1 ================================================== 2 Kaleidoscope: Extending the Language: Control Flow 3 ================================================== 4 5 .. contents:: 6 :local: 7 8 Chapter 5 Introduction 9 ====================== 10 11 Welcome to Chapter 5 of the "`Implementing a language with 12 LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of 13 the simple Kaleidoscope language and included support for generating 14 LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as 15 presented, Kaleidoscope is mostly useless: it has no control flow other 16 than call and return. This means that you can't have conditional 17 branches in the code, significantly limiting its power. In this episode 18 of "build that compiler", we'll extend Kaleidoscope to have an 19 if/then/else expression plus a simple 'for' loop. 20 21 If/Then/Else 22 ============ 23 24 Extending Kaleidoscope to support if/then/else is quite straightforward. 25 It basically requires adding lexer support for this "new" concept to the 26 lexer, parser, AST, and LLVM code emitter. This example is nice, because 27 it shows how easy it is to "grow" a language over time, incrementally 28 extending it as new ideas are discovered. 29 30 Before we get going on "how" we add this extension, lets talk about 31 "what" we want. The basic idea is that we want to be able to write this 32 sort of thing: 33 34 :: 35 36 def fib(x) 37 if x < 3 then 38 1 39 else 40 fib(x-1)+fib(x-2); 41 42 In Kaleidoscope, every construct is an expression: there are no 43 statements. As such, the if/then/else expression needs to return a value 44 like any other. Since we're using a mostly functional form, we'll have 45 it evaluate its conditional, then return the 'then' or 'else' value 46 based on how the condition was resolved. This is very similar to the C 47 "?:" expression. 48 49 The semantics of the if/then/else expression is that it evaluates the 50 condition to a boolean equality value: 0.0 is considered to be false and 51 everything else is considered to be true. If the condition is true, the 52 first subexpression is evaluated and returned, if the condition is 53 false, the second subexpression is evaluated and returned. Since 54 Kaleidoscope allows side-effects, this behavior is important to nail 55 down. 56 57 Now that we know what we "want", lets break this down into its 58 constituent pieces. 59 60 Lexer Extensions for If/Then/Else 61 --------------------------------- 62 63 The lexer extensions are straightforward. First we add new variants for 64 the relevant tokens: 65 66 .. code-block:: ocaml 67 68 (* control *) 69 | If | Then | Else | For | In 70 71 Once we have that, we recognize the new keywords in the lexer. This is 72 pretty simple stuff: 73 74 .. code-block:: ocaml 75 76 ... 77 match Buffer.contents buffer with 78 | "def" -> [< 'Token.Def; stream >] 79 | "extern" -> [< 'Token.Extern; stream >] 80 | "if" -> [< 'Token.If; stream >] 81 | "then" -> [< 'Token.Then; stream >] 82 | "else" -> [< 'Token.Else; stream >] 83 | "for" -> [< 'Token.For; stream >] 84 | "in" -> [< 'Token.In; stream >] 85 | id -> [< 'Token.Ident id; stream >] 86 87 AST Extensions for If/Then/Else 88 ------------------------------- 89 90 To represent the new expression we add a new AST variant for it: 91 92 .. code-block:: ocaml 93 94 type expr = 95 ... 96 (* variant for if/then/else. *) 97 | If of expr * expr * expr 98 99 The AST variant just has pointers to the various subexpressions. 100 101 Parser Extensions for If/Then/Else 102 ---------------------------------- 103 104 Now that we have the relevant tokens coming from the lexer and we have 105 the AST node to build, our parsing logic is relatively straightforward. 106 First we define a new parsing function: 107 108 .. code-block:: ocaml 109 110 let rec parse_primary = parser 111 ... 112 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) 113 | [< 'Token.If; c=parse_expr; 114 'Token.Then ?? "expected 'then'"; t=parse_expr; 115 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> 116 Ast.If (c, t, e) 117 118 Next we hook it up as a primary expression: 119 120 .. code-block:: ocaml 121 122 let rec parse_primary = parser 123 ... 124 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) 125 | [< 'Token.If; c=parse_expr; 126 'Token.Then ?? "expected 'then'"; t=parse_expr; 127 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> 128 Ast.If (c, t, e) 129 130 LLVM IR for If/Then/Else 131 ------------------------ 132 133 Now that we have it parsing and building the AST, the final piece is 134 adding LLVM code generation support. This is the most interesting part 135 of the if/then/else example, because this is where it starts to 136 introduce new concepts. All of the code above has been thoroughly 137 described in previous chapters. 138 139 To motivate the code we want to produce, lets take a look at a simple 140 example. Consider: 141 142 :: 143 144 extern foo(); 145 extern bar(); 146 def baz(x) if x then foo() else bar(); 147 148 If you disable optimizations, the code you'll (soon) get from 149 Kaleidoscope looks like this: 150 151 .. code-block:: llvm 152 153 declare double @foo() 154 155 declare double @bar() 156 157 define double @baz(double %x) { 158 entry: 159 %ifcond = fcmp one double %x, 0.000000e+00 160 br i1 %ifcond, label %then, label %else 161 162 then: ; preds = %entry 163 %calltmp = call double @foo() 164 br label %ifcont 165 166 else: ; preds = %entry 167 %calltmp1 = call double @bar() 168 br label %ifcont 169 170 ifcont: ; preds = %else, %then 171 %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ] 172 ret double %iftmp 173 } 174 175 To visualize the control flow graph, you can use a nifty feature of the 176 LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM 177 IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a 178 window will pop up <../ProgrammersManual.html#viewing-graphs-while-debugging-code>`_ and you'll 179 see this graph: 180 181 .. figure:: LangImpl05-cfg.png 182 :align: center 183 :alt: Example CFG 184 185 Example CFG 186 187 Another way to get this is to call 188 "``Llvm_analysis.view_function_cfg f``" or 189 "``Llvm_analysis.view_function_cfg_only f``" (where ``f`` is a 190 "``Function``") either by inserting actual calls into the code and 191 recompiling or by calling these in the debugger. LLVM has many nice 192 features for visualizing various graphs. 193 194 Getting back to the generated code, it is fairly simple: the entry block 195 evaluates the conditional expression ("x" in our case here) and compares 196 the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered 197 and Not Equal"). Based on the result of this expression, the code jumps 198 to either the "then" or "else" blocks, which contain the expressions for 199 the true/false cases. 200 201 Once the then/else blocks are finished executing, they both branch back 202 to the 'ifcont' block to execute the code that happens after the 203 if/then/else. In this case the only thing left to do is to return to the 204 caller of the function. The question then becomes: how does the code 205 know which expression to return? 206 207 The answer to this question involves an important SSA operation: the 208 `Phi 209 operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. 210 If you're not familiar with SSA, `the wikipedia 211 article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_ 212 is a good introduction and there are various other introductions to it 213 available on your favorite search engine. The short version is that 214 "execution" of the Phi operation requires "remembering" which block 215 control came from. The Phi operation takes on the value corresponding to 216 the input control block. In this case, if control comes in from the 217 "then" block, it gets the value of "calltmp". If control comes from the 218 "else" block, it gets the value of "calltmp1". 219 220 At this point, you are probably starting to think "Oh no! This means my 221 simple and elegant front-end will have to start generating SSA form in 222 order to use LLVM!". Fortunately, this is not the case, and we strongly 223 advise *not* implementing an SSA construction algorithm in your 224 front-end unless there is an amazingly good reason to do so. In 225 practice, there are two sorts of values that float around in code 226 written for your average imperative programming language that might need 227 Phi nodes: 228 229 #. Code that involves user variables: ``x = 1; x = x + 1;`` 230 #. Values that are implicit in the structure of your AST, such as the 231 Phi node in this case. 232 233 In `Chapter 7 <OCamlLangImpl7.html>`_ of this tutorial ("mutable 234 variables"), we'll talk about #1 in depth. For now, just believe me that 235 you don't need SSA construction to handle this case. For #2, you have 236 the choice of using the techniques that we will describe for #1, or you 237 can insert Phi nodes directly, if convenient. In this case, it is really 238 really easy to generate the Phi node, so we choose to do it directly. 239 240 Okay, enough of the motivation and overview, lets generate code! 241 242 Code Generation for If/Then/Else 243 -------------------------------- 244 245 In order to generate code for this, we implement the ``Codegen`` method 246 for ``IfExprAST``: 247 248 .. code-block:: ocaml 249 250 let rec codegen_expr = function 251 ... 252 | Ast.If (cond, then_, else_) -> 253 let cond = codegen_expr cond in 254 255 (* Convert condition to a bool by comparing equal to 0.0 *) 256 let zero = const_float double_type 0.0 in 257 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in 258 259 This code is straightforward and similar to what we saw before. We emit 260 the expression for the condition, then compare that value to zero to get 261 a truth value as a 1-bit (bool) value. 262 263 .. code-block:: ocaml 264 265 (* Grab the first block so that we might later add the conditional branch 266 * to it at the end of the function. *) 267 let start_bb = insertion_block builder in 268 let the_function = block_parent start_bb in 269 270 let then_bb = append_block context "then" the_function in 271 position_at_end then_bb builder; 272 273 As opposed to the `C++ tutorial <LangImpl5.html>`_, we have to build our 274 basic blocks bottom up since we can't have dangling BasicBlocks. We 275 start off by saving a pointer to the first block (which might not be the 276 entry block), which we'll need to build a conditional branch later. We 277 do this by asking the ``builder`` for the current BasicBlock. The fourth 278 line gets the current Function object that is being built. It gets this 279 by the ``start_bb`` for its "parent" (the function it is currently 280 embedded into). 281 282 Once it has that, it creates one block. It is automatically appended 283 into the function's list of blocks. 284 285 .. code-block:: ocaml 286 287 (* Emit 'then' value. *) 288 position_at_end then_bb builder; 289 let then_val = codegen_expr then_ in 290 291 (* Codegen of 'then' can change the current block, update then_bb for the 292 * phi. We create a new name because one is used for the phi node, and the 293 * other is used for the conditional branch. *) 294 let new_then_bb = insertion_block builder in 295 296 We move the builder to start inserting into the "then" block. Strictly 297 speaking, this call moves the insertion point to be at the end of the 298 specified block. However, since the "then" block is empty, it also 299 starts out by inserting at the beginning of the block. :) 300 301 Once the insertion point is set, we recursively codegen the "then" 302 expression from the AST. 303 304 The final line here is quite subtle, but is very important. The basic 305 issue is that when we create the Phi node in the merge block, we need to 306 set up the block/value pairs that indicate how the Phi will work. 307 Importantly, the Phi node expects to have an entry for each predecessor 308 of the block in the CFG. Why then, are we getting the current block when 309 we just set it to ThenBB 5 lines above? The problem is that the "Then" 310 expression may actually itself change the block that the Builder is 311 emitting into if, for example, it contains a nested "if/then/else" 312 expression. Because calling Codegen recursively could arbitrarily change 313 the notion of the current block, we are required to get an up-to-date 314 value for code that will set up the Phi node. 315 316 .. code-block:: ocaml 317 318 (* Emit 'else' value. *) 319 let else_bb = append_block context "else" the_function in 320 position_at_end else_bb builder; 321 let else_val = codegen_expr else_ in 322 323 (* Codegen of 'else' can change the current block, update else_bb for the 324 * phi. *) 325 let new_else_bb = insertion_block builder in 326 327 Code generation for the 'else' block is basically identical to codegen 328 for the 'then' block. 329 330 .. code-block:: ocaml 331 332 (* Emit merge block. *) 333 let merge_bb = append_block context "ifcont" the_function in 334 position_at_end merge_bb builder; 335 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in 336 let phi = build_phi incoming "iftmp" builder in 337 338 The first two lines here are now familiar: the first adds the "merge" 339 block to the Function object. The second changes the insertion 340 point so that newly created code will go into the "merge" block. Once 341 that is done, we need to create the PHI node and set up the block/value 342 pairs for the PHI. 343 344 .. code-block:: ocaml 345 346 (* Return to the start block to add the conditional branch. *) 347 position_at_end start_bb builder; 348 ignore (build_cond_br cond_val then_bb else_bb builder); 349 350 Once the blocks are created, we can emit the conditional branch that 351 chooses between them. Note that creating new blocks does not implicitly 352 affect the IRBuilder, so it is still inserting into the block that the 353 condition went into. This is why we needed to save the "start" block. 354 355 .. code-block:: ocaml 356 357 (* Set a unconditional branch at the end of the 'then' block and the 358 * 'else' block to the 'merge' block. *) 359 position_at_end new_then_bb builder; ignore (build_br merge_bb builder); 360 position_at_end new_else_bb builder; ignore (build_br merge_bb builder); 361 362 (* Finally, set the builder to the end of the merge block. *) 363 position_at_end merge_bb builder; 364 365 phi 366 367 To finish off the blocks, we create an unconditional branch to the merge 368 block. One interesting (and very important) aspect of the LLVM IR is 369 that it `requires all basic blocks to be 370 "terminated" <../LangRef.html#functionstructure>`_ with a `control flow 371 instruction <../LangRef.html#terminators>`_ such as return or branch. 372 This means that all control flow, *including fall throughs* must be made 373 explicit in the LLVM IR. If you violate this rule, the verifier will 374 emit an error. 375 376 Finally, the CodeGen function returns the phi node as the value computed 377 by the if/then/else expression. In our example above, this returned 378 value will feed into the code for the top-level function, which will 379 create the return instruction. 380 381 Overall, we now have the ability to execute conditional code in 382 Kaleidoscope. With this extension, Kaleidoscope is a fairly complete 383 language that can calculate a wide variety of numeric functions. Next up 384 we'll add another useful expression that is familiar from non-functional 385 languages... 386 387 'for' Loop Expression 388 ===================== 389 390 Now that we know how to add basic control flow constructs to the 391 language, we have the tools to add more powerful things. Lets add 392 something more aggressive, a 'for' expression: 393 394 :: 395 396 extern putchard(char); 397 def printstar(n) 398 for i = 1, i < n, 1.0 in 399 putchard(42); # ascii 42 = '*' 400 401 # print 100 '*' characters 402 printstar(100); 403 404 This expression defines a new variable ("i" in this case) which iterates 405 from a starting value, while the condition ("i < n" in this case) is 406 true, incrementing by an optional step value ("1.0" in this case). If 407 the step value is omitted, it defaults to 1.0. While the loop is true, 408 it executes its body expression. Because we don't have anything better 409 to return, we'll just define the loop as always returning 0.0. In the 410 future when we have mutable variables, it will get more useful. 411 412 As before, lets talk about the changes that we need to Kaleidoscope to 413 support this. 414 415 Lexer Extensions for the 'for' Loop 416 ----------------------------------- 417 418 The lexer extensions are the same sort of thing as for if/then/else: 419 420 .. code-block:: ocaml 421 422 ... in Token.token ... 423 (* control *) 424 | If | Then | Else 425 | For | In 426 427 ... in Lexer.lex_ident... 428 match Buffer.contents buffer with 429 | "def" -> [< 'Token.Def; stream >] 430 | "extern" -> [< 'Token.Extern; stream >] 431 | "if" -> [< 'Token.If; stream >] 432 | "then" -> [< 'Token.Then; stream >] 433 | "else" -> [< 'Token.Else; stream >] 434 | "for" -> [< 'Token.For; stream >] 435 | "in" -> [< 'Token.In; stream >] 436 | id -> [< 'Token.Ident id; stream >] 437 438 AST Extensions for the 'for' Loop 439 --------------------------------- 440 441 The AST variant is just as simple. It basically boils down to capturing 442 the variable name and the constituent expressions in the node. 443 444 .. code-block:: ocaml 445 446 type expr = 447 ... 448 (* variant for for/in. *) 449 | For of string * expr * expr * expr option * expr 450 451 Parser Extensions for the 'for' Loop 452 ------------------------------------ 453 454 The parser code is also fairly standard. The only interesting thing here 455 is handling of the optional step value. The parser code handles it by 456 checking to see if the second comma is present. If not, it sets the step 457 value to null in the AST node: 458 459 .. code-block:: ocaml 460 461 let rec parse_primary = parser 462 ... 463 (* forexpr 464 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) 465 | [< 'Token.For; 466 'Token.Ident id ?? "expected identifier after for"; 467 'Token.Kwd '=' ?? "expected '=' after for"; 468 stream >] -> 469 begin parser 470 | [< 471 start=parse_expr; 472 'Token.Kwd ',' ?? "expected ',' after for"; 473 end_=parse_expr; 474 stream >] -> 475 let step = 476 begin parser 477 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step 478 | [< >] -> None 479 end stream 480 in 481 begin parser 482 | [< 'Token.In; body=parse_expr >] -> 483 Ast.For (id, start, end_, step, body) 484 | [< >] -> 485 raise (Stream.Error "expected 'in' after for") 486 end stream 487 | [< >] -> 488 raise (Stream.Error "expected '=' after for") 489 end stream 490 491 LLVM IR for the 'for' Loop 492 -------------------------- 493 494 Now we get to the good part: the LLVM IR we want to generate for this 495 thing. With the simple example above, we get this LLVM IR (note that 496 this dump is generated with optimizations disabled for clarity): 497 498 .. code-block:: llvm 499 500 declare double @putchard(double) 501 502 define double @printstar(double %n) { 503 entry: 504 ; initial value = 1.0 (inlined into phi) 505 br label %loop 506 507 loop: ; preds = %loop, %entry 508 %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ] 509 ; body 510 %calltmp = call double @putchard(double 4.200000e+01) 511 ; increment 512 %nextvar = fadd double %i, 1.000000e+00 513 514 ; termination test 515 %cmptmp = fcmp ult double %i, %n 516 %booltmp = uitofp i1 %cmptmp to double 517 %loopcond = fcmp one double %booltmp, 0.000000e+00 518 br i1 %loopcond, label %loop, label %afterloop 519 520 afterloop: ; preds = %loop 521 ; loop always returns 0.0 522 ret double 0.000000e+00 523 } 524 525 This loop contains all the same constructs we saw before: a phi node, 526 several expressions, and some basic blocks. Lets see how this fits 527 together. 528 529 Code Generation for the 'for' Loop 530 ---------------------------------- 531 532 The first part of Codegen is very simple: we just output the start 533 expression for the loop value: 534 535 .. code-block:: ocaml 536 537 let rec codegen_expr = function 538 ... 539 | Ast.For (var_name, start, end_, step, body) -> 540 (* Emit the start code first, without 'variable' in scope. *) 541 let start_val = codegen_expr start in 542 543 With this out of the way, the next step is to set up the LLVM basic 544 block for the start of the loop body. In the case above, the whole loop 545 body is one block, but remember that the body code itself could consist 546 of multiple blocks (e.g. if it contains an if/then/else or a for/in 547 expression). 548 549 .. code-block:: ocaml 550 551 (* Make the new basic block for the loop header, inserting after current 552 * block. *) 553 let preheader_bb = insertion_block builder in 554 let the_function = block_parent preheader_bb in 555 let loop_bb = append_block context "loop" the_function in 556 557 (* Insert an explicit fall through from the current block to the 558 * loop_bb. *) 559 ignore (build_br loop_bb builder); 560 561 This code is similar to what we saw for if/then/else. Because we will 562 need it to create the Phi node, we remember the block that falls through 563 into the loop. Once we have that, we create the actual block that starts 564 the loop and create an unconditional branch for the fall-through between 565 the two blocks. 566 567 .. code-block:: ocaml 568 569 (* Start insertion in loop_bb. *) 570 position_at_end loop_bb builder; 571 572 (* Start the PHI node with an entry for start. *) 573 let variable = build_phi [(start_val, preheader_bb)] var_name builder in 574 575 Now that the "preheader" for the loop is set up, we switch to emitting 576 code for the loop body. To begin with, we move the insertion point and 577 create the PHI node for the loop induction variable. Since we already 578 know the incoming value for the starting value, we add it to the Phi 579 node. Note that the Phi will eventually get a second value for the 580 backedge, but we can't set it up yet (because it doesn't exist!). 581 582 .. code-block:: ocaml 583 584 (* Within the loop, the variable is defined equal to the PHI node. If it 585 * shadows an existing variable, we have to restore it, so save it 586 * now. *) 587 let old_val = 588 try Some (Hashtbl.find named_values var_name) with Not_found -> None 589 in 590 Hashtbl.add named_values var_name variable; 591 592 (* Emit the body of the loop. This, like any other expr, can change the 593 * current BB. Note that we ignore the value computed by the body, but 594 * don't allow an error *) 595 ignore (codegen_expr body); 596 597 Now the code starts to get more interesting. Our 'for' loop introduces a 598 new variable to the symbol table. This means that our symbol table can 599 now contain either function arguments or loop variables. To handle this, 600 before we codegen the body of the loop, we add the loop variable as the 601 current value for its name. Note that it is possible that there is a 602 variable of the same name in the outer scope. It would be easy to make 603 this an error (emit an error and return null if there is already an 604 entry for VarName) but we choose to allow shadowing of variables. In 605 order to handle this correctly, we remember the Value that we are 606 potentially shadowing in ``old_val`` (which will be None if there is no 607 shadowed variable). 608 609 Once the loop variable is set into the symbol table, the code 610 recursively codegen's the body. This allows the body to use the loop 611 variable: any references to it will naturally find it in the symbol 612 table. 613 614 .. code-block:: ocaml 615 616 (* Emit the step value. *) 617 let step_val = 618 match step with 619 | Some step -> codegen_expr step 620 (* If not specified, use 1.0. *) 621 | None -> const_float double_type 1.0 622 in 623 624 let next_var = build_add variable step_val "nextvar" builder in 625 626 Now that the body is emitted, we compute the next value of the iteration 627 variable by adding the step value, or 1.0 if it isn't present. 628 '``next_var``' will be the value of the loop variable on the next 629 iteration of the loop. 630 631 .. code-block:: ocaml 632 633 (* Compute the end condition. *) 634 let end_cond = codegen_expr end_ in 635 636 (* Convert condition to a bool by comparing equal to 0.0. *) 637 let zero = const_float double_type 0.0 in 638 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in 639 640 Finally, we evaluate the exit value of the loop, to determine whether 641 the loop should exit. This mirrors the condition evaluation for the 642 if/then/else statement. 643 644 .. code-block:: ocaml 645 646 (* Create the "after loop" block and insert it. *) 647 let loop_end_bb = insertion_block builder in 648 let after_bb = append_block context "afterloop" the_function in 649 650 (* Insert the conditional branch into the end of loop_end_bb. *) 651 ignore (build_cond_br end_cond loop_bb after_bb builder); 652 653 (* Any new code will be inserted in after_bb. *) 654 position_at_end after_bb builder; 655 656 With the code for the body of the loop complete, we just need to finish 657 up the control flow for it. This code remembers the end block (for the 658 phi node), then creates the block for the loop exit ("afterloop"). Based 659 on the value of the exit condition, it creates a conditional branch that 660 chooses between executing the loop again and exiting the loop. Any 661 future code is emitted in the "afterloop" block, so it sets the 662 insertion position to it. 663 664 .. code-block:: ocaml 665 666 (* Add a new entry to the PHI node for the backedge. *) 667 add_incoming (next_var, loop_end_bb) variable; 668 669 (* Restore the unshadowed variable. *) 670 begin match old_val with 671 | Some old_val -> Hashtbl.add named_values var_name old_val 672 | None -> () 673 end; 674 675 (* for expr always returns 0.0. *) 676 const_null double_type 677 678 The final code handles various cleanups: now that we have the 679 "``next_var``" value, we can add the incoming value to the loop PHI 680 node. After that, we remove the loop variable from the symbol table, so 681 that it isn't in scope after the for loop. Finally, code generation of 682 the for loop always returns 0.0, so that is what we return from 683 ``Codegen.codegen_expr``. 684 685 With this, we conclude the "adding control flow to Kaleidoscope" chapter 686 of the tutorial. In this chapter we added two control flow constructs, 687 and used them to motivate a couple of aspects of the LLVM IR that are 688 important for front-end implementors to know. In the next chapter of our 689 saga, we will get a bit crazier and add `user-defined 690 operators <OCamlLangImpl6.html>`_ to our poor innocent language. 691 692 Full Code Listing 693 ================= 694 695 Here is the complete code listing for our running example, enhanced with 696 the if/then/else and for expressions.. To build this example, use: 697 698 .. code-block:: bash 699 700 # Compile 701 ocamlbuild toy.byte 702 # Run 703 ./toy.byte 704 705 Here is the code: 706 707 \_tags: 708 :: 709 710 <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) 711 <*.{byte,native}>: g++, use_llvm, use_llvm_analysis 712 <*.{byte,native}>: use_llvm_executionengine, use_llvm_target 713 <*.{byte,native}>: use_llvm_scalar_opts, use_bindings 714 715 myocamlbuild.ml: 716 .. code-block:: ocaml 717 718 open Ocamlbuild_plugin;; 719 720 ocaml_lib ~extern:true "llvm";; 721 ocaml_lib ~extern:true "llvm_analysis";; 722 ocaml_lib ~extern:true "llvm_executionengine";; 723 ocaml_lib ~extern:true "llvm_target";; 724 ocaml_lib ~extern:true "llvm_scalar_opts";; 725 726 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; 727 dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; 728 729 token.ml: 730 .. code-block:: ocaml 731 732 (*===----------------------------------------------------------------------=== 733 * Lexer Tokens 734 *===----------------------------------------------------------------------===*) 735 736 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of 737 * these others for known things. *) 738 type token = 739 (* commands *) 740 | Def | Extern 741 742 (* primary *) 743 | Ident of string | Number of float 744 745 (* unknown *) 746 | Kwd of char 747 748 (* control *) 749 | If | Then | Else 750 | For | In 751 752 lexer.ml: 753 .. code-block:: ocaml 754 755 (*===----------------------------------------------------------------------=== 756 * Lexer 757 *===----------------------------------------------------------------------===*) 758 759 let rec lex = parser 760 (* Skip any whitespace. *) 761 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream 762 763 (* identifier: [a-zA-Z][a-zA-Z0-9] *) 764 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> 765 let buffer = Buffer.create 1 in 766 Buffer.add_char buffer c; 767 lex_ident buffer stream 768 769 (* number: [0-9.]+ *) 770 | [< ' ('0' .. '9' as c); stream >] -> 771 let buffer = Buffer.create 1 in 772 Buffer.add_char buffer c; 773 lex_number buffer stream 774 775 (* Comment until end of line. *) 776 | [< ' ('#'); stream >] -> 777 lex_comment stream 778 779 (* Otherwise, just return the character as its ascii value. *) 780 | [< 'c; stream >] -> 781 [< 'Token.Kwd c; lex stream >] 782 783 (* end of stream. *) 784 | [< >] -> [< >] 785 786 and lex_number buffer = parser 787 | [< ' ('0' .. '9' | '.' as c); stream >] -> 788 Buffer.add_char buffer c; 789 lex_number buffer stream 790 | [< stream=lex >] -> 791 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] 792 793 and lex_ident buffer = parser 794 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> 795 Buffer.add_char buffer c; 796 lex_ident buffer stream 797 | [< stream=lex >] -> 798 match Buffer.contents buffer with 799 | "def" -> [< 'Token.Def; stream >] 800 | "extern" -> [< 'Token.Extern; stream >] 801 | "if" -> [< 'Token.If; stream >] 802 | "then" -> [< 'Token.Then; stream >] 803 | "else" -> [< 'Token.Else; stream >] 804 | "for" -> [< 'Token.For; stream >] 805 | "in" -> [< 'Token.In; stream >] 806 | id -> [< 'Token.Ident id; stream >] 807 808 and lex_comment = parser 809 | [< ' ('\n'); stream=lex >] -> stream 810 | [< 'c; e=lex_comment >] -> e 811 | [< >] -> [< >] 812 813 ast.ml: 814 .. code-block:: ocaml 815 816 (*===----------------------------------------------------------------------=== 817 * Abstract Syntax Tree (aka Parse Tree) 818 *===----------------------------------------------------------------------===*) 819 820 (* expr - Base type for all expression nodes. *) 821 type expr = 822 (* variant for numeric literals like "1.0". *) 823 | Number of float 824 825 (* variant for referencing a variable, like "a". *) 826 | Variable of string 827 828 (* variant for a binary operator. *) 829 | Binary of char * expr * expr 830 831 (* variant for function calls. *) 832 | Call of string * expr array 833 834 (* variant for if/then/else. *) 835 | If of expr * expr * expr 836 837 (* variant for for/in. *) 838 | For of string * expr * expr * expr option * expr 839 840 (* proto - This type represents the "prototype" for a function, which captures 841 * its name, and its argument names (thus implicitly the number of arguments the 842 * function takes). *) 843 type proto = Prototype of string * string array 844 845 (* func - This type represents a function definition itself. *) 846 type func = Function of proto * expr 847 848 parser.ml: 849 .. code-block:: ocaml 850 851 (*===---------------------------------------------------------------------=== 852 * Parser 853 *===---------------------------------------------------------------------===*) 854 855 (* binop_precedence - This holds the precedence for each binary operator that is 856 * defined *) 857 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 858 859 (* precedence - Get the precedence of the pending binary operator token. *) 860 let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 861 862 (* primary 863 * ::= identifier 864 * ::= numberexpr 865 * ::= parenexpr 866 * ::= ifexpr 867 * ::= forexpr *) 868 let rec parse_primary = parser 869 (* numberexpr ::= number *) 870 | [< 'Token.Number n >] -> Ast.Number n 871 872 (* parenexpr ::= '(' expression ')' *) 873 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e 874 875 (* identifierexpr 876 * ::= identifier 877 * ::= identifier '(' argumentexpr ')' *) 878 | [< 'Token.Ident id; stream >] -> 879 let rec parse_args accumulator = parser 880 | [< e=parse_expr; stream >] -> 881 begin parser 882 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e 883 | [< >] -> e :: accumulator 884 end stream 885 | [< >] -> accumulator 886 in 887 let rec parse_ident id = parser 888 (* Call. *) 889 | [< 'Token.Kwd '('; 890 args=parse_args []; 891 'Token.Kwd ')' ?? "expected ')'">] -> 892 Ast.Call (id, Array.of_list (List.rev args)) 893 894 (* Simple variable ref. *) 895 | [< >] -> Ast.Variable id 896 in 897 parse_ident id stream 898 899 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) 900 | [< 'Token.If; c=parse_expr; 901 'Token.Then ?? "expected 'then'"; t=parse_expr; 902 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> 903 Ast.If (c, t, e) 904 905 (* forexpr 906 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) 907 | [< 'Token.For; 908 'Token.Ident id ?? "expected identifier after for"; 909 'Token.Kwd '=' ?? "expected '=' after for"; 910 stream >] -> 911 begin parser 912 | [< 913 start=parse_expr; 914 'Token.Kwd ',' ?? "expected ',' after for"; 915 end_=parse_expr; 916 stream >] -> 917 let step = 918 begin parser 919 | [< 'Token.Kwd ','; step=parse_expr >] -> Some step 920 | [< >] -> None 921 end stream 922 in 923 begin parser 924 | [< 'Token.In; body=parse_expr >] -> 925 Ast.For (id, start, end_, step, body) 926 | [< >] -> 927 raise (Stream.Error "expected 'in' after for") 928 end stream 929 | [< >] -> 930 raise (Stream.Error "expected '=' after for") 931 end stream 932 933 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") 934 935 (* binoprhs 936 * ::= ('+' primary)* *) 937 and parse_bin_rhs expr_prec lhs stream = 938 match Stream.peek stream with 939 (* If this is a binop, find its precedence. *) 940 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> 941 let token_prec = precedence c in 942 943 (* If this is a binop that binds at least as tightly as the current binop, 944 * consume it, otherwise we are done. *) 945 if token_prec < expr_prec then lhs else begin 946 (* Eat the binop. *) 947 Stream.junk stream; 948 949 (* Parse the primary expression after the binary operator. *) 950 let rhs = parse_primary stream in 951 952 (* Okay, we know this is a binop. *) 953 let rhs = 954 match Stream.peek stream with 955 | Some (Token.Kwd c2) -> 956 (* If BinOp binds less tightly with rhs than the operator after 957 * rhs, let the pending operator take rhs as its lhs. *) 958 let next_prec = precedence c2 in 959 if token_prec < next_prec 960 then parse_bin_rhs (token_prec + 1) rhs stream 961 else rhs 962 | _ -> rhs 963 in 964 965 (* Merge lhs/rhs. *) 966 let lhs = Ast.Binary (c, lhs, rhs) in 967 parse_bin_rhs expr_prec lhs stream 968 end 969 | _ -> lhs 970 971 (* expression 972 * ::= primary binoprhs *) 973 and parse_expr = parser 974 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream 975 976 (* prototype 977 * ::= id '(' id* ')' *) 978 let parse_prototype = 979 let rec parse_args accumulator = parser 980 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e 981 | [< >] -> accumulator 982 in 983 984 parser 985 | [< 'Token.Ident id; 986 'Token.Kwd '(' ?? "expected '(' in prototype"; 987 args=parse_args []; 988 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> 989 (* success. *) 990 Ast.Prototype (id, Array.of_list (List.rev args)) 991 992 | [< >] -> 993 raise (Stream.Error "expected function name in prototype") 994 995 (* definition ::= 'def' prototype expression *) 996 let parse_definition = parser 997 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> 998 Ast.Function (p, e) 999 1000 (* toplevelexpr ::= expression *) 1001 let parse_toplevel = parser 1002 | [< e=parse_expr >] -> 1003 (* Make an anonymous proto. *) 1004 Ast.Function (Ast.Prototype ("", [||]), e) 1005 1006 (* external ::= 'extern' prototype *) 1007 let parse_extern = parser 1008 | [< 'Token.Extern; e=parse_prototype >] -> e 1009 1010 codegen.ml: 1011 .. code-block:: ocaml 1012 1013 (*===----------------------------------------------------------------------=== 1014 * Code Generation 1015 *===----------------------------------------------------------------------===*) 1016 1017 open Llvm 1018 1019 exception Error of string 1020 1021 let context = global_context () 1022 let the_module = create_module context "my cool jit" 1023 let builder = builder context 1024 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 1025 let double_type = double_type context 1026 1027 let rec codegen_expr = function 1028 | Ast.Number n -> const_float double_type n 1029 | Ast.Variable name -> 1030 (try Hashtbl.find named_values name with 1031 | Not_found -> raise (Error "unknown variable name")) 1032 | Ast.Binary (op, lhs, rhs) -> 1033 let lhs_val = codegen_expr lhs in 1034 let rhs_val = codegen_expr rhs in 1035 begin 1036 match op with 1037 | '+' -> build_add lhs_val rhs_val "addtmp" builder 1038 | '-' -> build_sub lhs_val rhs_val "subtmp" builder 1039 | '*' -> build_mul lhs_val rhs_val "multmp" builder 1040 | '<' -> 1041 (* Convert bool 0/1 to double 0.0 or 1.0 *) 1042 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in 1043 build_uitofp i double_type "booltmp" builder 1044 | _ -> raise (Error "invalid binary operator") 1045 end 1046 | Ast.Call (callee, args) -> 1047 (* Look up the name in the module table. *) 1048 let callee = 1049 match lookup_function callee the_module with 1050 | Some callee -> callee 1051 | None -> raise (Error "unknown function referenced") 1052 in 1053 let params = params callee in 1054 1055 (* If argument mismatch error. *) 1056 if Array.length params == Array.length args then () else 1057 raise (Error "incorrect # arguments passed"); 1058 let args = Array.map codegen_expr args in 1059 build_call callee args "calltmp" builder 1060 | Ast.If (cond, then_, else_) -> 1061 let cond = codegen_expr cond in 1062 1063 (* Convert condition to a bool by comparing equal to 0.0 *) 1064 let zero = const_float double_type 0.0 in 1065 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in 1066 1067 (* Grab the first block so that we might later add the conditional branch 1068 * to it at the end of the function. *) 1069 let start_bb = insertion_block builder in 1070 let the_function = block_parent start_bb in 1071 1072 let then_bb = append_block context "then" the_function in 1073 1074 (* Emit 'then' value. *) 1075 position_at_end then_bb builder; 1076 let then_val = codegen_expr then_ in 1077 1078 (* Codegen of 'then' can change the current block, update then_bb for the 1079 * phi. We create a new name because one is used for the phi node, and the 1080 * other is used for the conditional branch. *) 1081 let new_then_bb = insertion_block builder in 1082 1083 (* Emit 'else' value. *) 1084 let else_bb = append_block context "else" the_function in 1085 position_at_end else_bb builder; 1086 let else_val = codegen_expr else_ in 1087 1088 (* Codegen of 'else' can change the current block, update else_bb for the 1089 * phi. *) 1090 let new_else_bb = insertion_block builder in 1091 1092 (* Emit merge block. *) 1093 let merge_bb = append_block context "ifcont" the_function in 1094 position_at_end merge_bb builder; 1095 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in 1096 let phi = build_phi incoming "iftmp" builder in 1097 1098 (* Return to the start block to add the conditional branch. *) 1099 position_at_end start_bb builder; 1100 ignore (build_cond_br cond_val then_bb else_bb builder); 1101 1102 (* Set a unconditional branch at the end of the 'then' block and the 1103 * 'else' block to the 'merge' block. *) 1104 position_at_end new_then_bb builder; ignore (build_br merge_bb builder); 1105 position_at_end new_else_bb builder; ignore (build_br merge_bb builder); 1106 1107 (* Finally, set the builder to the end of the merge block. *) 1108 position_at_end merge_bb builder; 1109 1110 phi 1111 | Ast.For (var_name, start, end_, step, body) -> 1112 (* Emit the start code first, without 'variable' in scope. *) 1113 let start_val = codegen_expr start in 1114 1115 (* Make the new basic block for the loop header, inserting after current 1116 * block. *) 1117 let preheader_bb = insertion_block builder in 1118 let the_function = block_parent preheader_bb in 1119 let loop_bb = append_block context "loop" the_function in 1120 1121 (* Insert an explicit fall through from the current block to the 1122 * loop_bb. *) 1123 ignore (build_br loop_bb builder); 1124 1125 (* Start insertion in loop_bb. *) 1126 position_at_end loop_bb builder; 1127 1128 (* Start the PHI node with an entry for start. *) 1129 let variable = build_phi [(start_val, preheader_bb)] var_name builder in 1130 1131 (* Within the loop, the variable is defined equal to the PHI node. If it 1132 * shadows an existing variable, we have to restore it, so save it 1133 * now. *) 1134 let old_val = 1135 try Some (Hashtbl.find named_values var_name) with Not_found -> None 1136 in 1137 Hashtbl.add named_values var_name variable; 1138 1139 (* Emit the body of the loop. This, like any other expr, can change the 1140 * current BB. Note that we ignore the value computed by the body, but 1141 * don't allow an error *) 1142 ignore (codegen_expr body); 1143 1144 (* Emit the step value. *) 1145 let step_val = 1146 match step with 1147 | Some step -> codegen_expr step 1148 (* If not specified, use 1.0. *) 1149 | None -> const_float double_type 1.0 1150 in 1151 1152 let next_var = build_add variable step_val "nextvar" builder in 1153 1154 (* Compute the end condition. *) 1155 let end_cond = codegen_expr end_ in 1156 1157 (* Convert condition to a bool by comparing equal to 0.0. *) 1158 let zero = const_float double_type 0.0 in 1159 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in 1160 1161 (* Create the "after loop" block and insert it. *) 1162 let loop_end_bb = insertion_block builder in 1163 let after_bb = append_block context "afterloop" the_function in 1164 1165 (* Insert the conditional branch into the end of loop_end_bb. *) 1166 ignore (build_cond_br end_cond loop_bb after_bb builder); 1167 1168 (* Any new code will be inserted in after_bb. *) 1169 position_at_end after_bb builder; 1170 1171 (* Add a new entry to the PHI node for the backedge. *) 1172 add_incoming (next_var, loop_end_bb) variable; 1173 1174 (* Restore the unshadowed variable. *) 1175 begin match old_val with 1176 | Some old_val -> Hashtbl.add named_values var_name old_val 1177 | None -> () 1178 end; 1179 1180 (* for expr always returns 0.0. *) 1181 const_null double_type 1182 1183 let codegen_proto = function 1184 | Ast.Prototype (name, args) -> 1185 (* Make the function type: double(double,double) etc. *) 1186 let doubles = Array.make (Array.length args) double_type in 1187 let ft = function_type double_type doubles in 1188 let f = 1189 match lookup_function name the_module with 1190 | None -> declare_function name ft the_module 1191 1192 (* If 'f' conflicted, there was already something named 'name'. If it 1193 * has a body, don't allow redefinition or reextern. *) 1194 | Some f -> 1195 (* If 'f' already has a body, reject this. *) 1196 if block_begin f <> At_end f then 1197 raise (Error "redefinition of function"); 1198 1199 (* If 'f' took a different number of arguments, reject. *) 1200 if element_type (type_of f) <> ft then 1201 raise (Error "redefinition of function with different # args"); 1202 f 1203 in 1204 1205 (* Set names for all arguments. *) 1206 Array.iteri (fun i a -> 1207 let n = args.(i) in 1208 set_value_name n a; 1209 Hashtbl.add named_values n a; 1210 ) (params f); 1211 f 1212 1213 let codegen_func the_fpm = function 1214 | Ast.Function (proto, body) -> 1215 Hashtbl.clear named_values; 1216 let the_function = codegen_proto proto in 1217 1218 (* Create a new basic block to start insertion into. *) 1219 let bb = append_block context "entry" the_function in 1220 position_at_end bb builder; 1221 1222 try 1223 let ret_val = codegen_expr body in 1224 1225 (* Finish off the function. *) 1226 let _ = build_ret ret_val builder in 1227 1228 (* Validate the generated code, checking for consistency. *) 1229 Llvm_analysis.assert_valid_function the_function; 1230 1231 (* Optimize the function. *) 1232 let _ = PassManager.run_function the_function the_fpm in 1233 1234 the_function 1235 with e -> 1236 delete_function the_function; 1237 raise e 1238 1239 toplevel.ml: 1240 .. code-block:: ocaml 1241 1242 (*===----------------------------------------------------------------------=== 1243 * Top-Level parsing and JIT Driver 1244 *===----------------------------------------------------------------------===*) 1245 1246 open Llvm 1247 open Llvm_executionengine 1248 1249 (* top ::= definition | external | expression | ';' *) 1250 let rec main_loop the_fpm the_execution_engine stream = 1251 match Stream.peek stream with 1252 | None -> () 1253 1254 (* ignore top-level semicolons. *) 1255 | Some (Token.Kwd ';') -> 1256 Stream.junk stream; 1257 main_loop the_fpm the_execution_engine stream 1258 1259 | Some token -> 1260 begin 1261 try match token with 1262 | Token.Def -> 1263 let e = Parser.parse_definition stream in 1264 print_endline "parsed a function definition."; 1265 dump_value (Codegen.codegen_func the_fpm e); 1266 | Token.Extern -> 1267 let e = Parser.parse_extern stream in 1268 print_endline "parsed an extern."; 1269 dump_value (Codegen.codegen_proto e); 1270 | _ -> 1271 (* Evaluate a top-level expression into an anonymous function. *) 1272 let e = Parser.parse_toplevel stream in 1273 print_endline "parsed a top-level expr"; 1274 let the_function = Codegen.codegen_func the_fpm e in 1275 dump_value the_function; 1276 1277 (* JIT the function, returning a function pointer. *) 1278 let result = ExecutionEngine.run_function the_function [||] 1279 the_execution_engine in 1280 1281 print_string "Evaluated to "; 1282 print_float (GenericValue.as_float Codegen.double_type result); 1283 print_newline (); 1284 with Stream.Error s | Codegen.Error s -> 1285 (* Skip token for error recovery. *) 1286 Stream.junk stream; 1287 print_endline s; 1288 end; 1289 print_string "ready> "; flush stdout; 1290 main_loop the_fpm the_execution_engine stream 1291 1292 toy.ml: 1293 .. code-block:: ocaml 1294 1295 (*===----------------------------------------------------------------------=== 1296 * Main driver code. 1297 *===----------------------------------------------------------------------===*) 1298 1299 open Llvm 1300 open Llvm_executionengine 1301 open Llvm_target 1302 open Llvm_scalar_opts 1303 1304 let main () = 1305 ignore (initialize_native_target ()); 1306 1307 (* Install standard binary operators. 1308 * 1 is the lowest precedence. *) 1309 Hashtbl.add Parser.binop_precedence '<' 10; 1310 Hashtbl.add Parser.binop_precedence '+' 20; 1311 Hashtbl.add Parser.binop_precedence '-' 20; 1312 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) 1313 1314 (* Prime the first token. *) 1315 print_string "ready> "; flush stdout; 1316 let stream = Lexer.lex (Stream.of_channel stdin) in 1317 1318 (* Create the JIT. *) 1319 let the_execution_engine = ExecutionEngine.create Codegen.the_module in 1320 let the_fpm = PassManager.create_function Codegen.the_module in 1321 1322 (* Set up the optimizer pipeline. Start with registering info about how the 1323 * target lays out data structures. *) 1324 DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; 1325 1326 (* Do simple "peephole" optimizations and bit-twiddling optzn. *) 1327 add_instruction_combination the_fpm; 1328 1329 (* reassociate expressions. *) 1330 add_reassociation the_fpm; 1331 1332 (* Eliminate Common SubExpressions. *) 1333 add_gvn the_fpm; 1334 1335 (* Simplify the control flow graph (deleting unreachable blocks, etc). *) 1336 add_cfg_simplification the_fpm; 1337 1338 ignore (PassManager.initialize the_fpm); 1339 1340 (* Run the main "interpreter loop" now. *) 1341 Toplevel.main_loop the_fpm the_execution_engine stream; 1342 1343 (* Print out all the generated code. *) 1344 dump_module Codegen.the_module 1345 ;; 1346 1347 main () 1348 1349 bindings.c 1350 .. code-block:: c 1351 1352 #include <stdio.h> 1353 1354 /* putchard - putchar that takes a double and returns 0. */ 1355 extern double putchard(double X) { 1356 putchar((char)X); 1357 return 0; 1358 } 1359 1360 `Next: Extending the language: user-defined 1361 operators <OCamlLangImpl6.html>`_ 1362 1363