------------------------- UnwindCursor.hpp ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //
      9 // C++ interface to lower levels of libunwind
     10 //===----------------------------------------------------------------------===//
     11 
     12 #ifndef __UNWINDCURSOR_HPP__
     13 #define __UNWINDCURSOR_HPP__
     14 
     15 #include <algorithm>
     16 #include <stdint.h>
     17 #include <stdio.h>
     18 #include <stdlib.h>
     19 #ifndef _LIBUNWIND_HAS_NO_THREADS
     20   #include <pthread.h>
     21 #endif
     22 #include <unwind.h>
     23 
     24 #ifdef __APPLE__
     25   #include <mach-o/dyld.h>
     26 #endif
     27 
     28 #include "config.h"
     29 
     30 #include "AddressSpace.hpp"
     31 #include "CompactUnwinder.hpp"
     32 #include "config.h"
     33 #include "DwarfInstructions.hpp"
     34 #include "EHHeaderParser.hpp"
     35 #include "libunwind.h"
     36 #include "Registers.hpp"
     37 #include "Unwind-EHABI.h"
     38 
     39 namespace libunwind {
     40 
     41 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
     42 /// Cache of recently found FDEs.
     43 template <typename A>
     44 class _LIBUNWIND_HIDDEN DwarfFDECache {
     45   typedef typename A::pint_t pint_t;
     46 public:
     47   static pint_t findFDE(pint_t mh, pint_t pc);
     48   static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
     49   static void removeAllIn(pint_t mh);
     50   static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
     51                                                unw_word_t ip_end,
     52                                                unw_word_t fde, unw_word_t mh));
     53 
     54 private:
     55 
     56   struct entry {
     57     pint_t mh;
     58     pint_t ip_start;
     59     pint_t ip_end;
     60     pint_t fde;
     61   };
     62 
     63   // These fields are all static to avoid needing an initializer.
     64   // There is only one instance of this class per process.
     65 #ifndef _LIBUNWIND_HAS_NO_THREADS
     66   static pthread_rwlock_t _lock;
     67 #endif
     68 #ifdef __APPLE__
     69   static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
     70   static bool _registeredForDyldUnloads;
     71 #endif
     72   // Can't use std::vector<> here because this code is below libc++.
     73   static entry *_buffer;
     74   static entry *_bufferUsed;
     75   static entry *_bufferEnd;
     76   static entry _initialBuffer[64];
     77 };
     78 
     79 template <typename A>
     80 typename DwarfFDECache<A>::entry *
     81 DwarfFDECache<A>::_buffer = _initialBuffer;
     82 
     83 template <typename A>
     84 typename DwarfFDECache<A>::entry *
     85 DwarfFDECache<A>::_bufferUsed = _initialBuffer;
     86 
     87 template <typename A>
     88 typename DwarfFDECache<A>::entry *
     89 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
     90 
     91 template <typename A>
     92 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
     93 
     94 #ifndef _LIBUNWIND_HAS_NO_THREADS
     95 template <typename A>
     96 pthread_rwlock_t DwarfFDECache<A>::_lock = PTHREAD_RWLOCK_INITIALIZER;
     97 #endif
     98 
     99 #ifdef __APPLE__
    100 template <typename A>
    101 bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
    102 #endif
    103 
    104 template <typename A>
    105 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
    106   pint_t result = 0;
    107   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_rdlock(&_lock));
    108   for (entry *p = _buffer; p < _bufferUsed; ++p) {
    109     if ((mh == p->mh) || (mh == 0)) {
    110       if ((p->ip_start <= pc) && (pc < p->ip_end)) {
    111         result = p->fde;
    112         break;
    113       }
    114     }
    115   }
    116   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
    117   return result;
    118 }
    119 
    120 template <typename A>
    121 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
    122                            pint_t fde) {
    123 #if !defined(_LIBUNWIND_NO_HEAP)
    124   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
    125   if (_bufferUsed >= _bufferEnd) {
    126     size_t oldSize = (size_t)(_bufferEnd - _buffer);
    127     size_t newSize = oldSize * 4;
    128     // Can't use operator new (we are below it).
    129     entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
    130     memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
    131     if (_buffer != _initialBuffer)
    132       free(_buffer);
    133     _buffer = newBuffer;
    134     _bufferUsed = &newBuffer[oldSize];
    135     _bufferEnd = &newBuffer[newSize];
    136   }
    137   _bufferUsed->mh = mh;
    138   _bufferUsed->ip_start = ip_start;
    139   _bufferUsed->ip_end = ip_end;
    140   _bufferUsed->fde = fde;
    141   ++_bufferUsed;
    142 #ifdef __APPLE__
    143   if (!_registeredForDyldUnloads) {
    144     _dyld_register_func_for_remove_image(&dyldUnloadHook);
    145     _registeredForDyldUnloads = true;
    146   }
    147 #endif
    148   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
    149 #endif
    150 }
    151 
    152 template <typename A>
    153 void DwarfFDECache<A>::removeAllIn(pint_t mh) {
    154   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
    155   entry *d = _buffer;
    156   for (const entry *s = _buffer; s < _bufferUsed; ++s) {
    157     if (s->mh != mh) {
    158       if (d != s)
    159         *d = *s;
    160       ++d;
    161     }
    162   }
    163   _bufferUsed = d;
    164   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
    165 }
    166 
    167 #ifdef __APPLE__
    168 template <typename A>
    169 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
    170   removeAllIn((pint_t) mh);
    171 }
    172 #endif
    173 
    174 template <typename A>
    175 void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
    176     unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
    177   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
    178   for (entry *p = _buffer; p < _bufferUsed; ++p) {
    179     (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
    180   }
    181   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
    182 }
    183 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    184 
    185 
    186 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
    187 
    188 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    189 template <typename A> class UnwindSectionHeader {
    190 public:
    191   UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
    192       : _addressSpace(addressSpace), _addr(addr) {}
    193 
    194   uint32_t version() const {
    195     return _addressSpace.get32(_addr +
    196                                offsetof(unwind_info_section_header, version));
    197   }
    198   uint32_t commonEncodingsArraySectionOffset() const {
    199     return _addressSpace.get32(_addr +
    200                                offsetof(unwind_info_section_header,
    201                                         commonEncodingsArraySectionOffset));
    202   }
    203   uint32_t commonEncodingsArrayCount() const {
    204     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
    205                                                 commonEncodingsArrayCount));
    206   }
    207   uint32_t personalityArraySectionOffset() const {
    208     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
    209                                                 personalityArraySectionOffset));
    210   }
    211   uint32_t personalityArrayCount() const {
    212     return _addressSpace.get32(
    213         _addr + offsetof(unwind_info_section_header, personalityArrayCount));
    214   }
    215   uint32_t indexSectionOffset() const {
    216     return _addressSpace.get32(
    217         _addr + offsetof(unwind_info_section_header, indexSectionOffset));
    218   }
    219   uint32_t indexCount() const {
    220     return _addressSpace.get32(
    221         _addr + offsetof(unwind_info_section_header, indexCount));
    222   }
    223 
    224 private:
    225   A                     &_addressSpace;
    226   typename A::pint_t     _addr;
    227 };
    228 
    229 template <typename A> class UnwindSectionIndexArray {
    230 public:
    231   UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
    232       : _addressSpace(addressSpace), _addr(addr) {}
    233 
    234   uint32_t functionOffset(uint32_t index) const {
    235     return _addressSpace.get32(
    236         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
    237                               functionOffset));
    238   }
    239   uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
    240     return _addressSpace.get32(
    241         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
    242                               secondLevelPagesSectionOffset));
    243   }
    244   uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
    245     return _addressSpace.get32(
    246         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
    247                               lsdaIndexArraySectionOffset));
    248   }
    249 
    250 private:
    251   A                   &_addressSpace;
    252   typename A::pint_t   _addr;
    253 };
    254 
    255 template <typename A> class UnwindSectionRegularPageHeader {
    256 public:
    257   UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
    258       : _addressSpace(addressSpace), _addr(addr) {}
    259 
    260   uint32_t kind() const {
    261     return _addressSpace.get32(
    262         _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
    263   }
    264   uint16_t entryPageOffset() const {
    265     return _addressSpace.get16(
    266         _addr + offsetof(unwind_info_regular_second_level_page_header,
    267                          entryPageOffset));
    268   }
    269   uint16_t entryCount() const {
    270     return _addressSpace.get16(
    271         _addr +
    272         offsetof(unwind_info_regular_second_level_page_header, entryCount));
    273   }
    274 
    275 private:
    276   A &_addressSpace;
    277   typename A::pint_t _addr;
    278 };
    279 
    280 template <typename A> class UnwindSectionRegularArray {
    281 public:
    282   UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
    283       : _addressSpace(addressSpace), _addr(addr) {}
    284 
    285   uint32_t functionOffset(uint32_t index) const {
    286     return _addressSpace.get32(
    287         _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
    288                               functionOffset));
    289   }
    290   uint32_t encoding(uint32_t index) const {
    291     return _addressSpace.get32(
    292         _addr +
    293         arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
    294   }
    295 
    296 private:
    297   A &_addressSpace;
    298   typename A::pint_t _addr;
    299 };
    300 
    301 template <typename A> class UnwindSectionCompressedPageHeader {
    302 public:
    303   UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
    304       : _addressSpace(addressSpace), _addr(addr) {}
    305 
    306   uint32_t kind() const {
    307     return _addressSpace.get32(
    308         _addr +
    309         offsetof(unwind_info_compressed_second_level_page_header, kind));
    310   }
    311   uint16_t entryPageOffset() const {
    312     return _addressSpace.get16(
    313         _addr + offsetof(unwind_info_compressed_second_level_page_header,
    314                          entryPageOffset));
    315   }
    316   uint16_t entryCount() const {
    317     return _addressSpace.get16(
    318         _addr +
    319         offsetof(unwind_info_compressed_second_level_page_header, entryCount));
    320   }
    321   uint16_t encodingsPageOffset() const {
    322     return _addressSpace.get16(
    323         _addr + offsetof(unwind_info_compressed_second_level_page_header,
    324                          encodingsPageOffset));
    325   }
    326   uint16_t encodingsCount() const {
    327     return _addressSpace.get16(
    328         _addr + offsetof(unwind_info_compressed_second_level_page_header,
    329                          encodingsCount));
    330   }
    331 
    332 private:
    333   A &_addressSpace;
    334   typename A::pint_t _addr;
    335 };
    336 
    337 template <typename A> class UnwindSectionCompressedArray {
    338 public:
    339   UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
    340       : _addressSpace(addressSpace), _addr(addr) {}
    341 
    342   uint32_t functionOffset(uint32_t index) const {
    343     return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
    344         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
    345   }
    346   uint16_t encodingIndex(uint32_t index) const {
    347     return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
    348         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
    349   }
    350 
    351 private:
    352   A &_addressSpace;
    353   typename A::pint_t _addr;
    354 };
    355 
    356 template <typename A> class UnwindSectionLsdaArray {
    357 public:
    358   UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
    359       : _addressSpace(addressSpace), _addr(addr) {}
    360 
    361   uint32_t functionOffset(uint32_t index) const {
    362     return _addressSpace.get32(
    363         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
    364                               index, functionOffset));
    365   }
    366   uint32_t lsdaOffset(uint32_t index) const {
    367     return _addressSpace.get32(
    368         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
    369                               index, lsdaOffset));
    370   }
    371 
    372 private:
    373   A                   &_addressSpace;
    374   typename A::pint_t   _addr;
    375 };
    376 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    377 
    378 class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
    379 public:
    380   // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
    381   // This avoids an unnecessary dependency to libc++abi.
    382   void operator delete(void *, size_t) {}
    383 
    384   virtual ~AbstractUnwindCursor() {}
    385   virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
    386   virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
    387   virtual void setReg(int, unw_word_t) {
    388     _LIBUNWIND_ABORT("setReg not implemented");
    389   }
    390   virtual bool validFloatReg(int) {
    391     _LIBUNWIND_ABORT("validFloatReg not implemented");
    392   }
    393   virtual unw_fpreg_t getFloatReg(int) {
    394     _LIBUNWIND_ABORT("getFloatReg not implemented");
    395   }
    396   virtual void setFloatReg(int, unw_fpreg_t) {
    397     _LIBUNWIND_ABORT("setFloatReg not implemented");
    398   }
    399   virtual int step() { _LIBUNWIND_ABORT("step not implemented"); }
    400   virtual void getInfo(unw_proc_info_t *) {
    401     _LIBUNWIND_ABORT("getInfo not implemented");
    402   }
    403   virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
    404   virtual bool isSignalFrame() {
    405     _LIBUNWIND_ABORT("isSignalFrame not implemented");
    406   }
    407   virtual bool getFunctionName(char *, size_t, unw_word_t *) {
    408     _LIBUNWIND_ABORT("getFunctionName not implemented");
    409   }
    410   virtual void setInfoBasedOnIPRegister(bool = false) {
    411     _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
    412   }
    413   virtual const char *getRegisterName(int) {
    414     _LIBUNWIND_ABORT("getRegisterName not implemented");
    415   }
    416 #ifdef __arm__
    417   virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
    418 #endif
    419 };
    420 
    421 /// UnwindCursor contains all state (including all register values) during
    422 /// an unwind.  This is normally stack allocated inside a unw_cursor_t.
    423 template <typename A, typename R>
    424 class UnwindCursor : public AbstractUnwindCursor{
    425   typedef typename A::pint_t pint_t;
    426 public:
    427                       UnwindCursor(unw_context_t *context, A &as);
    428                       UnwindCursor(A &as, void *threadArg);
    429   virtual             ~UnwindCursor() {}
    430   virtual bool        validReg(int);
    431   virtual unw_word_t  getReg(int);
    432   virtual void        setReg(int, unw_word_t);
    433   virtual bool        validFloatReg(int);
    434   virtual unw_fpreg_t getFloatReg(int);
    435   virtual void        setFloatReg(int, unw_fpreg_t);
    436   virtual int         step();
    437   virtual void        getInfo(unw_proc_info_t *);
    438   virtual void        jumpto();
    439   virtual bool        isSignalFrame();
    440   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
    441   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
    442   virtual const char *getRegisterName(int num);
    443 #ifdef __arm__
    444   virtual void        saveVFPAsX();
    445 #endif
    446 
    447 private:
    448 
    449 #if defined(_LIBUNWIND_ARM_EHABI)
    450   bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
    451 
    452   int stepWithEHABI() {
    453     size_t len = 0;
    454     size_t off = 0;
    455     // FIXME: Calling decode_eht_entry() here is violating the libunwind
    456     // abstraction layer.
    457     const uint32_t *ehtp =
    458         decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
    459                          &off, &len);
    460     if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
    461             _URC_CONTINUE_UNWIND)
    462       return UNW_STEP_END;
    463     return UNW_STEP_SUCCESS;
    464   }
    465 #endif
    466 
    467 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    468   bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
    469                                             uint32_t fdeSectionOffsetHint=0);
    470   int stepWithDwarfFDE() {
    471     return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace,
    472                                               (pint_t)this->getReg(UNW_REG_IP),
    473                                               (pint_t)_info.unwind_info,
    474                                               _registers);
    475   }
    476 #endif
    477 
    478 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    479   bool getInfoFromCompactEncodingSection(pint_t pc,
    480                                             const UnwindInfoSections &sects);
    481   int stepWithCompactEncoding() {
    482   #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    483     if ( compactSaysUseDwarf() )
    484       return stepWithDwarfFDE();
    485   #endif
    486     R dummy;
    487     return stepWithCompactEncoding(dummy);
    488   }
    489 
    490 #if defined(_LIBUNWIND_TARGET_X86_64)
    491   int stepWithCompactEncoding(Registers_x86_64 &) {
    492     return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
    493         _info.format, _info.start_ip, _addressSpace, _registers);
    494   }
    495 #endif
    496 
    497 #if defined(_LIBUNWIND_TARGET_I386)
    498   int stepWithCompactEncoding(Registers_x86 &) {
    499     return CompactUnwinder_x86<A>::stepWithCompactEncoding(
    500         _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
    501   }
    502 #endif
    503 
    504 #if defined(_LIBUNWIND_TARGET_PPC)
    505   int stepWithCompactEncoding(Registers_ppc &) {
    506     return UNW_EINVAL;
    507   }
    508 #endif
    509 
    510 #if defined(_LIBUNWIND_TARGET_AARCH64)
    511   int stepWithCompactEncoding(Registers_arm64 &) {
    512     return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
    513         _info.format, _info.start_ip, _addressSpace, _registers);
    514   }
    515 #endif
    516 
    517   bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
    518     R dummy;
    519     return compactSaysUseDwarf(dummy, offset);
    520   }
    521 
    522 #if defined(_LIBUNWIND_TARGET_X86_64)
    523   bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
    524     if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
    525       if (offset)
    526         *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
    527       return true;
    528     }
    529     return false;
    530   }
    531 #endif
    532 
    533 #if defined(_LIBUNWIND_TARGET_I386)
    534   bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
    535     if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
    536       if (offset)
    537         *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
    538       return true;
    539     }
    540     return false;
    541   }
    542 #endif
    543 
    544 #if defined(_LIBUNWIND_TARGET_PPC)
    545   bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
    546     return true;
    547   }
    548 #endif
    549 
    550 #if defined(_LIBUNWIND_TARGET_AARCH64)
    551   bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
    552     if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
    553       if (offset)
    554         *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
    555       return true;
    556     }
    557     return false;
    558   }
    559 #endif
    560 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    561 
    562 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    563   compact_unwind_encoding_t dwarfEncoding() const {
    564     R dummy;
    565     return dwarfEncoding(dummy);
    566   }
    567 
    568 #if defined(_LIBUNWIND_TARGET_X86_64)
    569   compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
    570     return UNWIND_X86_64_MODE_DWARF;
    571   }
    572 #endif
    573 
    574 #if defined(_LIBUNWIND_TARGET_I386)
    575   compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
    576     return UNWIND_X86_MODE_DWARF;
    577   }
    578 #endif
    579 
    580 #if defined(_LIBUNWIND_TARGET_PPC)
    581   compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
    582     return 0;
    583   }
    584 #endif
    585 
    586 #if defined(_LIBUNWIND_TARGET_AARCH64)
    587   compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
    588     return UNWIND_ARM64_MODE_DWARF;
    589   }
    590 #endif
    591 
    592 #if defined (_LIBUNWIND_TARGET_OR1K)
    593   compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
    594     return 0;
    595   }
    596 #endif
    597 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    598 
    599 
    600   A               &_addressSpace;
    601   R                _registers;
    602   unw_proc_info_t  _info;
    603   bool             _unwindInfoMissing;
    604   bool             _isSignalFrame;
    605 };
    606 
    607 
    608 template <typename A, typename R>
    609 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
    610     : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
    611       _isSignalFrame(false) {
    612   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
    613                 "UnwindCursor<> does not fit in unw_cursor_t");
    614   memset(&_info, 0, sizeof(_info));
    615 }
    616 
    617 template <typename A, typename R>
    618 UnwindCursor<A, R>::UnwindCursor(A &as, void *)
    619     : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
    620   memset(&_info, 0, sizeof(_info));
    621   // FIXME
    622   // fill in _registers from thread arg
    623 }
    624 
    625 
    626 template <typename A, typename R>
    627 bool UnwindCursor<A, R>::validReg(int regNum) {
    628   return _registers.validRegister(regNum);
    629 }
    630 
    631 template <typename A, typename R>
    632 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
    633   return _registers.getRegister(regNum);
    634 }
    635 
    636 template <typename A, typename R>
    637 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
    638   _registers.setRegister(regNum, (typename A::pint_t)value);
    639 }
    640 
    641 template <typename A, typename R>
    642 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
    643   return _registers.validFloatRegister(regNum);
    644 }
    645 
    646 template <typename A, typename R>
    647 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
    648   return _registers.getFloatRegister(regNum);
    649 }
    650 
    651 template <typename A, typename R>
    652 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
    653   _registers.setFloatRegister(regNum, value);
    654 }
    655 
    656 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
    657   _registers.jumpto();
    658 }
    659 
    660 #ifdef __arm__
    661 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
    662   _registers.saveVFPAsX();
    663 }
    664 #endif
    665 
    666 template <typename A, typename R>
    667 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
    668   return _registers.getRegisterName(regNum);
    669 }
    670 
    671 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
    672   return _isSignalFrame;
    673 }
    674 
    675 #if defined(_LIBUNWIND_ARM_EHABI)
    676 struct EHABIIndexEntry {
    677   uint32_t functionOffset;
    678   uint32_t data;
    679 };
    680 
    681 template<typename A>
    682 struct EHABISectionIterator {
    683   typedef EHABISectionIterator _Self;
    684 
    685   typedef std::random_access_iterator_tag iterator_category;
    686   typedef typename A::pint_t value_type;
    687   typedef typename A::pint_t* pointer;
    688   typedef typename A::pint_t& reference;
    689   typedef size_t size_type;
    690   typedef size_t difference_type;
    691 
    692   static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
    693     return _Self(addressSpace, sects, 0);
    694   }
    695   static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
    696     return _Self(addressSpace, sects,
    697                  sects.arm_section_length / sizeof(EHABIIndexEntry));
    698   }
    699 
    700   EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
    701       : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
    702 
    703   _Self& operator++() { ++_i; return *this; }
    704   _Self& operator+=(size_t a) { _i += a; return *this; }
    705   _Self& operator--() { assert(_i > 0); --_i; return *this; }
    706   _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
    707 
    708   _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
    709   _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
    710 
    711   size_t operator-(const _Self& other) { return _i - other._i; }
    712 
    713   bool operator==(const _Self& other) const {
    714     assert(_addressSpace == other._addressSpace);
    715     assert(_sects == other._sects);
    716     return _i == other._i;
    717   }
    718 
    719   typename A::pint_t operator*() const { return functionAddress(); }
    720 
    721   typename A::pint_t functionAddress() const {
    722     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
    723         EHABIIndexEntry, _i, functionOffset);
    724     return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
    725   }
    726 
    727   typename A::pint_t dataAddress() {
    728     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
    729         EHABIIndexEntry, _i, data);
    730     return indexAddr;
    731   }
    732 
    733  private:
    734   size_t _i;
    735   A* _addressSpace;
    736   const UnwindInfoSections* _sects;
    737 };
    738 
    739 template <typename A, typename R>
    740 bool UnwindCursor<A, R>::getInfoFromEHABISection(
    741     pint_t pc,
    742     const UnwindInfoSections &sects) {
    743   EHABISectionIterator<A> begin =
    744       EHABISectionIterator<A>::begin(_addressSpace, sects);
    745   EHABISectionIterator<A> end =
    746       EHABISectionIterator<A>::end(_addressSpace, sects);
    747 
    748   EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
    749   if (itNextPC == begin || itNextPC == end)
    750     return false;
    751   EHABISectionIterator<A> itThisPC = itNextPC - 1;
    752 
    753   pint_t thisPC = itThisPC.functionAddress();
    754   pint_t nextPC = itNextPC.functionAddress();
    755   pint_t indexDataAddr = itThisPC.dataAddress();
    756 
    757   if (indexDataAddr == 0)
    758     return false;
    759 
    760   uint32_t indexData = _addressSpace.get32(indexDataAddr);
    761   if (indexData == UNW_EXIDX_CANTUNWIND)
    762     return false;
    763 
    764   // If the high bit is set, the exception handling table entry is inline inside
    765   // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
    766   // the table points at an offset in the exception handling table (section 5 EHABI).
    767   pint_t exceptionTableAddr;
    768   uint32_t exceptionTableData;
    769   bool isSingleWordEHT;
    770   if (indexData & 0x80000000) {
    771     exceptionTableAddr = indexDataAddr;
    772     // TODO(ajwong): Should this data be 0?
    773     exceptionTableData = indexData;
    774     isSingleWordEHT = true;
    775   } else {
    776     exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
    777     exceptionTableData = _addressSpace.get32(exceptionTableAddr);
    778     isSingleWordEHT = false;
    779   }
    780 
    781   // Now we know the 3 things:
    782   //   exceptionTableAddr -- exception handler table entry.
    783   //   exceptionTableData -- the data inside the first word of the eht entry.
    784   //   isSingleWordEHT -- whether the entry is in the index.
    785   unw_word_t personalityRoutine = 0xbadf00d;
    786   bool scope32 = false;
    787   uintptr_t lsda;
    788 
    789   // If the high bit in the exception handling table entry is set, the entry is
    790   // in compact form (section 6.3 EHABI).
    791   if (exceptionTableData & 0x80000000) {
    792     // Grab the index of the personality routine from the compact form.
    793     uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
    794     uint32_t extraWords = 0;
    795     switch (choice) {
    796       case 0:
    797         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
    798         extraWords = 0;
    799         scope32 = false;
    800         lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
    801         break;
    802       case 1:
    803         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
    804         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
    805         scope32 = false;
    806         lsda = exceptionTableAddr + (extraWords + 1) * 4;
    807         break;
    808       case 2:
    809         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
    810         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
    811         scope32 = true;
    812         lsda = exceptionTableAddr + (extraWords + 1) * 4;
    813         break;
    814       default:
    815         _LIBUNWIND_ABORT("unknown personality routine");
    816         return false;
    817     }
    818 
    819     if (isSingleWordEHT) {
    820       if (extraWords != 0) {
    821         _LIBUNWIND_ABORT("index inlined table detected but pr function "
    822                          "requires extra words");
    823         return false;
    824       }
    825     }
    826   } else {
    827     pint_t personalityAddr =
    828         exceptionTableAddr + signExtendPrel31(exceptionTableData);
    829     personalityRoutine = personalityAddr;
    830 
    831     // ARM EHABI # 6.2, # 9.2
    832     //
    833     //  +---- ehtp
    834     //  v
    835     // +--------------------------------------+
    836     // | +--------+--------+--------+-------+ |
    837     // | |0| prel31 to personalityRoutine   | |
    838     // | +--------+--------+--------+-------+ |
    839     // | |      N |      unwind opcodes     | |  <-- UnwindData
    840     // | +--------+--------+--------+-------+ |
    841     // | | Word 2        unwind opcodes     | |
    842     // | +--------+--------+--------+-------+ |
    843     // | ...                                  |
    844     // | +--------+--------+--------+-------+ |
    845     // | | Word N        unwind opcodes     | |
    846     // | +--------+--------+--------+-------+ |
    847     // | | LSDA                             | |  <-- lsda
    848     // | | ...                              | |
    849     // | +--------+--------+--------+-------+ |
    850     // +--------------------------------------+
    851 
    852     uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
    853     uint32_t FirstDataWord = *UnwindData;
    854     size_t N = ((FirstDataWord >> 24) & 0xff);
    855     size_t NDataWords = N + 1;
    856     lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
    857   }
    858 
    859   _info.start_ip = thisPC;
    860   _info.end_ip = nextPC;
    861   _info.handler = personalityRoutine;
    862   _info.unwind_info = exceptionTableAddr;
    863   _info.lsda = lsda;
    864   // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
    865   _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0;  // Use enum?
    866 
    867   return true;
    868 }
    869 #endif
    870 
    871 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    872 template <typename A, typename R>
    873 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
    874                                                 const UnwindInfoSections &sects,
    875                                                 uint32_t fdeSectionOffsetHint) {
    876   typename CFI_Parser<A>::FDE_Info fdeInfo;
    877   typename CFI_Parser<A>::CIE_Info cieInfo;
    878   bool foundFDE = false;
    879   bool foundInCache = false;
    880   // If compact encoding table gave offset into dwarf section, go directly there
    881   if (fdeSectionOffsetHint != 0) {
    882     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
    883                                     (uint32_t)sects.dwarf_section_length,
    884                                     sects.dwarf_section + fdeSectionOffsetHint,
    885                                     &fdeInfo, &cieInfo);
    886   }
    887 #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
    888   if (!foundFDE && (sects.dwarf_index_section != 0)) {
    889     foundFDE = EHHeaderParser<A>::findFDE(
    890         _addressSpace, pc, sects.dwarf_index_section,
    891         (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
    892   }
    893 #endif
    894   if (!foundFDE) {
    895     // otherwise, search cache of previously found FDEs.
    896     pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
    897     if (cachedFDE != 0) {
    898       foundFDE =
    899           CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
    900                                  (uint32_t)sects.dwarf_section_length,
    901                                  cachedFDE, &fdeInfo, &cieInfo);
    902       foundInCache = foundFDE;
    903     }
    904   }
    905   if (!foundFDE) {
    906     // Still not found, do full scan of __eh_frame section.
    907     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
    908                                       (uint32_t)sects.dwarf_section_length, 0,
    909                                       &fdeInfo, &cieInfo);
    910   }
    911   if (foundFDE) {
    912     typename CFI_Parser<A>::PrologInfo prolog;
    913     if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
    914                                             &prolog)) {
    915       // Save off parsed FDE info
    916       _info.start_ip          = fdeInfo.pcStart;
    917       _info.end_ip            = fdeInfo.pcEnd;
    918       _info.lsda              = fdeInfo.lsda;
    919       _info.handler           = cieInfo.personality;
    920       _info.gp                = prolog.spExtraArgSize;
    921       _info.flags             = 0;
    922       _info.format            = dwarfEncoding();
    923       _info.unwind_info       = fdeInfo.fdeStart;
    924       _info.unwind_info_size  = (uint32_t)fdeInfo.fdeLength;
    925       _info.extra             = (unw_word_t) sects.dso_base;
    926 
    927       // Add to cache (to make next lookup faster) if we had no hint
    928       // and there was no index.
    929       if (!foundInCache && (fdeSectionOffsetHint == 0)) {
    930   #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
    931         if (sects.dwarf_index_section == 0)
    932   #endif
    933         DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
    934                               fdeInfo.fdeStart);
    935       }
    936       return true;
    937     }
    938   }
    939   //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
    940   return false;
    941 }
    942 #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    943 
    944 
    945 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    946 template <typename A, typename R>
    947 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
    948                                               const UnwindInfoSections &sects) {
    949   const bool log = false;
    950   if (log)
    951     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
    952             (uint64_t)pc, (uint64_t)sects.dso_base);
    953 
    954   const UnwindSectionHeader<A> sectionHeader(_addressSpace,
    955                                                 sects.compact_unwind_section);
    956   if (sectionHeader.version() != UNWIND_SECTION_VERSION)
    957     return false;
    958 
    959   // do a binary search of top level index to find page with unwind info
    960   pint_t targetFunctionOffset = pc - sects.dso_base;
    961   const UnwindSectionIndexArray<A> topIndex(_addressSpace,
    962                                            sects.compact_unwind_section
    963                                          + sectionHeader.indexSectionOffset());
    964   uint32_t low = 0;
    965   uint32_t high = sectionHeader.indexCount();
    966   uint32_t last = high - 1;
    967   while (low < high) {
    968     uint32_t mid = (low + high) / 2;
    969     //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
    970     //mid, low, high, topIndex.functionOffset(mid));
    971     if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
    972       if ((mid == last) ||
    973           (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
    974         low = mid;
    975         break;
    976       } else {
    977         low = mid + 1;
    978       }
    979     } else {
    980       high = mid;
    981     }
    982   }
    983   const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
    984   const uint32_t firstLevelNextPageFunctionOffset =
    985       topIndex.functionOffset(low + 1);
    986   const pint_t secondLevelAddr =
    987       sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
    988   const pint_t lsdaArrayStartAddr =
    989       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
    990   const pint_t lsdaArrayEndAddr =
    991       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
    992   if (log)
    993     fprintf(stderr, "\tfirst level search for result index=%d "
    994                     "to secondLevelAddr=0x%llX\n",
    995                     low, (uint64_t) secondLevelAddr);
    996   // do a binary search of second level page index
    997   uint32_t encoding = 0;
    998   pint_t funcStart = 0;
    999   pint_t funcEnd = 0;
   1000   pint_t lsda = 0;
   1001   pint_t personality = 0;
   1002   uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
   1003   if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
   1004     // regular page
   1005     UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
   1006                                                  secondLevelAddr);
   1007     UnwindSectionRegularArray<A> pageIndex(
   1008         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
   1009     // binary search looks for entry with e where index[e].offset <= pc <
   1010     // index[e+1].offset
   1011     if (log)
   1012       fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
   1013                       "regular page starting at secondLevelAddr=0x%llX\n",
   1014               (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
   1015     low = 0;
   1016     high = pageHeader.entryCount();
   1017     while (low < high) {
   1018       uint32_t mid = (low + high) / 2;
   1019       if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
   1020         if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
   1021           // at end of table
   1022           low = mid;
   1023           funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
   1024           break;
   1025         } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
   1026           // next is too big, so we found it
   1027           low = mid;
   1028           funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
   1029           break;
   1030         } else {
   1031           low = mid + 1;
   1032         }
   1033       } else {
   1034         high = mid;
   1035       }
   1036     }
   1037     encoding = pageIndex.encoding(low);
   1038     funcStart = pageIndex.functionOffset(low) + sects.dso_base;
   1039     if (pc < funcStart) {
   1040       if (log)
   1041         fprintf(
   1042             stderr,
   1043             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
   1044             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
   1045       return false;
   1046     }
   1047     if (pc > funcEnd) {
   1048       if (log)
   1049         fprintf(
   1050             stderr,
   1051             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
   1052             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
   1053       return false;
   1054     }
   1055   } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
   1056     // compressed page
   1057     UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
   1058                                                     secondLevelAddr);
   1059     UnwindSectionCompressedArray<A> pageIndex(
   1060         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
   1061     const uint32_t targetFunctionPageOffset =
   1062         (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
   1063     // binary search looks for entry with e where index[e].offset <= pc <
   1064     // index[e+1].offset
   1065     if (log)
   1066       fprintf(stderr, "\tbinary search of compressed page starting at "
   1067                       "secondLevelAddr=0x%llX\n",
   1068               (uint64_t) secondLevelAddr);
   1069     low = 0;
   1070     last = pageHeader.entryCount() - 1;
   1071     high = pageHeader.entryCount();
   1072     while (low < high) {
   1073       uint32_t mid = (low + high) / 2;
   1074       if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
   1075         if ((mid == last) ||
   1076             (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
   1077           low = mid;
   1078           break;
   1079         } else {
   1080           low = mid + 1;
   1081         }
   1082       } else {
   1083         high = mid;
   1084       }
   1085     }
   1086     funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
   1087                                                               + sects.dso_base;
   1088     if (low < last)
   1089       funcEnd =
   1090           pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
   1091                                                               + sects.dso_base;
   1092     else
   1093       funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
   1094     if (pc < funcStart) {
   1095       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
   1096                            "level compressed unwind table. funcStart=0x%llX",
   1097                             (uint64_t) pc, (uint64_t) funcStart);
   1098       return false;
   1099     }
   1100     if (pc > funcEnd) {
   1101       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
   1102                           "level compressed unwind table. funcEnd=0x%llX",
   1103                            (uint64_t) pc, (uint64_t) funcEnd);
   1104       return false;
   1105     }
   1106     uint16_t encodingIndex = pageIndex.encodingIndex(low);
   1107     if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
   1108       // encoding is in common table in section header
   1109       encoding = _addressSpace.get32(
   1110           sects.compact_unwind_section +
   1111           sectionHeader.commonEncodingsArraySectionOffset() +
   1112           encodingIndex * sizeof(uint32_t));
   1113     } else {
   1114       // encoding is in page specific table
   1115       uint16_t pageEncodingIndex =
   1116           encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
   1117       encoding = _addressSpace.get32(secondLevelAddr +
   1118                                      pageHeader.encodingsPageOffset() +
   1119                                      pageEncodingIndex * sizeof(uint32_t));
   1120     }
   1121   } else {
   1122     _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second "
   1123                          "level page",
   1124                           (uint64_t) sects.compact_unwind_section);
   1125     return false;
   1126   }
   1127 
   1128   // look up LSDA, if encoding says function has one
   1129   if (encoding & UNWIND_HAS_LSDA) {
   1130     UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
   1131     uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
   1132     low = 0;
   1133     high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
   1134                     sizeof(unwind_info_section_header_lsda_index_entry);
   1135     // binary search looks for entry with exact match for functionOffset
   1136     if (log)
   1137       fprintf(stderr,
   1138               "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
   1139               funcStartOffset);
   1140     while (low < high) {
   1141       uint32_t mid = (low + high) / 2;
   1142       if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
   1143         lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
   1144         break;
   1145       } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
   1146         low = mid + 1;
   1147       } else {
   1148         high = mid;
   1149       }
   1150     }
   1151     if (lsda == 0) {
   1152       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
   1153                     "pc=0x%0llX, but lsda table has no entry",
   1154                     encoding, (uint64_t) pc);
   1155       return false;
   1156     }
   1157   }
   1158 
   1159   // extact personality routine, if encoding says function has one
   1160   uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
   1161                               (__builtin_ctz(UNWIND_PERSONALITY_MASK));
   1162   if (personalityIndex != 0) {
   1163     --personalityIndex; // change 1-based to zero-based index
   1164     if (personalityIndex > sectionHeader.personalityArrayCount()) {
   1165       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
   1166                             "but personality table has only %d entires",
   1167                             encoding, personalityIndex,
   1168                             sectionHeader.personalityArrayCount());
   1169       return false;
   1170     }
   1171     int32_t personalityDelta = (int32_t)_addressSpace.get32(
   1172         sects.compact_unwind_section +
   1173         sectionHeader.personalityArraySectionOffset() +
   1174         personalityIndex * sizeof(uint32_t));
   1175     pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
   1176     personality = _addressSpace.getP(personalityPointer);
   1177     if (log)
   1178       fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
   1179                       "personalityDelta=0x%08X, personality=0x%08llX\n",
   1180               (uint64_t) pc, personalityDelta, (uint64_t) personality);
   1181   }
   1182 
   1183   if (log)
   1184     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
   1185                     "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
   1186             (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
   1187   _info.start_ip = funcStart;
   1188   _info.end_ip = funcEnd;
   1189   _info.lsda = lsda;
   1190   _info.handler = personality;
   1191   _info.gp = 0;
   1192   _info.flags = 0;
   1193   _info.format = encoding;
   1194   _info.unwind_info = 0;
   1195   _info.unwind_info_size = 0;
   1196   _info.extra = sects.dso_base;
   1197   return true;
   1198 }
   1199 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
   1200 
   1201 
   1202 template <typename A, typename R>
   1203 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
   1204   pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
   1205 #if defined(_LIBUNWIND_ARM_EHABI)
   1206   // Remove the thumb bit so the IP represents the actual instruction address.
   1207   // This matches the behaviour of _Unwind_GetIP on arm.
   1208   pc &= (pint_t)~0x1;
   1209 #endif
   1210 
   1211   // If the last line of a function is a "throw" the compiler sometimes
   1212   // emits no instructions after the call to __cxa_throw.  This means
   1213   // the return address is actually the start of the next function.
   1214   // To disambiguate this, back up the pc when we know it is a return
   1215   // address.
   1216   if (isReturnAddress)
   1217     --pc;
   1218 
   1219   // Ask address space object to find unwind sections for this pc.
   1220   UnwindInfoSections sects;
   1221   if (_addressSpace.findUnwindSections(pc, sects)) {
   1222 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
   1223     // If there is a compact unwind encoding table, look there first.
   1224     if (sects.compact_unwind_section != 0) {
   1225       if (this->getInfoFromCompactEncodingSection(pc, sects)) {
   1226   #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
   1227         // Found info in table, done unless encoding says to use dwarf.
   1228         uint32_t dwarfOffset;
   1229         if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
   1230           if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
   1231             // found info in dwarf, done
   1232             return;
   1233           }
   1234         }
   1235   #endif
   1236         // If unwind table has entry, but entry says there is no unwind info,
   1237         // record that we have no unwind info.
   1238         if (_info.format == 0)
   1239           _unwindInfoMissing = true;
   1240         return;
   1241       }
   1242     }
   1243 #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
   1244 
   1245 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
   1246     // If there is dwarf unwind info, look there next.
   1247     if (sects.dwarf_section != 0) {
   1248       if (this->getInfoFromDwarfSection(pc, sects)) {
   1249         // found info in dwarf, done
   1250         return;
   1251       }
   1252     }
   1253 #endif
   1254 
   1255 #if defined(_LIBUNWIND_ARM_EHABI)
   1256     // If there is ARM EHABI unwind info, look there next.
   1257     if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
   1258       return;
   1259 #endif
   1260   }
   1261 
   1262 #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
   1263   // There is no static unwind info for this pc. Look to see if an FDE was
   1264   // dynamically registered for it.
   1265   pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc);
   1266   if (cachedFDE != 0) {
   1267     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
   1268     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
   1269     const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace,
   1270                                                 cachedFDE, &fdeInfo, &cieInfo);
   1271     if (msg == NULL) {
   1272       typename CFI_Parser<A>::PrologInfo prolog;
   1273       if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
   1274                                                                 pc, &prolog)) {
   1275         // save off parsed FDE info
   1276         _info.start_ip         = fdeInfo.pcStart;
   1277         _info.end_ip           = fdeInfo.pcEnd;
   1278         _info.lsda             = fdeInfo.lsda;
   1279         _info.handler          = cieInfo.personality;
   1280         _info.gp               = prolog.spExtraArgSize;
   1281                                   // Some frameless functions need SP
   1282                                   // altered when resuming in function.
   1283         _info.flags            = 0;
   1284         _info.format           = dwarfEncoding();
   1285         _info.unwind_info      = fdeInfo.fdeStart;
   1286         _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
   1287         _info.extra            = 0;
   1288         return;
   1289       }
   1290     }
   1291   }
   1292 
   1293   // Lastly, ask AddressSpace object about platform specific ways to locate
   1294   // other FDEs.
   1295   pint_t fde;
   1296   if (_addressSpace.findOtherFDE(pc, fde)) {
   1297     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
   1298     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
   1299     if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
   1300       // Double check this FDE is for a function that includes the pc.
   1301       if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) {
   1302         typename CFI_Parser<A>::PrologInfo prolog;
   1303         if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo,
   1304                                                 cieInfo, pc, &prolog)) {
   1305           // save off parsed FDE info
   1306           _info.start_ip         = fdeInfo.pcStart;
   1307           _info.end_ip           = fdeInfo.pcEnd;
   1308           _info.lsda             = fdeInfo.lsda;
   1309           _info.handler          = cieInfo.personality;
   1310           _info.gp               = prolog.spExtraArgSize;
   1311           _info.flags            = 0;
   1312           _info.format           = dwarfEncoding();
   1313           _info.unwind_info      = fdeInfo.fdeStart;
   1314           _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
   1315           _info.extra            = 0;
   1316           return;
   1317         }
   1318       }
   1319     }
   1320   }
   1321 #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
   1322 
   1323   // no unwind info, flag that we can't reliably unwind
   1324   _unwindInfoMissing = true;
   1325 }
   1326 
   1327 template <typename A, typename R>
   1328 int UnwindCursor<A, R>::step() {
   1329   // Bottom of stack is defined is when unwind info cannot be found.
   1330   if (_unwindInfoMissing)
   1331     return UNW_STEP_END;
   1332 
   1333   // Use unwinding info to modify register set as if function returned.
   1334   int result;
   1335 #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
   1336   result = this->stepWithCompactEncoding();
   1337 #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
   1338   result = this->stepWithDwarfFDE();
   1339 #elif defined(_LIBUNWIND_ARM_EHABI)
   1340   result = this->stepWithEHABI();
   1341 #else
   1342   #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
   1343               _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
   1344               _LIBUNWIND_ARM_EHABI
   1345 #endif
   1346 
   1347   // update info based on new PC
   1348   if (result == UNW_STEP_SUCCESS) {
   1349     this->setInfoBasedOnIPRegister(true);
   1350     if (_unwindInfoMissing)
   1351       return UNW_STEP_END;
   1352     if (_info.gp)
   1353       setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp);
   1354   }
   1355 
   1356   return result;
   1357 }
   1358 
   1359 template <typename A, typename R>
   1360 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
   1361   *info = _info;
   1362 }
   1363 
   1364 template <typename A, typename R>
   1365 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
   1366                                                            unw_word_t *offset) {
   1367   return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
   1368                                          buf, bufLen, offset);
   1369 }
   1370 
   1371 } // namespace libunwind
   1372 
   1373 #endif // __UNWINDCURSOR_HPP__
   1374