Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #include "llvm/Analysis/ScalarEvolution.h"
     62 #include "llvm/ADT/Optional.h"
     63 #include "llvm/ADT/STLExtras.h"
     64 #include "llvm/ADT/SmallPtrSet.h"
     65 #include "llvm/ADT/Statistic.h"
     66 #include "llvm/Analysis/AssumptionCache.h"
     67 #include "llvm/Analysis/ConstantFolding.h"
     68 #include "llvm/Analysis/InstructionSimplify.h"
     69 #include "llvm/Analysis/LoopInfo.h"
     70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     71 #include "llvm/Analysis/TargetLibraryInfo.h"
     72 #include "llvm/Analysis/ValueTracking.h"
     73 #include "llvm/IR/ConstantRange.h"
     74 #include "llvm/IR/Constants.h"
     75 #include "llvm/IR/DataLayout.h"
     76 #include "llvm/IR/DerivedTypes.h"
     77 #include "llvm/IR/Dominators.h"
     78 #include "llvm/IR/GetElementPtrTypeIterator.h"
     79 #include "llvm/IR/GlobalAlias.h"
     80 #include "llvm/IR/GlobalVariable.h"
     81 #include "llvm/IR/InstIterator.h"
     82 #include "llvm/IR/Instructions.h"
     83 #include "llvm/IR/LLVMContext.h"
     84 #include "llvm/IR/Metadata.h"
     85 #include "llvm/IR/Operator.h"
     86 #include "llvm/IR/PatternMatch.h"
     87 #include "llvm/Support/CommandLine.h"
     88 #include "llvm/Support/Debug.h"
     89 #include "llvm/Support/ErrorHandling.h"
     90 #include "llvm/Support/MathExtras.h"
     91 #include "llvm/Support/raw_ostream.h"
     92 #include "llvm/Support/SaveAndRestore.h"
     93 #include <algorithm>
     94 using namespace llvm;
     95 
     96 #define DEBUG_TYPE "scalar-evolution"
     97 
     98 STATISTIC(NumArrayLenItCounts,
     99           "Number of trip counts computed with array length");
    100 STATISTIC(NumTripCountsComputed,
    101           "Number of loops with predictable loop counts");
    102 STATISTIC(NumTripCountsNotComputed,
    103           "Number of loops without predictable loop counts");
    104 STATISTIC(NumBruteForceTripCountsComputed,
    105           "Number of loops with trip counts computed by force");
    106 
    107 static cl::opt<unsigned>
    108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    109                         cl::desc("Maximum number of iterations SCEV will "
    110                                  "symbolically execute a constant "
    111                                  "derived loop"),
    112                         cl::init(100));
    113 
    114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
    115 static cl::opt<bool>
    116 VerifySCEV("verify-scev",
    117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
    118 static cl::opt<bool>
    119     VerifySCEVMap("verify-scev-maps",
    120                   cl::desc("Verify no dangling value in ScalarEvolution's "
    121                            "ExprValueMap (slow)"));
    122 
    123 //===----------------------------------------------------------------------===//
    124 //                           SCEV class definitions
    125 //===----------------------------------------------------------------------===//
    126 
    127 //===----------------------------------------------------------------------===//
    128 // Implementation of the SCEV class.
    129 //
    130 
    131 LLVM_DUMP_METHOD
    132 void SCEV::dump() const {
    133   print(dbgs());
    134   dbgs() << '\n';
    135 }
    136 
    137 void SCEV::print(raw_ostream &OS) const {
    138   switch (static_cast<SCEVTypes>(getSCEVType())) {
    139   case scConstant:
    140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
    141     return;
    142   case scTruncate: {
    143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    144     const SCEV *Op = Trunc->getOperand();
    145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    146        << *Trunc->getType() << ")";
    147     return;
    148   }
    149   case scZeroExtend: {
    150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    151     const SCEV *Op = ZExt->getOperand();
    152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    153        << *ZExt->getType() << ")";
    154     return;
    155   }
    156   case scSignExtend: {
    157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    158     const SCEV *Op = SExt->getOperand();
    159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    160        << *SExt->getType() << ")";
    161     return;
    162   }
    163   case scAddRecExpr: {
    164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    165     OS << "{" << *AR->getOperand(0);
    166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    167       OS << ",+," << *AR->getOperand(i);
    168     OS << "}<";
    169     if (AR->hasNoUnsignedWrap())
    170       OS << "nuw><";
    171     if (AR->hasNoSignedWrap())
    172       OS << "nsw><";
    173     if (AR->hasNoSelfWrap() &&
    174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    175       OS << "nw><";
    176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
    177     OS << ">";
    178     return;
    179   }
    180   case scAddExpr:
    181   case scMulExpr:
    182   case scUMaxExpr:
    183   case scSMaxExpr: {
    184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    185     const char *OpStr = nullptr;
    186     switch (NAry->getSCEVType()) {
    187     case scAddExpr: OpStr = " + "; break;
    188     case scMulExpr: OpStr = " * "; break;
    189     case scUMaxExpr: OpStr = " umax "; break;
    190     case scSMaxExpr: OpStr = " smax "; break;
    191     }
    192     OS << "(";
    193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    194          I != E; ++I) {
    195       OS << **I;
    196       if (std::next(I) != E)
    197         OS << OpStr;
    198     }
    199     OS << ")";
    200     switch (NAry->getSCEVType()) {
    201     case scAddExpr:
    202     case scMulExpr:
    203       if (NAry->hasNoUnsignedWrap())
    204         OS << "<nuw>";
    205       if (NAry->hasNoSignedWrap())
    206         OS << "<nsw>";
    207     }
    208     return;
    209   }
    210   case scUDivExpr: {
    211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    213     return;
    214   }
    215   case scUnknown: {
    216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    217     Type *AllocTy;
    218     if (U->isSizeOf(AllocTy)) {
    219       OS << "sizeof(" << *AllocTy << ")";
    220       return;
    221     }
    222     if (U->isAlignOf(AllocTy)) {
    223       OS << "alignof(" << *AllocTy << ")";
    224       return;
    225     }
    226 
    227     Type *CTy;
    228     Constant *FieldNo;
    229     if (U->isOffsetOf(CTy, FieldNo)) {
    230       OS << "offsetof(" << *CTy << ", ";
    231       FieldNo->printAsOperand(OS, false);
    232       OS << ")";
    233       return;
    234     }
    235 
    236     // Otherwise just print it normally.
    237     U->getValue()->printAsOperand(OS, false);
    238     return;
    239   }
    240   case scCouldNotCompute:
    241     OS << "***COULDNOTCOMPUTE***";
    242     return;
    243   }
    244   llvm_unreachable("Unknown SCEV kind!");
    245 }
    246 
    247 Type *SCEV::getType() const {
    248   switch (static_cast<SCEVTypes>(getSCEVType())) {
    249   case scConstant:
    250     return cast<SCEVConstant>(this)->getType();
    251   case scTruncate:
    252   case scZeroExtend:
    253   case scSignExtend:
    254     return cast<SCEVCastExpr>(this)->getType();
    255   case scAddRecExpr:
    256   case scMulExpr:
    257   case scUMaxExpr:
    258   case scSMaxExpr:
    259     return cast<SCEVNAryExpr>(this)->getType();
    260   case scAddExpr:
    261     return cast<SCEVAddExpr>(this)->getType();
    262   case scUDivExpr:
    263     return cast<SCEVUDivExpr>(this)->getType();
    264   case scUnknown:
    265     return cast<SCEVUnknown>(this)->getType();
    266   case scCouldNotCompute:
    267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    268   }
    269   llvm_unreachable("Unknown SCEV kind!");
    270 }
    271 
    272 bool SCEV::isZero() const {
    273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    274     return SC->getValue()->isZero();
    275   return false;
    276 }
    277 
    278 bool SCEV::isOne() const {
    279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    280     return SC->getValue()->isOne();
    281   return false;
    282 }
    283 
    284 bool SCEV::isAllOnesValue() const {
    285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    286     return SC->getValue()->isAllOnesValue();
    287   return false;
    288 }
    289 
    290 bool SCEV::isNonConstantNegative() const {
    291   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    292   if (!Mul) return false;
    293 
    294   // If there is a constant factor, it will be first.
    295   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    296   if (!SC) return false;
    297 
    298   // Return true if the value is negative, this matches things like (-42 * V).
    299   return SC->getAPInt().isNegative();
    300 }
    301 
    302 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    303   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    304 
    305 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    306   return S->getSCEVType() == scCouldNotCompute;
    307 }
    308 
    309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    310   FoldingSetNodeID ID;
    311   ID.AddInteger(scConstant);
    312   ID.AddPointer(V);
    313   void *IP = nullptr;
    314   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    315   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    316   UniqueSCEVs.InsertNode(S, IP);
    317   return S;
    318 }
    319 
    320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
    321   return getConstant(ConstantInt::get(getContext(), Val));
    322 }
    323 
    324 const SCEV *
    325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    326   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    327   return getConstant(ConstantInt::get(ITy, V, isSigned));
    328 }
    329 
    330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    331                            unsigned SCEVTy, const SCEV *op, Type *ty)
    332   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    333 
    334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    335                                    const SCEV *op, Type *ty)
    336   : SCEVCastExpr(ID, scTruncate, op, ty) {
    337   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    338          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    339          "Cannot truncate non-integer value!");
    340 }
    341 
    342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    343                                        const SCEV *op, Type *ty)
    344   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    345   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    346          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    347          "Cannot zero extend non-integer value!");
    348 }
    349 
    350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    351                                        const SCEV *op, Type *ty)
    352   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    353   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    354          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    355          "Cannot sign extend non-integer value!");
    356 }
    357 
    358 void SCEVUnknown::deleted() {
    359   // Clear this SCEVUnknown from various maps.
    360   SE->forgetMemoizedResults(this);
    361 
    362   // Remove this SCEVUnknown from the uniquing map.
    363   SE->UniqueSCEVs.RemoveNode(this);
    364 
    365   // Release the value.
    366   setValPtr(nullptr);
    367 }
    368 
    369 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    370   // Clear this SCEVUnknown from various maps.
    371   SE->forgetMemoizedResults(this);
    372 
    373   // Remove this SCEVUnknown from the uniquing map.
    374   SE->UniqueSCEVs.RemoveNode(this);
    375 
    376   // Update this SCEVUnknown to point to the new value. This is needed
    377   // because there may still be outstanding SCEVs which still point to
    378   // this SCEVUnknown.
    379   setValPtr(New);
    380 }
    381 
    382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    383   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    384     if (VCE->getOpcode() == Instruction::PtrToInt)
    385       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    386         if (CE->getOpcode() == Instruction::GetElementPtr &&
    387             CE->getOperand(0)->isNullValue() &&
    388             CE->getNumOperands() == 2)
    389           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    390             if (CI->isOne()) {
    391               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    392                                  ->getElementType();
    393               return true;
    394             }
    395 
    396   return false;
    397 }
    398 
    399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    400   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    401     if (VCE->getOpcode() == Instruction::PtrToInt)
    402       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    403         if (CE->getOpcode() == Instruction::GetElementPtr &&
    404             CE->getOperand(0)->isNullValue()) {
    405           Type *Ty =
    406             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    407           if (StructType *STy = dyn_cast<StructType>(Ty))
    408             if (!STy->isPacked() &&
    409                 CE->getNumOperands() == 3 &&
    410                 CE->getOperand(1)->isNullValue()) {
    411               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    412                 if (CI->isOne() &&
    413                     STy->getNumElements() == 2 &&
    414                     STy->getElementType(0)->isIntegerTy(1)) {
    415                   AllocTy = STy->getElementType(1);
    416                   return true;
    417                 }
    418             }
    419         }
    420 
    421   return false;
    422 }
    423 
    424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    425   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    426     if (VCE->getOpcode() == Instruction::PtrToInt)
    427       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    428         if (CE->getOpcode() == Instruction::GetElementPtr &&
    429             CE->getNumOperands() == 3 &&
    430             CE->getOperand(0)->isNullValue() &&
    431             CE->getOperand(1)->isNullValue()) {
    432           Type *Ty =
    433             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    434           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    435           // emit getelementptrs that index into vectors.
    436           if (Ty->isStructTy() || Ty->isArrayTy()) {
    437             CTy = Ty;
    438             FieldNo = CE->getOperand(2);
    439             return true;
    440           }
    441         }
    442 
    443   return false;
    444 }
    445 
    446 //===----------------------------------------------------------------------===//
    447 //                               SCEV Utilities
    448 //===----------------------------------------------------------------------===//
    449 
    450 namespace {
    451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    452 /// than the complexity of the RHS.  This comparator is used to canonicalize
    453 /// expressions.
    454 class SCEVComplexityCompare {
    455   const LoopInfo *const LI;
    456 public:
    457   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    458 
    459   // Return true or false if LHS is less than, or at least RHS, respectively.
    460   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    461     return compare(LHS, RHS) < 0;
    462   }
    463 
    464   // Return negative, zero, or positive, if LHS is less than, equal to, or
    465   // greater than RHS, respectively. A three-way result allows recursive
    466   // comparisons to be more efficient.
    467   int compare(const SCEV *LHS, const SCEV *RHS) const {
    468     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    469     if (LHS == RHS)
    470       return 0;
    471 
    472     // Primarily, sort the SCEVs by their getSCEVType().
    473     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    474     if (LType != RType)
    475       return (int)LType - (int)RType;
    476 
    477     // Aside from the getSCEVType() ordering, the particular ordering
    478     // isn't very important except that it's beneficial to be consistent,
    479     // so that (a + b) and (b + a) don't end up as different expressions.
    480     switch (static_cast<SCEVTypes>(LType)) {
    481     case scUnknown: {
    482       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    483       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    484 
    485       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    486       // not as complete as it could be.
    487       const Value *LV = LU->getValue(), *RV = RU->getValue();
    488 
    489       // Order pointer values after integer values. This helps SCEVExpander
    490       // form GEPs.
    491       bool LIsPointer = LV->getType()->isPointerTy(),
    492         RIsPointer = RV->getType()->isPointerTy();
    493       if (LIsPointer != RIsPointer)
    494         return (int)LIsPointer - (int)RIsPointer;
    495 
    496       // Compare getValueID values.
    497       unsigned LID = LV->getValueID(),
    498         RID = RV->getValueID();
    499       if (LID != RID)
    500         return (int)LID - (int)RID;
    501 
    502       // Sort arguments by their position.
    503       if (const Argument *LA = dyn_cast<Argument>(LV)) {
    504         const Argument *RA = cast<Argument>(RV);
    505         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    506         return (int)LArgNo - (int)RArgNo;
    507       }
    508 
    509       // For instructions, compare their loop depth, and their operand
    510       // count.  This is pretty loose.
    511       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    512         const Instruction *RInst = cast<Instruction>(RV);
    513 
    514         // Compare loop depths.
    515         const BasicBlock *LParent = LInst->getParent(),
    516           *RParent = RInst->getParent();
    517         if (LParent != RParent) {
    518           unsigned LDepth = LI->getLoopDepth(LParent),
    519             RDepth = LI->getLoopDepth(RParent);
    520           if (LDepth != RDepth)
    521             return (int)LDepth - (int)RDepth;
    522         }
    523 
    524         // Compare the number of operands.
    525         unsigned LNumOps = LInst->getNumOperands(),
    526           RNumOps = RInst->getNumOperands();
    527         return (int)LNumOps - (int)RNumOps;
    528       }
    529 
    530       return 0;
    531     }
    532 
    533     case scConstant: {
    534       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    535       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    536 
    537       // Compare constant values.
    538       const APInt &LA = LC->getAPInt();
    539       const APInt &RA = RC->getAPInt();
    540       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    541       if (LBitWidth != RBitWidth)
    542         return (int)LBitWidth - (int)RBitWidth;
    543       return LA.ult(RA) ? -1 : 1;
    544     }
    545 
    546     case scAddRecExpr: {
    547       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    548       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    549 
    550       // Compare addrec loop depths.
    551       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    552       if (LLoop != RLoop) {
    553         unsigned LDepth = LLoop->getLoopDepth(),
    554           RDepth = RLoop->getLoopDepth();
    555         if (LDepth != RDepth)
    556           return (int)LDepth - (int)RDepth;
    557       }
    558 
    559       // Addrec complexity grows with operand count.
    560       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    561       if (LNumOps != RNumOps)
    562         return (int)LNumOps - (int)RNumOps;
    563 
    564       // Lexicographically compare.
    565       for (unsigned i = 0; i != LNumOps; ++i) {
    566         long X = compare(LA->getOperand(i), RA->getOperand(i));
    567         if (X != 0)
    568           return X;
    569       }
    570 
    571       return 0;
    572     }
    573 
    574     case scAddExpr:
    575     case scMulExpr:
    576     case scSMaxExpr:
    577     case scUMaxExpr: {
    578       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    579       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    580 
    581       // Lexicographically compare n-ary expressions.
    582       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    583       if (LNumOps != RNumOps)
    584         return (int)LNumOps - (int)RNumOps;
    585 
    586       for (unsigned i = 0; i != LNumOps; ++i) {
    587         if (i >= RNumOps)
    588           return 1;
    589         long X = compare(LC->getOperand(i), RC->getOperand(i));
    590         if (X != 0)
    591           return X;
    592       }
    593       return (int)LNumOps - (int)RNumOps;
    594     }
    595 
    596     case scUDivExpr: {
    597       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    598       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    599 
    600       // Lexicographically compare udiv expressions.
    601       long X = compare(LC->getLHS(), RC->getLHS());
    602       if (X != 0)
    603         return X;
    604       return compare(LC->getRHS(), RC->getRHS());
    605     }
    606 
    607     case scTruncate:
    608     case scZeroExtend:
    609     case scSignExtend: {
    610       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    611       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    612 
    613       // Compare cast expressions by operand.
    614       return compare(LC->getOperand(), RC->getOperand());
    615     }
    616 
    617     case scCouldNotCompute:
    618       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    619     }
    620     llvm_unreachable("Unknown SCEV kind!");
    621   }
    622 };
    623 }  // end anonymous namespace
    624 
    625 /// Given a list of SCEV objects, order them by their complexity, and group
    626 /// objects of the same complexity together by value.  When this routine is
    627 /// finished, we know that any duplicates in the vector are consecutive and that
    628 /// complexity is monotonically increasing.
    629 ///
    630 /// Note that we go take special precautions to ensure that we get deterministic
    631 /// results from this routine.  In other words, we don't want the results of
    632 /// this to depend on where the addresses of various SCEV objects happened to
    633 /// land in memory.
    634 ///
    635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    636                               LoopInfo *LI) {
    637   if (Ops.size() < 2) return;  // Noop
    638   if (Ops.size() == 2) {
    639     // This is the common case, which also happens to be trivially simple.
    640     // Special case it.
    641     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    642     if (SCEVComplexityCompare(LI)(RHS, LHS))
    643       std::swap(LHS, RHS);
    644     return;
    645   }
    646 
    647   // Do the rough sort by complexity.
    648   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    649 
    650   // Now that we are sorted by complexity, group elements of the same
    651   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    652   // be extremely short in practice.  Note that we take this approach because we
    653   // do not want to depend on the addresses of the objects we are grouping.
    654   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    655     const SCEV *S = Ops[i];
    656     unsigned Complexity = S->getSCEVType();
    657 
    658     // If there are any objects of the same complexity and same value as this
    659     // one, group them.
    660     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    661       if (Ops[j] == S) { // Found a duplicate.
    662         // Move it to immediately after i'th element.
    663         std::swap(Ops[i+1], Ops[j]);
    664         ++i;   // no need to rescan it.
    665         if (i == e-2) return;  // Done!
    666       }
    667     }
    668   }
    669 }
    670 
    671 // Returns the size of the SCEV S.
    672 static inline int sizeOfSCEV(const SCEV *S) {
    673   struct FindSCEVSize {
    674     int Size;
    675     FindSCEVSize() : Size(0) {}
    676 
    677     bool follow(const SCEV *S) {
    678       ++Size;
    679       // Keep looking at all operands of S.
    680       return true;
    681     }
    682     bool isDone() const {
    683       return false;
    684     }
    685   };
    686 
    687   FindSCEVSize F;
    688   SCEVTraversal<FindSCEVSize> ST(F);
    689   ST.visitAll(S);
    690   return F.Size;
    691 }
    692 
    693 namespace {
    694 
    695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
    696 public:
    697   // Computes the Quotient and Remainder of the division of Numerator by
    698   // Denominator.
    699   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
    700                      const SCEV *Denominator, const SCEV **Quotient,
    701                      const SCEV **Remainder) {
    702     assert(Numerator && Denominator && "Uninitialized SCEV");
    703 
    704     SCEVDivision D(SE, Numerator, Denominator);
    705 
    706     // Check for the trivial case here to avoid having to check for it in the
    707     // rest of the code.
    708     if (Numerator == Denominator) {
    709       *Quotient = D.One;
    710       *Remainder = D.Zero;
    711       return;
    712     }
    713 
    714     if (Numerator->isZero()) {
    715       *Quotient = D.Zero;
    716       *Remainder = D.Zero;
    717       return;
    718     }
    719 
    720     // A simple case when N/1. The quotient is N.
    721     if (Denominator->isOne()) {
    722       *Quotient = Numerator;
    723       *Remainder = D.Zero;
    724       return;
    725     }
    726 
    727     // Split the Denominator when it is a product.
    728     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
    729       const SCEV *Q, *R;
    730       *Quotient = Numerator;
    731       for (const SCEV *Op : T->operands()) {
    732         divide(SE, *Quotient, Op, &Q, &R);
    733         *Quotient = Q;
    734 
    735         // Bail out when the Numerator is not divisible by one of the terms of
    736         // the Denominator.
    737         if (!R->isZero()) {
    738           *Quotient = D.Zero;
    739           *Remainder = Numerator;
    740           return;
    741         }
    742       }
    743       *Remainder = D.Zero;
    744       return;
    745     }
    746 
    747     D.visit(Numerator);
    748     *Quotient = D.Quotient;
    749     *Remainder = D.Remainder;
    750   }
    751 
    752   // Except in the trivial case described above, we do not know how to divide
    753   // Expr by Denominator for the following functions with empty implementation.
    754   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
    755   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
    756   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
    757   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
    758   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
    759   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
    760   void visitUnknown(const SCEVUnknown *Numerator) {}
    761   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
    762 
    763   void visitConstant(const SCEVConstant *Numerator) {
    764     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
    765       APInt NumeratorVal = Numerator->getAPInt();
    766       APInt DenominatorVal = D->getAPInt();
    767       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
    768       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
    769 
    770       if (NumeratorBW > DenominatorBW)
    771         DenominatorVal = DenominatorVal.sext(NumeratorBW);
    772       else if (NumeratorBW < DenominatorBW)
    773         NumeratorVal = NumeratorVal.sext(DenominatorBW);
    774 
    775       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
    776       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
    777       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
    778       Quotient = SE.getConstant(QuotientVal);
    779       Remainder = SE.getConstant(RemainderVal);
    780       return;
    781     }
    782   }
    783 
    784   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
    785     const SCEV *StartQ, *StartR, *StepQ, *StepR;
    786     if (!Numerator->isAffine())
    787       return cannotDivide(Numerator);
    788     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
    789     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
    790     // Bail out if the types do not match.
    791     Type *Ty = Denominator->getType();
    792     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
    793         Ty != StepQ->getType() || Ty != StepR->getType())
    794       return cannotDivide(Numerator);
    795     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
    796                                 Numerator->getNoWrapFlags());
    797     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
    798                                  Numerator->getNoWrapFlags());
    799   }
    800 
    801   void visitAddExpr(const SCEVAddExpr *Numerator) {
    802     SmallVector<const SCEV *, 2> Qs, Rs;
    803     Type *Ty = Denominator->getType();
    804 
    805     for (const SCEV *Op : Numerator->operands()) {
    806       const SCEV *Q, *R;
    807       divide(SE, Op, Denominator, &Q, &R);
    808 
    809       // Bail out if types do not match.
    810       if (Ty != Q->getType() || Ty != R->getType())
    811         return cannotDivide(Numerator);
    812 
    813       Qs.push_back(Q);
    814       Rs.push_back(R);
    815     }
    816 
    817     if (Qs.size() == 1) {
    818       Quotient = Qs[0];
    819       Remainder = Rs[0];
    820       return;
    821     }
    822 
    823     Quotient = SE.getAddExpr(Qs);
    824     Remainder = SE.getAddExpr(Rs);
    825   }
    826 
    827   void visitMulExpr(const SCEVMulExpr *Numerator) {
    828     SmallVector<const SCEV *, 2> Qs;
    829     Type *Ty = Denominator->getType();
    830 
    831     bool FoundDenominatorTerm = false;
    832     for (const SCEV *Op : Numerator->operands()) {
    833       // Bail out if types do not match.
    834       if (Ty != Op->getType())
    835         return cannotDivide(Numerator);
    836 
    837       if (FoundDenominatorTerm) {
    838         Qs.push_back(Op);
    839         continue;
    840       }
    841 
    842       // Check whether Denominator divides one of the product operands.
    843       const SCEV *Q, *R;
    844       divide(SE, Op, Denominator, &Q, &R);
    845       if (!R->isZero()) {
    846         Qs.push_back(Op);
    847         continue;
    848       }
    849 
    850       // Bail out if types do not match.
    851       if (Ty != Q->getType())
    852         return cannotDivide(Numerator);
    853 
    854       FoundDenominatorTerm = true;
    855       Qs.push_back(Q);
    856     }
    857 
    858     if (FoundDenominatorTerm) {
    859       Remainder = Zero;
    860       if (Qs.size() == 1)
    861         Quotient = Qs[0];
    862       else
    863         Quotient = SE.getMulExpr(Qs);
    864       return;
    865     }
    866 
    867     if (!isa<SCEVUnknown>(Denominator))
    868       return cannotDivide(Numerator);
    869 
    870     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
    871     ValueToValueMap RewriteMap;
    872     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    873         cast<SCEVConstant>(Zero)->getValue();
    874     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    875 
    876     if (Remainder->isZero()) {
    877       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
    878       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
    879           cast<SCEVConstant>(One)->getValue();
    880       Quotient =
    881           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
    882       return;
    883     }
    884 
    885     // Quotient is (Numerator - Remainder) divided by Denominator.
    886     const SCEV *Q, *R;
    887     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
    888     // This SCEV does not seem to simplify: fail the division here.
    889     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
    890       return cannotDivide(Numerator);
    891     divide(SE, Diff, Denominator, &Q, &R);
    892     if (R != Zero)
    893       return cannotDivide(Numerator);
    894     Quotient = Q;
    895   }
    896 
    897 private:
    898   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
    899                const SCEV *Denominator)
    900       : SE(S), Denominator(Denominator) {
    901     Zero = SE.getZero(Denominator->getType());
    902     One = SE.getOne(Denominator->getType());
    903 
    904     // We generally do not know how to divide Expr by Denominator. We
    905     // initialize the division to a "cannot divide" state to simplify the rest
    906     // of the code.
    907     cannotDivide(Numerator);
    908   }
    909 
    910   // Convenience function for giving up on the division. We set the quotient to
    911   // be equal to zero and the remainder to be equal to the numerator.
    912   void cannotDivide(const SCEV *Numerator) {
    913     Quotient = Zero;
    914     Remainder = Numerator;
    915   }
    916 
    917   ScalarEvolution &SE;
    918   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
    919 };
    920 
    921 }
    922 
    923 //===----------------------------------------------------------------------===//
    924 //                      Simple SCEV method implementations
    925 //===----------------------------------------------------------------------===//
    926 
    927 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
    928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    929                                        ScalarEvolution &SE,
    930                                        Type *ResultTy) {
    931   // Handle the simplest case efficiently.
    932   if (K == 1)
    933     return SE.getTruncateOrZeroExtend(It, ResultTy);
    934 
    935   // We are using the following formula for BC(It, K):
    936   //
    937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    938   //
    939   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    940   // overflow.  Hence, we must assure that the result of our computation is
    941   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    942   // safe in modular arithmetic.
    943   //
    944   // However, this code doesn't use exactly that formula; the formula it uses
    945   // is something like the following, where T is the number of factors of 2 in
    946   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    947   // exponentiation:
    948   //
    949   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    950   //
    951   // This formula is trivially equivalent to the previous formula.  However,
    952   // this formula can be implemented much more efficiently.  The trick is that
    953   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    954   // arithmetic.  To do exact division in modular arithmetic, all we have
    955   // to do is multiply by the inverse.  Therefore, this step can be done at
    956   // width W.
    957   //
    958   // The next issue is how to safely do the division by 2^T.  The way this
    959   // is done is by doing the multiplication step at a width of at least W + T
    960   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    961   // when we perform the division by 2^T (which is equivalent to a right shift
    962   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    963   // truncated out after the division by 2^T.
    964   //
    965   // In comparison to just directly using the first formula, this technique
    966   // is much more efficient; using the first formula requires W * K bits,
    967   // but this formula less than W + K bits. Also, the first formula requires
    968   // a division step, whereas this formula only requires multiplies and shifts.
    969   //
    970   // It doesn't matter whether the subtraction step is done in the calculation
    971   // width or the input iteration count's width; if the subtraction overflows,
    972   // the result must be zero anyway.  We prefer here to do it in the width of
    973   // the induction variable because it helps a lot for certain cases; CodeGen
    974   // isn't smart enough to ignore the overflow, which leads to much less
    975   // efficient code if the width of the subtraction is wider than the native
    976   // register width.
    977   //
    978   // (It's possible to not widen at all by pulling out factors of 2 before
    979   // the multiplication; for example, K=2 can be calculated as
    980   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    981   // extra arithmetic, so it's not an obvious win, and it gets
    982   // much more complicated for K > 3.)
    983 
    984   // Protection from insane SCEVs; this bound is conservative,
    985   // but it probably doesn't matter.
    986   if (K > 1000)
    987     return SE.getCouldNotCompute();
    988 
    989   unsigned W = SE.getTypeSizeInBits(ResultTy);
    990 
    991   // Calculate K! / 2^T and T; we divide out the factors of two before
    992   // multiplying for calculating K! / 2^T to avoid overflow.
    993   // Other overflow doesn't matter because we only care about the bottom
    994   // W bits of the result.
    995   APInt OddFactorial(W, 1);
    996   unsigned T = 1;
    997   for (unsigned i = 3; i <= K; ++i) {
    998     APInt Mult(W, i);
    999     unsigned TwoFactors = Mult.countTrailingZeros();
   1000     T += TwoFactors;
   1001     Mult = Mult.lshr(TwoFactors);
   1002     OddFactorial *= Mult;
   1003   }
   1004 
   1005   // We need at least W + T bits for the multiplication step
   1006   unsigned CalculationBits = W + T;
   1007 
   1008   // Calculate 2^T, at width T+W.
   1009   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
   1010 
   1011   // Calculate the multiplicative inverse of K! / 2^T;
   1012   // this multiplication factor will perform the exact division by
   1013   // K! / 2^T.
   1014   APInt Mod = APInt::getSignedMinValue(W+1);
   1015   APInt MultiplyFactor = OddFactorial.zext(W+1);
   1016   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
   1017   MultiplyFactor = MultiplyFactor.trunc(W);
   1018 
   1019   // Calculate the product, at width T+W
   1020   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
   1021                                                       CalculationBits);
   1022   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
   1023   for (unsigned i = 1; i != K; ++i) {
   1024     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
   1025     Dividend = SE.getMulExpr(Dividend,
   1026                              SE.getTruncateOrZeroExtend(S, CalculationTy));
   1027   }
   1028 
   1029   // Divide by 2^T
   1030   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
   1031 
   1032   // Truncate the result, and divide by K! / 2^T.
   1033 
   1034   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
   1035                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
   1036 }
   1037 
   1038 /// Return the value of this chain of recurrences at the specified iteration
   1039 /// number.  We can evaluate this recurrence by multiplying each element in the
   1040 /// chain by the binomial coefficient corresponding to it.  In other words, we
   1041 /// can evaluate {A,+,B,+,C,+,D} as:
   1042 ///
   1043 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
   1044 ///
   1045 /// where BC(It, k) stands for binomial coefficient.
   1046 ///
   1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
   1048                                                 ScalarEvolution &SE) const {
   1049   const SCEV *Result = getStart();
   1050   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1051     // The computation is correct in the face of overflow provided that the
   1052     // multiplication is performed _after_ the evaluation of the binomial
   1053     // coefficient.
   1054     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
   1055     if (isa<SCEVCouldNotCompute>(Coeff))
   1056       return Coeff;
   1057 
   1058     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
   1059   }
   1060   return Result;
   1061 }
   1062 
   1063 //===----------------------------------------------------------------------===//
   1064 //                    SCEV Expression folder implementations
   1065 //===----------------------------------------------------------------------===//
   1066 
   1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
   1068                                              Type *Ty) {
   1069   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
   1070          "This is not a truncating conversion!");
   1071   assert(isSCEVable(Ty) &&
   1072          "This is not a conversion to a SCEVable type!");
   1073   Ty = getEffectiveSCEVType(Ty);
   1074 
   1075   FoldingSetNodeID ID;
   1076   ID.AddInteger(scTruncate);
   1077   ID.AddPointer(Op);
   1078   ID.AddPointer(Ty);
   1079   void *IP = nullptr;
   1080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1081 
   1082   // Fold if the operand is constant.
   1083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1084     return getConstant(
   1085       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
   1086 
   1087   // trunc(trunc(x)) --> trunc(x)
   1088   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
   1089     return getTruncateExpr(ST->getOperand(), Ty);
   1090 
   1091   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
   1092   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1093     return getTruncateOrSignExtend(SS->getOperand(), Ty);
   1094 
   1095   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
   1096   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1097     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
   1098 
   1099   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
   1100   // eliminate all the truncates, or we replace other casts with truncates.
   1101   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1102     SmallVector<const SCEV *, 4> Operands;
   1103     bool hasTrunc = false;
   1104     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
   1105       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
   1106       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
   1107         hasTrunc = isa<SCEVTruncateExpr>(S);
   1108       Operands.push_back(S);
   1109     }
   1110     if (!hasTrunc)
   1111       return getAddExpr(Operands);
   1112     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1113   }
   1114 
   1115   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
   1116   // eliminate all the truncates, or we replace other casts with truncates.
   1117   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
   1118     SmallVector<const SCEV *, 4> Operands;
   1119     bool hasTrunc = false;
   1120     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
   1121       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
   1122       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
   1123         hasTrunc = isa<SCEVTruncateExpr>(S);
   1124       Operands.push_back(S);
   1125     }
   1126     if (!hasTrunc)
   1127       return getMulExpr(Operands);
   1128     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
   1129   }
   1130 
   1131   // If the input value is a chrec scev, truncate the chrec's operands.
   1132   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
   1133     SmallVector<const SCEV *, 4> Operands;
   1134     for (const SCEV *Op : AddRec->operands())
   1135       Operands.push_back(getTruncateExpr(Op, Ty));
   1136     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
   1137   }
   1138 
   1139   // The cast wasn't folded; create an explicit cast node. We can reuse
   1140   // the existing insert position since if we get here, we won't have
   1141   // made any changes which would invalidate it.
   1142   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
   1143                                                  Op, Ty);
   1144   UniqueSCEVs.InsertNode(S, IP);
   1145   return S;
   1146 }
   1147 
   1148 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1149 // signed overflow as long as the value of the recurrence within the
   1150 // loop does not exceed this limit before incrementing.
   1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
   1152                                                  ICmpInst::Predicate *Pred,
   1153                                                  ScalarEvolution *SE) {
   1154   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1155   if (SE->isKnownPositive(Step)) {
   1156     *Pred = ICmpInst::ICMP_SLT;
   1157     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1158                            SE->getSignedRange(Step).getSignedMax());
   1159   }
   1160   if (SE->isKnownNegative(Step)) {
   1161     *Pred = ICmpInst::ICMP_SGT;
   1162     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1163                            SE->getSignedRange(Step).getSignedMin());
   1164   }
   1165   return nullptr;
   1166 }
   1167 
   1168 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1169 // unsigned overflow as long as the value of the recurrence within the loop does
   1170 // not exceed this limit before incrementing.
   1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
   1172                                                    ICmpInst::Predicate *Pred,
   1173                                                    ScalarEvolution *SE) {
   1174   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1175   *Pred = ICmpInst::ICMP_ULT;
   1176 
   1177   return SE->getConstant(APInt::getMinValue(BitWidth) -
   1178                          SE->getUnsignedRange(Step).getUnsignedMax());
   1179 }
   1180 
   1181 namespace {
   1182 
   1183 struct ExtendOpTraitsBase {
   1184   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
   1185 };
   1186 
   1187 // Used to make code generic over signed and unsigned overflow.
   1188 template <typename ExtendOp> struct ExtendOpTraits {
   1189   // Members present:
   1190   //
   1191   // static const SCEV::NoWrapFlags WrapType;
   1192   //
   1193   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
   1194   //
   1195   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1196   //                                           ICmpInst::Predicate *Pred,
   1197   //                                           ScalarEvolution *SE);
   1198 };
   1199 
   1200 template <>
   1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
   1202   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
   1203 
   1204   static const GetExtendExprTy GetExtendExpr;
   1205 
   1206   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1207                                              ICmpInst::Predicate *Pred,
   1208                                              ScalarEvolution *SE) {
   1209     return getSignedOverflowLimitForStep(Step, Pred, SE);
   1210   }
   1211 };
   1212 
   1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1214     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
   1215 
   1216 template <>
   1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
   1218   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
   1219 
   1220   static const GetExtendExprTy GetExtendExpr;
   1221 
   1222   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1223                                              ICmpInst::Predicate *Pred,
   1224                                              ScalarEvolution *SE) {
   1225     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
   1226   }
   1227 };
   1228 
   1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
   1230     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
   1231 }
   1232 
   1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something
   1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
   1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
   1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
   1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
   1238 // expression "Step + sext/zext(PreIncAR)" is congruent with
   1239 // "sext/zext(PostIncAR)"
   1240 template <typename ExtendOpTy>
   1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
   1242                                         ScalarEvolution *SE) {
   1243   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1244   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1245 
   1246   const Loop *L = AR->getLoop();
   1247   const SCEV *Start = AR->getStart();
   1248   const SCEV *Step = AR->getStepRecurrence(*SE);
   1249 
   1250   // Check for a simple looking step prior to loop entry.
   1251   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1252   if (!SA)
   1253     return nullptr;
   1254 
   1255   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1256   // subtraction is expensive. For this purpose, perform a quick and dirty
   1257   // difference, by checking for Step in the operand list.
   1258   SmallVector<const SCEV *, 4> DiffOps;
   1259   for (const SCEV *Op : SA->operands())
   1260     if (Op != Step)
   1261       DiffOps.push_back(Op);
   1262 
   1263   if (DiffOps.size() == SA->getNumOperands())
   1264     return nullptr;
   1265 
   1266   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
   1267   // `Step`:
   1268 
   1269   // 1. NSW/NUW flags on the step increment.
   1270   auto PreStartFlags =
   1271     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
   1272   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
   1273   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1274       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1275 
   1276   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
   1277   // "S+X does not sign/unsign-overflow".
   1278   //
   1279 
   1280   const SCEV *BECount = SE->getBackedgeTakenCount(L);
   1281   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
   1282       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
   1283     return PreStart;
   1284 
   1285   // 2. Direct overflow check on the step operation's expression.
   1286   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1287   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1288   const SCEV *OperandExtendedStart =
   1289       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
   1290                      (SE->*GetExtendExpr)(Step, WideTy));
   1291   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
   1292     if (PreAR && AR->getNoWrapFlags(WrapType)) {
   1293       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
   1294       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
   1295       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
   1296       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
   1297     }
   1298     return PreStart;
   1299   }
   1300 
   1301   // 3. Loop precondition.
   1302   ICmpInst::Predicate Pred;
   1303   const SCEV *OverflowLimit =
   1304       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
   1305 
   1306   if (OverflowLimit &&
   1307       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
   1308     return PreStart;
   1309 
   1310   return nullptr;
   1311 }
   1312 
   1313 // Get the normalized zero or sign extended expression for this AddRec's Start.
   1314 template <typename ExtendOpTy>
   1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
   1316                                         ScalarEvolution *SE) {
   1317   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
   1318 
   1319   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
   1320   if (!PreStart)
   1321     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
   1322 
   1323   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
   1324                         (SE->*GetExtendExpr)(PreStart, Ty));
   1325 }
   1326 
   1327 // Try to prove away overflow by looking at "nearby" add recurrences.  A
   1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
   1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
   1330 //
   1331 // Formally:
   1332 //
   1333 //     {S,+,X} == {S-T,+,X} + T
   1334 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
   1335 //
   1336 // If ({S-T,+,X} + T) does not overflow  ... (1)
   1337 //
   1338 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
   1339 //
   1340 // If {S-T,+,X} does not overflow  ... (2)
   1341 //
   1342 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
   1343 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
   1344 //
   1345 // If (S-T)+T does not overflow  ... (3)
   1346 //
   1347 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
   1348 //      == {Ext(S),+,Ext(X)} == LHS
   1349 //
   1350 // Thus, if (1), (2) and (3) are true for some T, then
   1351 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
   1352 //
   1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
   1354 // does not overflow" restricted to the 0th iteration.  Therefore we only need
   1355 // to check for (1) and (2).
   1356 //
   1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
   1358 // is `Delta` (defined below).
   1359 //
   1360 template <typename ExtendOpTy>
   1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
   1362                                                 const SCEV *Step,
   1363                                                 const Loop *L) {
   1364   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
   1365 
   1366   // We restrict `Start` to a constant to prevent SCEV from spending too much
   1367   // time here.  It is correct (but more expensive) to continue with a
   1368   // non-constant `Start` and do a general SCEV subtraction to compute
   1369   // `PreStart` below.
   1370   //
   1371   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
   1372   if (!StartC)
   1373     return false;
   1374 
   1375   APInt StartAI = StartC->getAPInt();
   1376 
   1377   for (unsigned Delta : {-2, -1, 1, 2}) {
   1378     const SCEV *PreStart = getConstant(StartAI - Delta);
   1379 
   1380     FoldingSetNodeID ID;
   1381     ID.AddInteger(scAddRecExpr);
   1382     ID.AddPointer(PreStart);
   1383     ID.AddPointer(Step);
   1384     ID.AddPointer(L);
   1385     void *IP = nullptr;
   1386     const auto *PreAR =
   1387       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1388 
   1389     // Give up if we don't already have the add recurrence we need because
   1390     // actually constructing an add recurrence is relatively expensive.
   1391     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
   1392       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
   1393       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1394       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
   1395           DeltaS, &Pred, this);
   1396       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
   1397         return true;
   1398     }
   1399   }
   1400 
   1401   return false;
   1402 }
   1403 
   1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
   1405                                                Type *Ty) {
   1406   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1407          "This is not an extending conversion!");
   1408   assert(isSCEVable(Ty) &&
   1409          "This is not a conversion to a SCEVable type!");
   1410   Ty = getEffectiveSCEVType(Ty);
   1411 
   1412   // Fold if the operand is constant.
   1413   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1414     return getConstant(
   1415       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
   1416 
   1417   // zext(zext(x)) --> zext(x)
   1418   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1419     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1420 
   1421   // Before doing any expensive analysis, check to see if we've already
   1422   // computed a SCEV for this Op and Ty.
   1423   FoldingSetNodeID ID;
   1424   ID.AddInteger(scZeroExtend);
   1425   ID.AddPointer(Op);
   1426   ID.AddPointer(Ty);
   1427   void *IP = nullptr;
   1428   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1429 
   1430   // zext(trunc(x)) --> zext(x) or x or trunc(x)
   1431   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1432     // It's possible the bits taken off by the truncate were all zero bits. If
   1433     // so, we should be able to simplify this further.
   1434     const SCEV *X = ST->getOperand();
   1435     ConstantRange CR = getUnsignedRange(X);
   1436     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1437     unsigned NewBits = getTypeSizeInBits(Ty);
   1438     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
   1439             CR.zextOrTrunc(NewBits)))
   1440       return getTruncateOrZeroExtend(X, Ty);
   1441   }
   1442 
   1443   // If the input value is a chrec scev, and we can prove that the value
   1444   // did not overflow the old, smaller, value, we can zero extend all of the
   1445   // operands (often constants).  This allows analysis of something like
   1446   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
   1447   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1448     if (AR->isAffine()) {
   1449       const SCEV *Start = AR->getStart();
   1450       const SCEV *Step = AR->getStepRecurrence(*this);
   1451       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1452       const Loop *L = AR->getLoop();
   1453 
   1454       if (!AR->hasNoUnsignedWrap()) {
   1455         auto NewFlags = proveNoWrapViaConstantRanges(AR);
   1456         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
   1457       }
   1458 
   1459       // If we have special knowledge that this addrec won't overflow,
   1460       // we don't need to do any further analysis.
   1461       if (AR->hasNoUnsignedWrap())
   1462         return getAddRecExpr(
   1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1465 
   1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1467       // Note that this serves two purposes: It filters out loops that are
   1468       // simply not analyzable, and it covers the case where this code is
   1469       // being called from within backedge-taken count analysis, such that
   1470       // attempting to ask for the backedge-taken count would likely result
   1471       // in infinite recursion. In the later case, the analysis code will
   1472       // cope with a conservative value, and it will take care to purge
   1473       // that value once it has finished.
   1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1476         // Manually compute the final value for AR, checking for
   1477         // overflow.
   1478 
   1479         // Check whether the backedge-taken count can be losslessly casted to
   1480         // the addrec's type. The count is always unsigned.
   1481         const SCEV *CastedMaxBECount =
   1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1483         const SCEV *RecastedMaxBECount =
   1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1485         if (MaxBECount == RecastedMaxBECount) {
   1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
   1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
   1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
   1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
   1491           const SCEV *WideMaxBECount =
   1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1493           const SCEV *OperandExtendedAdd =
   1494             getAddExpr(WideStart,
   1495                        getMulExpr(WideMaxBECount,
   1496                                   getZeroExtendExpr(Step, WideTy)));
   1497           if (ZAdd == OperandExtendedAdd) {
   1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1500             // Return the expression with the addrec on the outside.
   1501             return getAddRecExpr(
   1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1504           }
   1505           // Similar to above, only this time treat the step value as signed.
   1506           // This covers loops that count down.
   1507           OperandExtendedAdd =
   1508             getAddExpr(WideStart,
   1509                        getMulExpr(WideMaxBECount,
   1510                                   getSignExtendExpr(Step, WideTy)));
   1511           if (ZAdd == OperandExtendedAdd) {
   1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1515             // Return the expression with the addrec on the outside.
   1516             return getAddRecExpr(
   1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1519           }
   1520         }
   1521       }
   1522 
   1523       // Normally, in the cases we can prove no-overflow via a
   1524       // backedge guarding condition, we can also compute a backedge
   1525       // taken count for the loop.  The exceptions are assumptions and
   1526       // guards present in the loop -- SCEV is not great at exploiting
   1527       // these to compute max backedge taken counts, but can still use
   1528       // these to prove lack of overflow.  Use this fact to avoid
   1529       // doing extra work that may not pay off.
   1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
   1531           !AC.assumptions().empty()) {
   1532         // If the backedge is guarded by a comparison with the pre-inc
   1533         // value the addrec is safe. Also, if the entry is guarded by
   1534         // a comparison with the start value and the backedge is
   1535         // guarded by a comparison with the post-inc value, the addrec
   1536         // is safe.
   1537         if (isKnownPositive(Step)) {
   1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1539                                       getUnsignedRange(Step).getUnsignedMax());
   1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1541               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1542                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1543                                            AR->getPostIncExpr(*this), N))) {
   1544             // Cache knowledge of AR NUW, which is propagated to this
   1545             // AddRec.
   1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1547             // Return the expression with the addrec on the outside.
   1548             return getAddRecExpr(
   1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1550                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1551           }
   1552         } else if (isKnownNegative(Step)) {
   1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1554                                       getSignedRange(Step).getSignedMin());
   1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1556               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1557                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1558                                            AR->getPostIncExpr(*this), N))) {
   1559             // Cache knowledge of AR NW, which is propagated to this
   1560             // AddRec.  Negative step causes unsigned wrap, but it
   1561             // still can't self-wrap.
   1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1563             // Return the expression with the addrec on the outside.
   1564             return getAddRecExpr(
   1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1566                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1567           }
   1568         }
   1569       }
   1570 
   1571       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
   1572         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1573         return getAddRecExpr(
   1574             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
   1575             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1576       }
   1577     }
   1578 
   1579   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1580     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
   1581     if (SA->hasNoUnsignedWrap()) {
   1582       // If the addition does not unsign overflow then we can, by definition,
   1583       // commute the zero extension with the addition operation.
   1584       SmallVector<const SCEV *, 4> Ops;
   1585       for (const auto *Op : SA->operands())
   1586         Ops.push_back(getZeroExtendExpr(Op, Ty));
   1587       return getAddExpr(Ops, SCEV::FlagNUW);
   1588     }
   1589   }
   1590 
   1591   // The cast wasn't folded; create an explicit cast node.
   1592   // Recompute the insert position, as it may have been invalidated.
   1593   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1594   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1595                                                    Op, Ty);
   1596   UniqueSCEVs.InsertNode(S, IP);
   1597   return S;
   1598 }
   1599 
   1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1601                                                Type *Ty) {
   1602   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1603          "This is not an extending conversion!");
   1604   assert(isSCEVable(Ty) &&
   1605          "This is not a conversion to a SCEVable type!");
   1606   Ty = getEffectiveSCEVType(Ty);
   1607 
   1608   // Fold if the operand is constant.
   1609   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1610     return getConstant(
   1611       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   1612 
   1613   // sext(sext(x)) --> sext(x)
   1614   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1615     return getSignExtendExpr(SS->getOperand(), Ty);
   1616 
   1617   // sext(zext(x)) --> zext(x)
   1618   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1619     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1620 
   1621   // Before doing any expensive analysis, check to see if we've already
   1622   // computed a SCEV for this Op and Ty.
   1623   FoldingSetNodeID ID;
   1624   ID.AddInteger(scSignExtend);
   1625   ID.AddPointer(Op);
   1626   ID.AddPointer(Ty);
   1627   void *IP = nullptr;
   1628   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1629 
   1630   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1631   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1632     // It's possible the bits taken off by the truncate were all sign bits. If
   1633     // so, we should be able to simplify this further.
   1634     const SCEV *X = ST->getOperand();
   1635     ConstantRange CR = getSignedRange(X);
   1636     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1637     unsigned NewBits = getTypeSizeInBits(Ty);
   1638     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1639             CR.sextOrTrunc(NewBits)))
   1640       return getTruncateOrSignExtend(X, Ty);
   1641   }
   1642 
   1643   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
   1644   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
   1645     if (SA->getNumOperands() == 2) {
   1646       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
   1647       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
   1648       if (SMul && SC1) {
   1649         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
   1650           const APInt &C1 = SC1->getAPInt();
   1651           const APInt &C2 = SC2->getAPInt();
   1652           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
   1653               C2.ugt(C1) && C2.isPowerOf2())
   1654             return getAddExpr(getSignExtendExpr(SC1, Ty),
   1655                               getSignExtendExpr(SMul, Ty));
   1656         }
   1657       }
   1658     }
   1659 
   1660     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
   1661     if (SA->hasNoSignedWrap()) {
   1662       // If the addition does not sign overflow then we can, by definition,
   1663       // commute the sign extension with the addition operation.
   1664       SmallVector<const SCEV *, 4> Ops;
   1665       for (const auto *Op : SA->operands())
   1666         Ops.push_back(getSignExtendExpr(Op, Ty));
   1667       return getAddExpr(Ops, SCEV::FlagNSW);
   1668     }
   1669   }
   1670   // If the input value is a chrec scev, and we can prove that the value
   1671   // did not overflow the old, smaller, value, we can sign extend all of the
   1672   // operands (often constants).  This allows analysis of something like
   1673   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1674   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1675     if (AR->isAffine()) {
   1676       const SCEV *Start = AR->getStart();
   1677       const SCEV *Step = AR->getStepRecurrence(*this);
   1678       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1679       const Loop *L = AR->getLoop();
   1680 
   1681       if (!AR->hasNoSignedWrap()) {
   1682         auto NewFlags = proveNoWrapViaConstantRanges(AR);
   1683         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
   1684       }
   1685 
   1686       // If we have special knowledge that this addrec won't overflow,
   1687       // we don't need to do any further analysis.
   1688       if (AR->hasNoSignedWrap())
   1689         return getAddRecExpr(
   1690             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1691             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
   1692 
   1693       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1694       // Note that this serves two purposes: It filters out loops that are
   1695       // simply not analyzable, and it covers the case where this code is
   1696       // being called from within backedge-taken count analysis, such that
   1697       // attempting to ask for the backedge-taken count would likely result
   1698       // in infinite recursion. In the later case, the analysis code will
   1699       // cope with a conservative value, and it will take care to purge
   1700       // that value once it has finished.
   1701       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1702       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1703         // Manually compute the final value for AR, checking for
   1704         // overflow.
   1705 
   1706         // Check whether the backedge-taken count can be losslessly casted to
   1707         // the addrec's type. The count is always unsigned.
   1708         const SCEV *CastedMaxBECount =
   1709           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1710         const SCEV *RecastedMaxBECount =
   1711           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1712         if (MaxBECount == RecastedMaxBECount) {
   1713           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1714           // Check whether Start+Step*MaxBECount has no signed overflow.
   1715           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1716           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
   1717           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
   1718           const SCEV *WideMaxBECount =
   1719             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1720           const SCEV *OperandExtendedAdd =
   1721             getAddExpr(WideStart,
   1722                        getMulExpr(WideMaxBECount,
   1723                                   getSignExtendExpr(Step, WideTy)));
   1724           if (SAdd == OperandExtendedAdd) {
   1725             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1726             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1727             // Return the expression with the addrec on the outside.
   1728             return getAddRecExpr(
   1729                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1730                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1731           }
   1732           // Similar to above, only this time treat the step value as unsigned.
   1733           // This covers loops that count up with an unsigned step.
   1734           OperandExtendedAdd =
   1735             getAddExpr(WideStart,
   1736                        getMulExpr(WideMaxBECount,
   1737                                   getZeroExtendExpr(Step, WideTy)));
   1738           if (SAdd == OperandExtendedAdd) {
   1739             // If AR wraps around then
   1740             //
   1741             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
   1742             // => SAdd != OperandExtendedAdd
   1743             //
   1744             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
   1745             // (SAdd == OperandExtendedAdd => AR is NW)
   1746 
   1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1748 
   1749             // Return the expression with the addrec on the outside.
   1750             return getAddRecExpr(
   1751                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1752                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1753           }
   1754         }
   1755       }
   1756 
   1757       // Normally, in the cases we can prove no-overflow via a
   1758       // backedge guarding condition, we can also compute a backedge
   1759       // taken count for the loop.  The exceptions are assumptions and
   1760       // guards present in the loop -- SCEV is not great at exploiting
   1761       // these to compute max backedge taken counts, but can still use
   1762       // these to prove lack of overflow.  Use this fact to avoid
   1763       // doing extra work that may not pay off.
   1764 
   1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
   1766           !AC.assumptions().empty()) {
   1767         // If the backedge is guarded by a comparison with the pre-inc
   1768         // value the addrec is safe. Also, if the entry is guarded by
   1769         // a comparison with the start value and the backedge is
   1770         // guarded by a comparison with the post-inc value, the addrec
   1771         // is safe.
   1772         ICmpInst::Predicate Pred;
   1773         const SCEV *OverflowLimit =
   1774             getSignedOverflowLimitForStep(Step, &Pred, this);
   1775         if (OverflowLimit &&
   1776             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1777              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1778               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1779                                           OverflowLimit)))) {
   1780           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1781           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1782           return getAddRecExpr(
   1783               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1784               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1785         }
   1786       }
   1787 
   1788       // If Start and Step are constants, check if we can apply this
   1789       // transformation:
   1790       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
   1791       auto *SC1 = dyn_cast<SCEVConstant>(Start);
   1792       auto *SC2 = dyn_cast<SCEVConstant>(Step);
   1793       if (SC1 && SC2) {
   1794         const APInt &C1 = SC1->getAPInt();
   1795         const APInt &C2 = SC2->getAPInt();
   1796         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
   1797             C2.isPowerOf2()) {
   1798           Start = getSignExtendExpr(Start, Ty);
   1799           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
   1800                                             AR->getNoWrapFlags());
   1801           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
   1802         }
   1803       }
   1804 
   1805       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
   1806         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1807         return getAddRecExpr(
   1808             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
   1809             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
   1810       }
   1811     }
   1812 
   1813   // If the input value is provably positive and we could not simplify
   1814   // away the sext build a zext instead.
   1815   if (isKnownNonNegative(Op))
   1816     return getZeroExtendExpr(Op, Ty);
   1817 
   1818   // The cast wasn't folded; create an explicit cast node.
   1819   // Recompute the insert position, as it may have been invalidated.
   1820   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1821   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1822                                                    Op, Ty);
   1823   UniqueSCEVs.InsertNode(S, IP);
   1824   return S;
   1825 }
   1826 
   1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1828 /// unspecified bits out to the given type.
   1829 ///
   1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1831                                               Type *Ty) {
   1832   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1833          "This is not an extending conversion!");
   1834   assert(isSCEVable(Ty) &&
   1835          "This is not a conversion to a SCEVable type!");
   1836   Ty = getEffectiveSCEVType(Ty);
   1837 
   1838   // Sign-extend negative constants.
   1839   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1840     if (SC->getAPInt().isNegative())
   1841       return getSignExtendExpr(Op, Ty);
   1842 
   1843   // Peel off a truncate cast.
   1844   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1845     const SCEV *NewOp = T->getOperand();
   1846     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1847       return getAnyExtendExpr(NewOp, Ty);
   1848     return getTruncateOrNoop(NewOp, Ty);
   1849   }
   1850 
   1851   // Next try a zext cast. If the cast is folded, use it.
   1852   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1853   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1854     return ZExt;
   1855 
   1856   // Next try a sext cast. If the cast is folded, use it.
   1857   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1858   if (!isa<SCEVSignExtendExpr>(SExt))
   1859     return SExt;
   1860 
   1861   // Force the cast to be folded into the operands of an addrec.
   1862   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1863     SmallVector<const SCEV *, 4> Ops;
   1864     for (const SCEV *Op : AR->operands())
   1865       Ops.push_back(getAnyExtendExpr(Op, Ty));
   1866     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1867   }
   1868 
   1869   // If the expression is obviously signed, use the sext cast value.
   1870   if (isa<SCEVSMaxExpr>(Op))
   1871     return SExt;
   1872 
   1873   // Absent any other information, use the zext cast value.
   1874   return ZExt;
   1875 }
   1876 
   1877 /// Process the given Ops list, which is a list of operands to be added under
   1878 /// the given scale, update the given map. This is a helper function for
   1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands
   1880 /// that would form an add expression like this:
   1881 ///
   1882 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
   1883 ///
   1884 /// where A and B are constants, update the map with these values:
   1885 ///
   1886 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1887 ///
   1888 /// and add 13 + A*B*29 to AccumulatedConstant.
   1889 /// This will allow getAddRecExpr to produce this:
   1890 ///
   1891 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1892 ///
   1893 /// This form often exposes folding opportunities that are hidden in
   1894 /// the original operand list.
   1895 ///
   1896 /// Return true iff it appears that any interesting folding opportunities
   1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1898 /// the common case where no interesting opportunities are present, and
   1899 /// is also used as a check to avoid infinite recursion.
   1900 ///
   1901 static bool
   1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1903                              SmallVectorImpl<const SCEV *> &NewOps,
   1904                              APInt &AccumulatedConstant,
   1905                              const SCEV *const *Ops, size_t NumOperands,
   1906                              const APInt &Scale,
   1907                              ScalarEvolution &SE) {
   1908   bool Interesting = false;
   1909 
   1910   // Iterate over the add operands. They are sorted, with constants first.
   1911   unsigned i = 0;
   1912   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1913     ++i;
   1914     // Pull a buried constant out to the outside.
   1915     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1916       Interesting = true;
   1917     AccumulatedConstant += Scale * C->getAPInt();
   1918   }
   1919 
   1920   // Next comes everything else. We're especially interested in multiplies
   1921   // here, but they're in the middle, so just visit the rest with one loop.
   1922   for (; i != NumOperands; ++i) {
   1923     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1924     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1925       APInt NewScale =
   1926           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
   1927       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1928         // A multiplication of a constant with another add; recurse.
   1929         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1930         Interesting |=
   1931           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1932                                        Add->op_begin(), Add->getNumOperands(),
   1933                                        NewScale, SE);
   1934       } else {
   1935         // A multiplication of a constant with some other value. Update
   1936         // the map.
   1937         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1938         const SCEV *Key = SE.getMulExpr(MulOps);
   1939         auto Pair = M.insert({Key, NewScale});
   1940         if (Pair.second) {
   1941           NewOps.push_back(Pair.first->first);
   1942         } else {
   1943           Pair.first->second += NewScale;
   1944           // The map already had an entry for this value, which may indicate
   1945           // a folding opportunity.
   1946           Interesting = true;
   1947         }
   1948       }
   1949     } else {
   1950       // An ordinary operand. Update the map.
   1951       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1952           M.insert({Ops[i], Scale});
   1953       if (Pair.second) {
   1954         NewOps.push_back(Pair.first->first);
   1955       } else {
   1956         Pair.first->second += Scale;
   1957         // The map already had an entry for this value, which may indicate
   1958         // a folding opportunity.
   1959         Interesting = true;
   1960       }
   1961     }
   1962   }
   1963 
   1964   return Interesting;
   1965 }
   1966 
   1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
   1968 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
   1969 // can't-overflow flags for the operation if possible.
   1970 static SCEV::NoWrapFlags
   1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
   1972                       const SmallVectorImpl<const SCEV *> &Ops,
   1973                       SCEV::NoWrapFlags Flags) {
   1974   using namespace std::placeholders;
   1975   typedef OverflowingBinaryOperator OBO;
   1976 
   1977   bool CanAnalyze =
   1978       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
   1979   (void)CanAnalyze;
   1980   assert(CanAnalyze && "don't call from other places!");
   1981 
   1982   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1983   SCEV::NoWrapFlags SignOrUnsignWrap =
   1984       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   1985 
   1986   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1987   auto IsKnownNonNegative = [&](const SCEV *S) {
   1988     return SE->isKnownNonNegative(S);
   1989   };
   1990 
   1991   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
   1992     Flags =
   1993         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1994 
   1995   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
   1996 
   1997   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
   1998       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
   1999 
   2000     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
   2001     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
   2002 
   2003     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
   2004     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
   2005       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
   2006           Instruction::Add, C, OBO::NoSignedWrap);
   2007       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
   2008         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
   2009     }
   2010     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
   2011       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
   2012           Instruction::Add, C, OBO::NoUnsignedWrap);
   2013       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
   2014         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
   2015     }
   2016   }
   2017 
   2018   return Flags;
   2019 }
   2020 
   2021 /// Get a canonical add expression, or something simpler if possible.
   2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   2023                                         SCEV::NoWrapFlags Flags) {
   2024   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   2025          "only nuw or nsw allowed");
   2026   assert(!Ops.empty() && "Cannot get empty add!");
   2027   if (Ops.size() == 1) return Ops[0];
   2028 #ifndef NDEBUG
   2029   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2030   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2031     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2032            "SCEVAddExpr operand types don't match!");
   2033 #endif
   2034 
   2035   // Sort by complexity, this groups all similar expression types together.
   2036   GroupByComplexity(Ops, &LI);
   2037 
   2038   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
   2039 
   2040   // If there are any constants, fold them together.
   2041   unsigned Idx = 0;
   2042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2043     ++Idx;
   2044     assert(Idx < Ops.size());
   2045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2046       // We found two constants, fold them together!
   2047       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
   2048       if (Ops.size() == 2) return Ops[0];
   2049       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2050       LHSC = cast<SCEVConstant>(Ops[0]);
   2051     }
   2052 
   2053     // If we are left with a constant zero being added, strip it off.
   2054     if (LHSC->getValue()->isZero()) {
   2055       Ops.erase(Ops.begin());
   2056       --Idx;
   2057     }
   2058 
   2059     if (Ops.size() == 1) return Ops[0];
   2060   }
   2061 
   2062   // Okay, check to see if the same value occurs in the operand list more than
   2063   // once.  If so, merge them together into an multiply expression.  Since we
   2064   // sorted the list, these values are required to be adjacent.
   2065   Type *Ty = Ops[0]->getType();
   2066   bool FoundMatch = false;
   2067   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   2068     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   2069       // Scan ahead to count how many equal operands there are.
   2070       unsigned Count = 2;
   2071       while (i+Count != e && Ops[i+Count] == Ops[i])
   2072         ++Count;
   2073       // Merge the values into a multiply.
   2074       const SCEV *Scale = getConstant(Ty, Count);
   2075       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   2076       if (Ops.size() == Count)
   2077         return Mul;
   2078       Ops[i] = Mul;
   2079       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   2080       --i; e -= Count - 1;
   2081       FoundMatch = true;
   2082     }
   2083   if (FoundMatch)
   2084     return getAddExpr(Ops, Flags);
   2085 
   2086   // Check for truncates. If all the operands are truncated from the same
   2087   // type, see if factoring out the truncate would permit the result to be
   2088   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   2089   // if the contents of the resulting outer trunc fold to something simple.
   2090   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   2091     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   2092     Type *DstType = Trunc->getType();
   2093     Type *SrcType = Trunc->getOperand()->getType();
   2094     SmallVector<const SCEV *, 8> LargeOps;
   2095     bool Ok = true;
   2096     // Check all the operands to see if they can be represented in the
   2097     // source type of the truncate.
   2098     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   2099       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   2100         if (T->getOperand()->getType() != SrcType) {
   2101           Ok = false;
   2102           break;
   2103         }
   2104         LargeOps.push_back(T->getOperand());
   2105       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   2106         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   2107       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   2108         SmallVector<const SCEV *, 8> LargeMulOps;
   2109         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   2110           if (const SCEVTruncateExpr *T =
   2111                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   2112             if (T->getOperand()->getType() != SrcType) {
   2113               Ok = false;
   2114               break;
   2115             }
   2116             LargeMulOps.push_back(T->getOperand());
   2117           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
   2118             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   2119           } else {
   2120             Ok = false;
   2121             break;
   2122           }
   2123         }
   2124         if (Ok)
   2125           LargeOps.push_back(getMulExpr(LargeMulOps));
   2126       } else {
   2127         Ok = false;
   2128         break;
   2129       }
   2130     }
   2131     if (Ok) {
   2132       // Evaluate the expression in the larger type.
   2133       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   2134       // If it folds to something simple, use it. Otherwise, don't.
   2135       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   2136         return getTruncateExpr(Fold, DstType);
   2137     }
   2138   }
   2139 
   2140   // Skip past any other cast SCEVs.
   2141   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   2142     ++Idx;
   2143 
   2144   // If there are add operands they would be next.
   2145   if (Idx < Ops.size()) {
   2146     bool DeletedAdd = false;
   2147     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   2148       // If we have an add, expand the add operands onto the end of the operands
   2149       // list.
   2150       Ops.erase(Ops.begin()+Idx);
   2151       Ops.append(Add->op_begin(), Add->op_end());
   2152       DeletedAdd = true;
   2153     }
   2154 
   2155     // If we deleted at least one add, we added operands to the end of the list,
   2156     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2157     // any operands we just acquired.
   2158     if (DeletedAdd)
   2159       return getAddExpr(Ops);
   2160   }
   2161 
   2162   // Skip over the add expression until we get to a multiply.
   2163   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2164     ++Idx;
   2165 
   2166   // Check to see if there are any folding opportunities present with
   2167   // operands multiplied by constant values.
   2168   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   2169     uint64_t BitWidth = getTypeSizeInBits(Ty);
   2170     DenseMap<const SCEV *, APInt> M;
   2171     SmallVector<const SCEV *, 8> NewOps;
   2172     APInt AccumulatedConstant(BitWidth, 0);
   2173     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   2174                                      Ops.data(), Ops.size(),
   2175                                      APInt(BitWidth, 1), *this)) {
   2176       struct APIntCompare {
   2177         bool operator()(const APInt &LHS, const APInt &RHS) const {
   2178           return LHS.ult(RHS);
   2179         }
   2180       };
   2181 
   2182       // Some interesting folding opportunity is present, so its worthwhile to
   2183       // re-generate the operands list. Group the operands by constant scale,
   2184       // to avoid multiplying by the same constant scale multiple times.
   2185       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   2186       for (const SCEV *NewOp : NewOps)
   2187         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
   2188       // Re-generate the operands list.
   2189       Ops.clear();
   2190       if (AccumulatedConstant != 0)
   2191         Ops.push_back(getConstant(AccumulatedConstant));
   2192       for (auto &MulOp : MulOpLists)
   2193         if (MulOp.first != 0)
   2194           Ops.push_back(getMulExpr(getConstant(MulOp.first),
   2195                                    getAddExpr(MulOp.second)));
   2196       if (Ops.empty())
   2197         return getZero(Ty);
   2198       if (Ops.size() == 1)
   2199         return Ops[0];
   2200       return getAddExpr(Ops);
   2201     }
   2202   }
   2203 
   2204   // If we are adding something to a multiply expression, make sure the
   2205   // something is not already an operand of the multiply.  If so, merge it into
   2206   // the multiply.
   2207   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   2208     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   2209     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   2210       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   2211       if (isa<SCEVConstant>(MulOpSCEV))
   2212         continue;
   2213       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   2214         if (MulOpSCEV == Ops[AddOp]) {
   2215           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   2216           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   2217           if (Mul->getNumOperands() != 2) {
   2218             // If the multiply has more than two operands, we must get the
   2219             // Y*Z term.
   2220             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2221                                                 Mul->op_begin()+MulOp);
   2222             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2223             InnerMul = getMulExpr(MulOps);
   2224           }
   2225           const SCEV *One = getOne(Ty);
   2226           const SCEV *AddOne = getAddExpr(One, InnerMul);
   2227           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   2228           if (Ops.size() == 2) return OuterMul;
   2229           if (AddOp < Idx) {
   2230             Ops.erase(Ops.begin()+AddOp);
   2231             Ops.erase(Ops.begin()+Idx-1);
   2232           } else {
   2233             Ops.erase(Ops.begin()+Idx);
   2234             Ops.erase(Ops.begin()+AddOp-1);
   2235           }
   2236           Ops.push_back(OuterMul);
   2237           return getAddExpr(Ops);
   2238         }
   2239 
   2240       // Check this multiply against other multiplies being added together.
   2241       for (unsigned OtherMulIdx = Idx+1;
   2242            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   2243            ++OtherMulIdx) {
   2244         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   2245         // If MulOp occurs in OtherMul, we can fold the two multiplies
   2246         // together.
   2247         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   2248              OMulOp != e; ++OMulOp)
   2249           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   2250             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   2251             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   2252             if (Mul->getNumOperands() != 2) {
   2253               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   2254                                                   Mul->op_begin()+MulOp);
   2255               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   2256               InnerMul1 = getMulExpr(MulOps);
   2257             }
   2258             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   2259             if (OtherMul->getNumOperands() != 2) {
   2260               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   2261                                                   OtherMul->op_begin()+OMulOp);
   2262               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   2263               InnerMul2 = getMulExpr(MulOps);
   2264             }
   2265             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   2266             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   2267             if (Ops.size() == 2) return OuterMul;
   2268             Ops.erase(Ops.begin()+Idx);
   2269             Ops.erase(Ops.begin()+OtherMulIdx-1);
   2270             Ops.push_back(OuterMul);
   2271             return getAddExpr(Ops);
   2272           }
   2273       }
   2274     }
   2275   }
   2276 
   2277   // If there are any add recurrences in the operands list, see if any other
   2278   // added values are loop invariant.  If so, we can fold them into the
   2279   // recurrence.
   2280   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2281     ++Idx;
   2282 
   2283   // Scan over all recurrences, trying to fold loop invariants into them.
   2284   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2285     // Scan all of the other operands to this add and add them to the vector if
   2286     // they are loop invariant w.r.t. the recurrence.
   2287     SmallVector<const SCEV *, 8> LIOps;
   2288     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2289     const Loop *AddRecLoop = AddRec->getLoop();
   2290     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2291       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2292         LIOps.push_back(Ops[i]);
   2293         Ops.erase(Ops.begin()+i);
   2294         --i; --e;
   2295       }
   2296 
   2297     // If we found some loop invariants, fold them into the recurrence.
   2298     if (!LIOps.empty()) {
   2299       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   2300       LIOps.push_back(AddRec->getStart());
   2301 
   2302       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2303                                              AddRec->op_end());
   2304       // This follows from the fact that the no-wrap flags on the outer add
   2305       // expression are applicable on the 0th iteration, when the add recurrence
   2306       // will be equal to its start value.
   2307       AddRecOps[0] = getAddExpr(LIOps, Flags);
   2308 
   2309       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2310       // outer add and the inner addrec are guaranteed to have no overflow.
   2311       // Always propagate NW.
   2312       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   2313       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   2314 
   2315       // If all of the other operands were loop invariant, we are done.
   2316       if (Ops.size() == 1) return NewRec;
   2317 
   2318       // Otherwise, add the folded AddRec by the non-invariant parts.
   2319       for (unsigned i = 0;; ++i)
   2320         if (Ops[i] == AddRec) {
   2321           Ops[i] = NewRec;
   2322           break;
   2323         }
   2324       return getAddExpr(Ops);
   2325     }
   2326 
   2327     // Okay, if there weren't any loop invariants to be folded, check to see if
   2328     // there are multiple AddRec's with the same loop induction variable being
   2329     // added together.  If so, we can fold them.
   2330     for (unsigned OtherIdx = Idx+1;
   2331          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2332          ++OtherIdx)
   2333       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   2334         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   2335         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   2336                                                AddRec->op_end());
   2337         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2338              ++OtherIdx)
   2339           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   2340             if (OtherAddRec->getLoop() == AddRecLoop) {
   2341               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   2342                    i != e; ++i) {
   2343                 if (i >= AddRecOps.size()) {
   2344                   AddRecOps.append(OtherAddRec->op_begin()+i,
   2345                                    OtherAddRec->op_end());
   2346                   break;
   2347                 }
   2348                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   2349                                           OtherAddRec->getOperand(i));
   2350               }
   2351               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2352             }
   2353         // Step size has changed, so we cannot guarantee no self-wraparound.
   2354         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   2355         return getAddExpr(Ops);
   2356       }
   2357 
   2358     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2359     // next one.
   2360   }
   2361 
   2362   // Okay, it looks like we really DO need an add expr.  Check to see if we
   2363   // already have one, otherwise create a new one.
   2364   FoldingSetNodeID ID;
   2365   ID.AddInteger(scAddExpr);
   2366   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2367     ID.AddPointer(Ops[i]);
   2368   void *IP = nullptr;
   2369   SCEVAddExpr *S =
   2370     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2371   if (!S) {
   2372     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2373     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2374     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   2375                                         O, Ops.size());
   2376     UniqueSCEVs.InsertNode(S, IP);
   2377   }
   2378   S->setNoWrapFlags(Flags);
   2379   return S;
   2380 }
   2381 
   2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   2383   uint64_t k = i*j;
   2384   if (j > 1 && k / j != i) Overflow = true;
   2385   return k;
   2386 }
   2387 
   2388 /// Compute the result of "n choose k", the binomial coefficient.  If an
   2389 /// intermediate computation overflows, Overflow will be set and the return will
   2390 /// be garbage. Overflow is not cleared on absence of overflow.
   2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   2392   // We use the multiplicative formula:
   2393   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   2394   // At each iteration, we take the n-th term of the numeral and divide by the
   2395   // (k-n)th term of the denominator.  This division will always produce an
   2396   // integral result, and helps reduce the chance of overflow in the
   2397   // intermediate computations. However, we can still overflow even when the
   2398   // final result would fit.
   2399 
   2400   if (n == 0 || n == k) return 1;
   2401   if (k > n) return 0;
   2402 
   2403   if (k > n/2)
   2404     k = n-k;
   2405 
   2406   uint64_t r = 1;
   2407   for (uint64_t i = 1; i <= k; ++i) {
   2408     r = umul_ov(r, n-(i-1), Overflow);
   2409     r /= i;
   2410   }
   2411   return r;
   2412 }
   2413 
   2414 /// Determine if any of the operands in this SCEV are a constant or if
   2415 /// any of the add or multiply expressions in this SCEV contain a constant.
   2416 static bool containsConstantSomewhere(const SCEV *StartExpr) {
   2417   SmallVector<const SCEV *, 4> Ops;
   2418   Ops.push_back(StartExpr);
   2419   while (!Ops.empty()) {
   2420     const SCEV *CurrentExpr = Ops.pop_back_val();
   2421     if (isa<SCEVConstant>(*CurrentExpr))
   2422       return true;
   2423 
   2424     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
   2425       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
   2426       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
   2427     }
   2428   }
   2429   return false;
   2430 }
   2431 
   2432 /// Get a canonical multiply expression, or something simpler if possible.
   2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   2434                                         SCEV::NoWrapFlags Flags) {
   2435   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   2436          "only nuw or nsw allowed");
   2437   assert(!Ops.empty() && "Cannot get empty mul!");
   2438   if (Ops.size() == 1) return Ops[0];
   2439 #ifndef NDEBUG
   2440   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2441   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2442     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2443            "SCEVMulExpr operand types don't match!");
   2444 #endif
   2445 
   2446   // Sort by complexity, this groups all similar expression types together.
   2447   GroupByComplexity(Ops, &LI);
   2448 
   2449   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
   2450 
   2451   // If there are any constants, fold them together.
   2452   unsigned Idx = 0;
   2453   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2454 
   2455     // C1*(C2+V) -> C1*C2 + C1*V
   2456     if (Ops.size() == 2)
   2457         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   2458           // If any of Add's ops are Adds or Muls with a constant,
   2459           // apply this transformation as well.
   2460           if (Add->getNumOperands() == 2)
   2461             if (containsConstantSomewhere(Add))
   2462               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   2463                                 getMulExpr(LHSC, Add->getOperand(1)));
   2464 
   2465     ++Idx;
   2466     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2467       // We found two constants, fold them together!
   2468       ConstantInt *Fold =
   2469           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
   2470       Ops[0] = getConstant(Fold);
   2471       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2472       if (Ops.size() == 1) return Ops[0];
   2473       LHSC = cast<SCEVConstant>(Ops[0]);
   2474     }
   2475 
   2476     // If we are left with a constant one being multiplied, strip it off.
   2477     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   2478       Ops.erase(Ops.begin());
   2479       --Idx;
   2480     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   2481       // If we have a multiply of zero, it will always be zero.
   2482       return Ops[0];
   2483     } else if (Ops[0]->isAllOnesValue()) {
   2484       // If we have a mul by -1 of an add, try distributing the -1 among the
   2485       // add operands.
   2486       if (Ops.size() == 2) {
   2487         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   2488           SmallVector<const SCEV *, 4> NewOps;
   2489           bool AnyFolded = false;
   2490           for (const SCEV *AddOp : Add->operands()) {
   2491             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
   2492             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   2493             NewOps.push_back(Mul);
   2494           }
   2495           if (AnyFolded)
   2496             return getAddExpr(NewOps);
   2497         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   2498           // Negation preserves a recurrence's no self-wrap property.
   2499           SmallVector<const SCEV *, 4> Operands;
   2500           for (const SCEV *AddRecOp : AddRec->operands())
   2501             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
   2502 
   2503           return getAddRecExpr(Operands, AddRec->getLoop(),
   2504                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   2505         }
   2506       }
   2507     }
   2508 
   2509     if (Ops.size() == 1)
   2510       return Ops[0];
   2511   }
   2512 
   2513   // Skip over the add expression until we get to a multiply.
   2514   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   2515     ++Idx;
   2516 
   2517   // If there are mul operands inline them all into this expression.
   2518   if (Idx < Ops.size()) {
   2519     bool DeletedMul = false;
   2520     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   2521       // If we have an mul, expand the mul operands onto the end of the operands
   2522       // list.
   2523       Ops.erase(Ops.begin()+Idx);
   2524       Ops.append(Mul->op_begin(), Mul->op_end());
   2525       DeletedMul = true;
   2526     }
   2527 
   2528     // If we deleted at least one mul, we added operands to the end of the list,
   2529     // and they are not necessarily sorted.  Recurse to resort and resimplify
   2530     // any operands we just acquired.
   2531     if (DeletedMul)
   2532       return getMulExpr(Ops);
   2533   }
   2534 
   2535   // If there are any add recurrences in the operands list, see if any other
   2536   // added values are loop invariant.  If so, we can fold them into the
   2537   // recurrence.
   2538   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   2539     ++Idx;
   2540 
   2541   // Scan over all recurrences, trying to fold loop invariants into them.
   2542   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   2543     // Scan all of the other operands to this mul and add them to the vector if
   2544     // they are loop invariant w.r.t. the recurrence.
   2545     SmallVector<const SCEV *, 8> LIOps;
   2546     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   2547     const Loop *AddRecLoop = AddRec->getLoop();
   2548     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2549       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2550         LIOps.push_back(Ops[i]);
   2551         Ops.erase(Ops.begin()+i);
   2552         --i; --e;
   2553       }
   2554 
   2555     // If we found some loop invariants, fold them into the recurrence.
   2556     if (!LIOps.empty()) {
   2557       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   2558       SmallVector<const SCEV *, 4> NewOps;
   2559       NewOps.reserve(AddRec->getNumOperands());
   2560       const SCEV *Scale = getMulExpr(LIOps);
   2561       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2562         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2563 
   2564       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2565       // outer mul and the inner addrec are guaranteed to have no overflow.
   2566       //
   2567       // No self-wrap cannot be guaranteed after changing the step size, but
   2568       // will be inferred if either NUW or NSW is true.
   2569       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2570       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2571 
   2572       // If all of the other operands were loop invariant, we are done.
   2573       if (Ops.size() == 1) return NewRec;
   2574 
   2575       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2576       for (unsigned i = 0;; ++i)
   2577         if (Ops[i] == AddRec) {
   2578           Ops[i] = NewRec;
   2579           break;
   2580         }
   2581       return getMulExpr(Ops);
   2582     }
   2583 
   2584     // Okay, if there weren't any loop invariants to be folded, check to see if
   2585     // there are multiple AddRec's with the same loop induction variable being
   2586     // multiplied together.  If so, we can fold them.
   2587 
   2588     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2589     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2590     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2591     //   ]]],+,...up to x=2n}.
   2592     // Note that the arguments to choose() are always integers with values
   2593     // known at compile time, never SCEV objects.
   2594     //
   2595     // The implementation avoids pointless extra computations when the two
   2596     // addrec's are of different length (mathematically, it's equivalent to
   2597     // an infinite stream of zeros on the right).
   2598     bool OpsModified = false;
   2599     for (unsigned OtherIdx = Idx+1;
   2600          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2601          ++OtherIdx) {
   2602       const SCEVAddRecExpr *OtherAddRec =
   2603         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
   2604       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
   2605         continue;
   2606 
   2607       bool Overflow = false;
   2608       Type *Ty = AddRec->getType();
   2609       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2610       SmallVector<const SCEV*, 7> AddRecOps;
   2611       for (int x = 0, xe = AddRec->getNumOperands() +
   2612              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
   2613         const SCEV *Term = getZero(Ty);
   2614         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2615           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2616           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2617                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2618                z < ze && !Overflow; ++z) {
   2619             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2620             uint64_t Coeff;
   2621             if (LargerThan64Bits)
   2622               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2623             else
   2624               Coeff = Coeff1*Coeff2;
   2625             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2626             const SCEV *Term1 = AddRec->getOperand(y-z);
   2627             const SCEV *Term2 = OtherAddRec->getOperand(z);
   2628             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2629           }
   2630         }
   2631         AddRecOps.push_back(Term);
   2632       }
   2633       if (!Overflow) {
   2634         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
   2635                                               SCEV::FlagAnyWrap);
   2636         if (Ops.size() == 2) return NewAddRec;
   2637         Ops[Idx] = NewAddRec;
   2638         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2639         OpsModified = true;
   2640         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
   2641         if (!AddRec)
   2642           break;
   2643       }
   2644     }
   2645     if (OpsModified)
   2646       return getMulExpr(Ops);
   2647 
   2648     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2649     // next one.
   2650   }
   2651 
   2652   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2653   // already have one, otherwise create a new one.
   2654   FoldingSetNodeID ID;
   2655   ID.AddInteger(scMulExpr);
   2656   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2657     ID.AddPointer(Ops[i]);
   2658   void *IP = nullptr;
   2659   SCEVMulExpr *S =
   2660     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2661   if (!S) {
   2662     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2663     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2664     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2665                                         O, Ops.size());
   2666     UniqueSCEVs.InsertNode(S, IP);
   2667   }
   2668   S->setNoWrapFlags(Flags);
   2669   return S;
   2670 }
   2671 
   2672 /// Get a canonical unsigned division expression, or something simpler if
   2673 /// possible.
   2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2675                                          const SCEV *RHS) {
   2676   assert(getEffectiveSCEVType(LHS->getType()) ==
   2677          getEffectiveSCEVType(RHS->getType()) &&
   2678          "SCEVUDivExpr operand types don't match!");
   2679 
   2680   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2681     if (RHSC->getValue()->equalsInt(1))
   2682       return LHS;                               // X udiv 1 --> x
   2683     // If the denominator is zero, the result of the udiv is undefined. Don't
   2684     // try to analyze it, because the resolution chosen here may differ from
   2685     // the resolution chosen in other parts of the compiler.
   2686     if (!RHSC->getValue()->isZero()) {
   2687       // Determine if the division can be folded into the operands of
   2688       // its operands.
   2689       // TODO: Generalize this to non-constants by using known-bits information.
   2690       Type *Ty = LHS->getType();
   2691       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
   2692       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2693       // For non-power-of-two values, effectively round the value up to the
   2694       // nearest power of two.
   2695       if (!RHSC->getAPInt().isPowerOf2())
   2696         ++MaxShiftAmt;
   2697       IntegerType *ExtTy =
   2698         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2699       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2700         if (const SCEVConstant *Step =
   2701             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2702           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2703           const APInt &StepInt = Step->getAPInt();
   2704           const APInt &DivInt = RHSC->getAPInt();
   2705           if (!StepInt.urem(DivInt) &&
   2706               getZeroExtendExpr(AR, ExtTy) ==
   2707               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2708                             getZeroExtendExpr(Step, ExtTy),
   2709                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2710             SmallVector<const SCEV *, 4> Operands;
   2711             for (const SCEV *Op : AR->operands())
   2712               Operands.push_back(getUDivExpr(Op, RHS));
   2713             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
   2714           }
   2715           /// Get a canonical UDivExpr for a recurrence.
   2716           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2717           // We can currently only fold X%N if X is constant.
   2718           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2719           if (StartC && !DivInt.urem(StepInt) &&
   2720               getZeroExtendExpr(AR, ExtTy) ==
   2721               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2722                             getZeroExtendExpr(Step, ExtTy),
   2723                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2724             const APInt &StartInt = StartC->getAPInt();
   2725             const APInt &StartRem = StartInt.urem(StepInt);
   2726             if (StartRem != 0)
   2727               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2728                                   AR->getLoop(), SCEV::FlagNW);
   2729           }
   2730         }
   2731       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2732       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2733         SmallVector<const SCEV *, 4> Operands;
   2734         for (const SCEV *Op : M->operands())
   2735           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
   2736         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2737           // Find an operand that's safely divisible.
   2738           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2739             const SCEV *Op = M->getOperand(i);
   2740             const SCEV *Div = getUDivExpr(Op, RHSC);
   2741             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2742               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2743                                                       M->op_end());
   2744               Operands[i] = Div;
   2745               return getMulExpr(Operands);
   2746             }
   2747           }
   2748       }
   2749       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2750       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2751         SmallVector<const SCEV *, 4> Operands;
   2752         for (const SCEV *Op : A->operands())
   2753           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
   2754         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2755           Operands.clear();
   2756           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2757             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2758             if (isa<SCEVUDivExpr>(Op) ||
   2759                 getMulExpr(Op, RHS) != A->getOperand(i))
   2760               break;
   2761             Operands.push_back(Op);
   2762           }
   2763           if (Operands.size() == A->getNumOperands())
   2764             return getAddExpr(Operands);
   2765         }
   2766       }
   2767 
   2768       // Fold if both operands are constant.
   2769       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2770         Constant *LHSCV = LHSC->getValue();
   2771         Constant *RHSCV = RHSC->getValue();
   2772         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2773                                                                    RHSCV)));
   2774       }
   2775     }
   2776   }
   2777 
   2778   FoldingSetNodeID ID;
   2779   ID.AddInteger(scUDivExpr);
   2780   ID.AddPointer(LHS);
   2781   ID.AddPointer(RHS);
   2782   void *IP = nullptr;
   2783   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2784   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2785                                              LHS, RHS);
   2786   UniqueSCEVs.InsertNode(S, IP);
   2787   return S;
   2788 }
   2789 
   2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
   2791   APInt A = C1->getAPInt().abs();
   2792   APInt B = C2->getAPInt().abs();
   2793   uint32_t ABW = A.getBitWidth();
   2794   uint32_t BBW = B.getBitWidth();
   2795 
   2796   if (ABW > BBW)
   2797     B = B.zext(ABW);
   2798   else if (ABW < BBW)
   2799     A = A.zext(BBW);
   2800 
   2801   return APIntOps::GreatestCommonDivisor(A, B);
   2802 }
   2803 
   2804 /// Get a canonical unsigned division expression, or something simpler if
   2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we
   2806 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
   2807 /// it's not exact because the udiv may be clearing bits.
   2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
   2809                                               const SCEV *RHS) {
   2810   // TODO: we could try to find factors in all sorts of things, but for now we
   2811   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
   2812   // end of this file for inspiration.
   2813 
   2814   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
   2815   if (!Mul)
   2816     return getUDivExpr(LHS, RHS);
   2817 
   2818   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
   2819     // If the mulexpr multiplies by a constant, then that constant must be the
   2820     // first element of the mulexpr.
   2821     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   2822       if (LHSCst == RHSCst) {
   2823         SmallVector<const SCEV *, 2> Operands;
   2824         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2825         return getMulExpr(Operands);
   2826       }
   2827 
   2828       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
   2829       // that there's a factor provided by one of the other terms. We need to
   2830       // check.
   2831       APInt Factor = gcd(LHSCst, RHSCst);
   2832       if (!Factor.isIntN(1)) {
   2833         LHSCst =
   2834             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
   2835         RHSCst =
   2836             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
   2837         SmallVector<const SCEV *, 2> Operands;
   2838         Operands.push_back(LHSCst);
   2839         Operands.append(Mul->op_begin() + 1, Mul->op_end());
   2840         LHS = getMulExpr(Operands);
   2841         RHS = RHSCst;
   2842         Mul = dyn_cast<SCEVMulExpr>(LHS);
   2843         if (!Mul)
   2844           return getUDivExactExpr(LHS, RHS);
   2845       }
   2846     }
   2847   }
   2848 
   2849   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
   2850     if (Mul->getOperand(i) == RHS) {
   2851       SmallVector<const SCEV *, 2> Operands;
   2852       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
   2853       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
   2854       return getMulExpr(Operands);
   2855     }
   2856   }
   2857 
   2858   return getUDivExpr(LHS, RHS);
   2859 }
   2860 
   2861 /// Get an add recurrence expression for the specified loop.  Simplify the
   2862 /// expression as much as possible.
   2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2864                                            const Loop *L,
   2865                                            SCEV::NoWrapFlags Flags) {
   2866   SmallVector<const SCEV *, 4> Operands;
   2867   Operands.push_back(Start);
   2868   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2869     if (StepChrec->getLoop() == L) {
   2870       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2871       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2872     }
   2873 
   2874   Operands.push_back(Step);
   2875   return getAddRecExpr(Operands, L, Flags);
   2876 }
   2877 
   2878 /// Get an add recurrence expression for the specified loop.  Simplify the
   2879 /// expression as much as possible.
   2880 const SCEV *
   2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2882                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2883   if (Operands.size() == 1) return Operands[0];
   2884 #ifndef NDEBUG
   2885   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2886   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2887     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2888            "SCEVAddRecExpr operand types don't match!");
   2889   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2890     assert(isLoopInvariant(Operands[i], L) &&
   2891            "SCEVAddRecExpr operand is not loop-invariant!");
   2892 #endif
   2893 
   2894   if (Operands.back()->isZero()) {
   2895     Operands.pop_back();
   2896     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2897   }
   2898 
   2899   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2900   // use that information to infer NUW and NSW flags. However, computing a
   2901   // BE count requires calling getAddRecExpr, so we may not yet have a
   2902   // meaningful BE count at this point (and if we don't, we'd be stuck
   2903   // with a SCEVCouldNotCompute as the cached BE count).
   2904 
   2905   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
   2906 
   2907   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2908   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2909     const Loop *NestedLoop = NestedAR->getLoop();
   2910     if (L->contains(NestedLoop)
   2911             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
   2912             : (!NestedLoop->contains(L) &&
   2913                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2914       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2915                                                   NestedAR->op_end());
   2916       Operands[0] = NestedAR->getStart();
   2917       // AddRecs require their operands be loop-invariant with respect to their
   2918       // loops. Don't perform this transformation if it would break this
   2919       // requirement.
   2920       bool AllInvariant = all_of(
   2921           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
   2922 
   2923       if (AllInvariant) {
   2924         // Create a recurrence for the outer loop with the same step size.
   2925         //
   2926         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2927         // inner recurrence has the same property.
   2928         SCEV::NoWrapFlags OuterFlags =
   2929           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2930 
   2931         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2932         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
   2933           return isLoopInvariant(Op, NestedLoop);
   2934         });
   2935 
   2936         if (AllInvariant) {
   2937           // Ok, both add recurrences are valid after the transformation.
   2938           //
   2939           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2940           // the outer recurrence has the same property.
   2941           SCEV::NoWrapFlags InnerFlags =
   2942             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2943           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2944         }
   2945       }
   2946       // Reset Operands to its original state.
   2947       Operands[0] = NestedAR;
   2948     }
   2949   }
   2950 
   2951   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2952   // already have one, otherwise create a new one.
   2953   FoldingSetNodeID ID;
   2954   ID.AddInteger(scAddRecExpr);
   2955   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2956     ID.AddPointer(Operands[i]);
   2957   ID.AddPointer(L);
   2958   void *IP = nullptr;
   2959   SCEVAddRecExpr *S =
   2960     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2961   if (!S) {
   2962     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2963     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2964     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2965                                            O, Operands.size(), L);
   2966     UniqueSCEVs.InsertNode(S, IP);
   2967   }
   2968   S->setNoWrapFlags(Flags);
   2969   return S;
   2970 }
   2971 
   2972 const SCEV *
   2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
   2974                             const SmallVectorImpl<const SCEV *> &IndexExprs,
   2975                             bool InBounds) {
   2976   // getSCEV(Base)->getType() has the same address space as Base->getType()
   2977   // because SCEV::getType() preserves the address space.
   2978   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
   2979   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
   2980   // instruction to its SCEV, because the Instruction may be guarded by control
   2981   // flow and the no-overflow bits may not be valid for the expression in any
   2982   // context. This can be fixed similarly to how these flags are handled for
   2983   // adds.
   2984   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   2985 
   2986   const SCEV *TotalOffset = getZero(IntPtrTy);
   2987   // The address space is unimportant. The first thing we do on CurTy is getting
   2988   // its element type.
   2989   Type *CurTy = PointerType::getUnqual(PointeeType);
   2990   for (const SCEV *IndexExpr : IndexExprs) {
   2991     // Compute the (potentially symbolic) offset in bytes for this index.
   2992     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   2993       // For a struct, add the member offset.
   2994       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
   2995       unsigned FieldNo = Index->getZExtValue();
   2996       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
   2997 
   2998       // Add the field offset to the running total offset.
   2999       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3000 
   3001       // Update CurTy to the type of the field at Index.
   3002       CurTy = STy->getTypeAtIndex(Index);
   3003     } else {
   3004       // Update CurTy to its element type.
   3005       CurTy = cast<SequentialType>(CurTy)->getElementType();
   3006       // For an array, add the element offset, explicitly scaled.
   3007       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
   3008       // Getelementptr indices are signed.
   3009       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
   3010 
   3011       // Multiply the index by the element size to compute the element offset.
   3012       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
   3013 
   3014       // Add the element offset to the running total offset.
   3015       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3016     }
   3017   }
   3018 
   3019   // Add the total offset from all the GEP indices to the base.
   3020   return getAddExpr(BaseExpr, TotalOffset, Wrap);
   3021 }
   3022 
   3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   3024                                          const SCEV *RHS) {
   3025   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   3026   return getSMaxExpr(Ops);
   3027 }
   3028 
   3029 const SCEV *
   3030 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   3031   assert(!Ops.empty() && "Cannot get empty smax!");
   3032   if (Ops.size() == 1) return Ops[0];
   3033 #ifndef NDEBUG
   3034   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   3035   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   3036     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   3037            "SCEVSMaxExpr operand types don't match!");
   3038 #endif
   3039 
   3040   // Sort by complexity, this groups all similar expression types together.
   3041   GroupByComplexity(Ops, &LI);
   3042 
   3043   // If there are any constants, fold them together.
   3044   unsigned Idx = 0;
   3045   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   3046     ++Idx;
   3047     assert(Idx < Ops.size());
   3048     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   3049       // We found two constants, fold them together!
   3050       ConstantInt *Fold = ConstantInt::get(
   3051           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
   3052       Ops[0] = getConstant(Fold);
   3053       Ops.erase(Ops.begin()+1);  // Erase the folded element
   3054       if (Ops.size() == 1) return Ops[0];
   3055       LHSC = cast<SCEVConstant>(Ops[0]);
   3056     }
   3057 
   3058     // If we are left with a constant minimum-int, strip it off.
   3059     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   3060       Ops.erase(Ops.begin());
   3061       --Idx;
   3062     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   3063       // If we have an smax with a constant maximum-int, it will always be
   3064       // maximum-int.
   3065       return Ops[0];
   3066     }
   3067 
   3068     if (Ops.size() == 1) return Ops[0];
   3069   }
   3070 
   3071   // Find the first SMax
   3072   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   3073     ++Idx;
   3074 
   3075   // Check to see if one of the operands is an SMax. If so, expand its operands
   3076   // onto our operand list, and recurse to simplify.
   3077   if (Idx < Ops.size()) {
   3078     bool DeletedSMax = false;
   3079     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   3080       Ops.erase(Ops.begin()+Idx);
   3081       Ops.append(SMax->op_begin(), SMax->op_end());
   3082       DeletedSMax = true;
   3083     }
   3084 
   3085     if (DeletedSMax)
   3086       return getSMaxExpr(Ops);
   3087   }
   3088 
   3089   // Okay, check to see if the same value occurs in the operand list twice.  If
   3090   // so, delete one.  Since we sorted the list, these values are required to
   3091   // be adjacent.
   3092   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   3093     //  X smax Y smax Y  -->  X smax Y
   3094     //  X smax Y         -->  X, if X is always greater than Y
   3095     if (Ops[i] == Ops[i+1] ||
   3096         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   3097       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   3098       --i; --e;
   3099     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   3100       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   3101       --i; --e;
   3102     }
   3103 
   3104   if (Ops.size() == 1) return Ops[0];
   3105 
   3106   assert(!Ops.empty() && "Reduced smax down to nothing!");
   3107 
   3108   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   3109   // already have one, otherwise create a new one.
   3110   FoldingSetNodeID ID;
   3111   ID.AddInteger(scSMaxExpr);
   3112   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3113     ID.AddPointer(Ops[i]);
   3114   void *IP = nullptr;
   3115   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3116   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3117   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3118   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   3119                                              O, Ops.size());
   3120   UniqueSCEVs.InsertNode(S, IP);
   3121   return S;
   3122 }
   3123 
   3124 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   3125                                          const SCEV *RHS) {
   3126   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   3127   return getUMaxExpr(Ops);
   3128 }
   3129 
   3130 const SCEV *
   3131 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   3132   assert(!Ops.empty() && "Cannot get empty umax!");
   3133   if (Ops.size() == 1) return Ops[0];
   3134 #ifndef NDEBUG
   3135   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   3136   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   3137     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   3138            "SCEVUMaxExpr operand types don't match!");
   3139 #endif
   3140 
   3141   // Sort by complexity, this groups all similar expression types together.
   3142   GroupByComplexity(Ops, &LI);
   3143 
   3144   // If there are any constants, fold them together.
   3145   unsigned Idx = 0;
   3146   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   3147     ++Idx;
   3148     assert(Idx < Ops.size());
   3149     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   3150       // We found two constants, fold them together!
   3151       ConstantInt *Fold = ConstantInt::get(
   3152           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
   3153       Ops[0] = getConstant(Fold);
   3154       Ops.erase(Ops.begin()+1);  // Erase the folded element
   3155       if (Ops.size() == 1) return Ops[0];
   3156       LHSC = cast<SCEVConstant>(Ops[0]);
   3157     }
   3158 
   3159     // If we are left with a constant minimum-int, strip it off.
   3160     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   3161       Ops.erase(Ops.begin());
   3162       --Idx;
   3163     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   3164       // If we have an umax with a constant maximum-int, it will always be
   3165       // maximum-int.
   3166       return Ops[0];
   3167     }
   3168 
   3169     if (Ops.size() == 1) return Ops[0];
   3170   }
   3171 
   3172   // Find the first UMax
   3173   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   3174     ++Idx;
   3175 
   3176   // Check to see if one of the operands is a UMax. If so, expand its operands
   3177   // onto our operand list, and recurse to simplify.
   3178   if (Idx < Ops.size()) {
   3179     bool DeletedUMax = false;
   3180     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   3181       Ops.erase(Ops.begin()+Idx);
   3182       Ops.append(UMax->op_begin(), UMax->op_end());
   3183       DeletedUMax = true;
   3184     }
   3185 
   3186     if (DeletedUMax)
   3187       return getUMaxExpr(Ops);
   3188   }
   3189 
   3190   // Okay, check to see if the same value occurs in the operand list twice.  If
   3191   // so, delete one.  Since we sorted the list, these values are required to
   3192   // be adjacent.
   3193   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   3194     //  X umax Y umax Y  -->  X umax Y
   3195     //  X umax Y         -->  X, if X is always greater than Y
   3196     if (Ops[i] == Ops[i+1] ||
   3197         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   3198       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   3199       --i; --e;
   3200     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   3201       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   3202       --i; --e;
   3203     }
   3204 
   3205   if (Ops.size() == 1) return Ops[0];
   3206 
   3207   assert(!Ops.empty() && "Reduced umax down to nothing!");
   3208 
   3209   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   3210   // already have one, otherwise create a new one.
   3211   FoldingSetNodeID ID;
   3212   ID.AddInteger(scUMaxExpr);
   3213   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3214     ID.AddPointer(Ops[i]);
   3215   void *IP = nullptr;
   3216   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   3217   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   3218   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   3219   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   3220                                              O, Ops.size());
   3221   UniqueSCEVs.InsertNode(S, IP);
   3222   return S;
   3223 }
   3224 
   3225 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   3226                                          const SCEV *RHS) {
   3227   // ~smax(~x, ~y) == smin(x, y).
   3228   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3229 }
   3230 
   3231 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   3232                                          const SCEV *RHS) {
   3233   // ~umax(~x, ~y) == umin(x, y)
   3234   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   3235 }
   3236 
   3237 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
   3238   // We can bypass creating a target-independent
   3239   // constant expression and then folding it back into a ConstantInt.
   3240   // This is just a compile-time optimization.
   3241   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
   3242 }
   3243 
   3244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
   3245                                              StructType *STy,
   3246                                              unsigned FieldNo) {
   3247   // We can bypass creating a target-independent
   3248   // constant expression and then folding it back into a ConstantInt.
   3249   // This is just a compile-time optimization.
   3250   return getConstant(
   3251       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
   3252 }
   3253 
   3254 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   3255   // Don't attempt to do anything other than create a SCEVUnknown object
   3256   // here.  createSCEV only calls getUnknown after checking for all other
   3257   // interesting possibilities, and any other code that calls getUnknown
   3258   // is doing so in order to hide a value from SCEV canonicalization.
   3259 
   3260   FoldingSetNodeID ID;
   3261   ID.AddInteger(scUnknown);
   3262   ID.AddPointer(V);
   3263   void *IP = nullptr;
   3264   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   3265     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   3266            "Stale SCEVUnknown in uniquing map!");
   3267     return S;
   3268   }
   3269   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   3270                                             FirstUnknown);
   3271   FirstUnknown = cast<SCEVUnknown>(S);
   3272   UniqueSCEVs.InsertNode(S, IP);
   3273   return S;
   3274 }
   3275 
   3276 //===----------------------------------------------------------------------===//
   3277 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   3278 //
   3279 
   3280 /// Test if values of the given type are analyzable within the SCEV
   3281 /// framework. This primarily includes integer types, and it can optionally
   3282 /// include pointer types if the ScalarEvolution class has access to
   3283 /// target-specific information.
   3284 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   3285   // Integers and pointers are always SCEVable.
   3286   return Ty->isIntegerTy() || Ty->isPointerTy();
   3287 }
   3288 
   3289 /// Return the size in bits of the specified type, for which isSCEVable must
   3290 /// return true.
   3291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   3292   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3293   return getDataLayout().getTypeSizeInBits(Ty);
   3294 }
   3295 
   3296 /// Return a type with the same bitwidth as the given type and which represents
   3297 /// how SCEV will treat the given type, for which isSCEVable must return
   3298 /// true. For pointer types, this is the pointer-sized integer type.
   3299 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   3300   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   3301 
   3302   if (Ty->isIntegerTy())
   3303     return Ty;
   3304 
   3305   // The only other support type is pointer.
   3306   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   3307   return getDataLayout().getIntPtrType(Ty);
   3308 }
   3309 
   3310 const SCEV *ScalarEvolution::getCouldNotCompute() {
   3311   return CouldNotCompute.get();
   3312 }
   3313 
   3314 
   3315 bool ScalarEvolution::checkValidity(const SCEV *S) const {
   3316   // Helper class working with SCEVTraversal to figure out if a SCEV contains
   3317   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
   3318   // is set iff if find such SCEVUnknown.
   3319   //
   3320   struct FindInvalidSCEVUnknown {
   3321     bool FindOne;
   3322     FindInvalidSCEVUnknown() { FindOne = false; }
   3323     bool follow(const SCEV *S) {
   3324       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   3325       case scConstant:
   3326         return false;
   3327       case scUnknown:
   3328         if (!cast<SCEVUnknown>(S)->getValue())
   3329           FindOne = true;
   3330         return false;
   3331       default:
   3332         return true;
   3333       }
   3334     }
   3335     bool isDone() const { return FindOne; }
   3336   };
   3337 
   3338   FindInvalidSCEVUnknown F;
   3339   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
   3340   ST.visitAll(S);
   3341 
   3342   return !F.FindOne;
   3343 }
   3344 
   3345 namespace {
   3346 // Helper class working with SCEVTraversal to figure out if a SCEV contains
   3347 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
   3348 // iff if such sub scAddRecExpr type SCEV is found.
   3349 struct FindAddRecurrence {
   3350   bool FoundOne;
   3351   FindAddRecurrence() : FoundOne(false) {}
   3352 
   3353   bool follow(const SCEV *S) {
   3354     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   3355     case scAddRecExpr:
   3356       FoundOne = true;
   3357     case scConstant:
   3358     case scUnknown:
   3359     case scCouldNotCompute:
   3360       return false;
   3361     default:
   3362       return true;
   3363     }
   3364   }
   3365   bool isDone() const { return FoundOne; }
   3366 };
   3367 }
   3368 
   3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
   3370   HasRecMapType::iterator I = HasRecMap.find_as(S);
   3371   if (I != HasRecMap.end())
   3372     return I->second;
   3373 
   3374   FindAddRecurrence F;
   3375   SCEVTraversal<FindAddRecurrence> ST(F);
   3376   ST.visitAll(S);
   3377   HasRecMap.insert({S, F.FoundOne});
   3378   return F.FoundOne;
   3379 }
   3380 
   3381 /// Return the Value set from S.
   3382 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
   3383   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
   3384   if (SI == ExprValueMap.end())
   3385     return nullptr;
   3386 #ifndef NDEBUG
   3387   if (VerifySCEVMap) {
   3388     // Check there is no dangling Value in the set returned.
   3389     for (const auto &VE : SI->second)
   3390       assert(ValueExprMap.count(VE));
   3391   }
   3392 #endif
   3393   return &SI->second;
   3394 }
   3395 
   3396 /// Erase Value from ValueExprMap and ExprValueMap.  If ValueExprMap.erase(V) is
   3397 /// not used together with forgetMemoizedResults(S), eraseValueFromMap should be
   3398 /// used instead to ensure whenever V->S is removed from ValueExprMap, V is also
   3399 /// removed from the set of ExprValueMap[S].
   3400 void ScalarEvolution::eraseValueFromMap(Value *V) {
   3401   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
   3402   if (I != ValueExprMap.end()) {
   3403     const SCEV *S = I->second;
   3404     SetVector<Value *> *SV = getSCEVValues(S);
   3405     // Remove V from the set of ExprValueMap[S]
   3406     if (SV)
   3407       SV->remove(V);
   3408     ValueExprMap.erase(V);
   3409   }
   3410 }
   3411 
   3412 /// Return an existing SCEV if it exists, otherwise analyze the expression and
   3413 /// create a new one.
   3414 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   3415   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   3416 
   3417   const SCEV *S = getExistingSCEV(V);
   3418   if (S == nullptr) {
   3419     S = createSCEV(V);
   3420     // During PHI resolution, it is possible to create two SCEVs for the same
   3421     // V, so it is needed to double check whether V->S is inserted into
   3422     // ValueExprMap before insert S->V into ExprValueMap.
   3423     std::pair<ValueExprMapType::iterator, bool> Pair =
   3424         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
   3425     if (Pair.second)
   3426       ExprValueMap[S].insert(V);
   3427   }
   3428   return S;
   3429 }
   3430 
   3431 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
   3432   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   3433 
   3434   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
   3435   if (I != ValueExprMap.end()) {
   3436     const SCEV *S = I->second;
   3437     if (checkValidity(S))
   3438       return S;
   3439     forgetMemoizedResults(S);
   3440     ValueExprMap.erase(I);
   3441   }
   3442   return nullptr;
   3443 }
   3444 
   3445 /// Return a SCEV corresponding to -V = -1*V
   3446 ///
   3447 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
   3448                                              SCEV::NoWrapFlags Flags) {
   3449   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3450     return getConstant(
   3451                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   3452 
   3453   Type *Ty = V->getType();
   3454   Ty = getEffectiveSCEVType(Ty);
   3455   return getMulExpr(
   3456       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
   3457 }
   3458 
   3459 /// Return a SCEV corresponding to ~V = -1-V
   3460 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   3461   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   3462     return getConstant(
   3463                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   3464 
   3465   Type *Ty = V->getType();
   3466   Ty = getEffectiveSCEVType(Ty);
   3467   const SCEV *AllOnes =
   3468                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   3469   return getMinusSCEV(AllOnes, V);
   3470 }
   3471 
   3472 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   3473                                           SCEV::NoWrapFlags Flags) {
   3474   // Fast path: X - X --> 0.
   3475   if (LHS == RHS)
   3476     return getZero(LHS->getType());
   3477 
   3478   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
   3479   // makes it so that we cannot make much use of NUW.
   3480   auto AddFlags = SCEV::FlagAnyWrap;
   3481   const bool RHSIsNotMinSigned =
   3482       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
   3483   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
   3484     // Let M be the minimum representable signed value. Then (-1)*RHS
   3485     // signed-wraps if and only if RHS is M. That can happen even for
   3486     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
   3487     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
   3488     // (-1)*RHS, we need to prove that RHS != M.
   3489     //
   3490     // If LHS is non-negative and we know that LHS - RHS does not
   3491     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
   3492     // either by proving that RHS > M or that LHS >= 0.
   3493     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
   3494       AddFlags = SCEV::FlagNSW;
   3495     }
   3496   }
   3497 
   3498   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
   3499   // RHS is NSW and LHS >= 0.
   3500   //
   3501   // The difficulty here is that the NSW flag may have been proven
   3502   // relative to a loop that is to be found in a recurrence in LHS and
   3503   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
   3504   // larger scope than intended.
   3505   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
   3506 
   3507   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
   3508 }
   3509 
   3510 const SCEV *
   3511 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   3512   Type *SrcTy = V->getType();
   3513   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3514          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3515          "Cannot truncate or zero extend with non-integer arguments!");
   3516   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3517     return V;  // No conversion
   3518   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3519     return getTruncateExpr(V, Ty);
   3520   return getZeroExtendExpr(V, Ty);
   3521 }
   3522 
   3523 const SCEV *
   3524 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   3525                                          Type *Ty) {
   3526   Type *SrcTy = V->getType();
   3527   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3528          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3529          "Cannot truncate or zero extend with non-integer arguments!");
   3530   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3531     return V;  // No conversion
   3532   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   3533     return getTruncateExpr(V, Ty);
   3534   return getSignExtendExpr(V, Ty);
   3535 }
   3536 
   3537 const SCEV *
   3538 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   3539   Type *SrcTy = V->getType();
   3540   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3541          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3542          "Cannot noop or zero extend with non-integer arguments!");
   3543   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3544          "getNoopOrZeroExtend cannot truncate!");
   3545   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3546     return V;  // No conversion
   3547   return getZeroExtendExpr(V, Ty);
   3548 }
   3549 
   3550 const SCEV *
   3551 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   3552   Type *SrcTy = V->getType();
   3553   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3554          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3555          "Cannot noop or sign extend with non-integer arguments!");
   3556   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3557          "getNoopOrSignExtend cannot truncate!");
   3558   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3559     return V;  // No conversion
   3560   return getSignExtendExpr(V, Ty);
   3561 }
   3562 
   3563 const SCEV *
   3564 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   3565   Type *SrcTy = V->getType();
   3566   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3567          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3568          "Cannot noop or any extend with non-integer arguments!");
   3569   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   3570          "getNoopOrAnyExtend cannot truncate!");
   3571   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3572     return V;  // No conversion
   3573   return getAnyExtendExpr(V, Ty);
   3574 }
   3575 
   3576 const SCEV *
   3577 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   3578   Type *SrcTy = V->getType();
   3579   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   3580          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   3581          "Cannot truncate or noop with non-integer arguments!");
   3582   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   3583          "getTruncateOrNoop cannot extend!");
   3584   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   3585     return V;  // No conversion
   3586   return getTruncateExpr(V, Ty);
   3587 }
   3588 
   3589 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   3590                                                         const SCEV *RHS) {
   3591   const SCEV *PromotedLHS = LHS;
   3592   const SCEV *PromotedRHS = RHS;
   3593 
   3594   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3595     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3596   else
   3597     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3598 
   3599   return getUMaxExpr(PromotedLHS, PromotedRHS);
   3600 }
   3601 
   3602 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   3603                                                         const SCEV *RHS) {
   3604   const SCEV *PromotedLHS = LHS;
   3605   const SCEV *PromotedRHS = RHS;
   3606 
   3607   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   3608     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   3609   else
   3610     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   3611 
   3612   return getUMinExpr(PromotedLHS, PromotedRHS);
   3613 }
   3614 
   3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   3616   // A pointer operand may evaluate to a nonpointer expression, such as null.
   3617   if (!V->getType()->isPointerTy())
   3618     return V;
   3619 
   3620   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   3621     return getPointerBase(Cast->getOperand());
   3622   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   3623     const SCEV *PtrOp = nullptr;
   3624     for (const SCEV *NAryOp : NAry->operands()) {
   3625       if (NAryOp->getType()->isPointerTy()) {
   3626         // Cannot find the base of an expression with multiple pointer operands.
   3627         if (PtrOp)
   3628           return V;
   3629         PtrOp = NAryOp;
   3630       }
   3631     }
   3632     if (!PtrOp)
   3633       return V;
   3634     return getPointerBase(PtrOp);
   3635   }
   3636   return V;
   3637 }
   3638 
   3639 /// Push users of the given Instruction onto the given Worklist.
   3640 static void
   3641 PushDefUseChildren(Instruction *I,
   3642                    SmallVectorImpl<Instruction *> &Worklist) {
   3643   // Push the def-use children onto the Worklist stack.
   3644   for (User *U : I->users())
   3645     Worklist.push_back(cast<Instruction>(U));
   3646 }
   3647 
   3648 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   3649   SmallVector<Instruction *, 16> Worklist;
   3650   PushDefUseChildren(PN, Worklist);
   3651 
   3652   SmallPtrSet<Instruction *, 8> Visited;
   3653   Visited.insert(PN);
   3654   while (!Worklist.empty()) {
   3655     Instruction *I = Worklist.pop_back_val();
   3656     if (!Visited.insert(I).second)
   3657       continue;
   3658 
   3659     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
   3660     if (It != ValueExprMap.end()) {
   3661       const SCEV *Old = It->second;
   3662 
   3663       // Short-circuit the def-use traversal if the symbolic name
   3664       // ceases to appear in expressions.
   3665       if (Old != SymName && !hasOperand(Old, SymName))
   3666         continue;
   3667 
   3668       // SCEVUnknown for a PHI either means that it has an unrecognized
   3669       // structure, it's a PHI that's in the progress of being computed
   3670       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   3671       // additional loop trip count information isn't going to change anything.
   3672       // In the second case, createNodeForPHI will perform the necessary
   3673       // updates on its own when it gets to that point. In the third, we do
   3674       // want to forget the SCEVUnknown.
   3675       if (!isa<PHINode>(I) ||
   3676           !isa<SCEVUnknown>(Old) ||
   3677           (I != PN && Old == SymName)) {
   3678         forgetMemoizedResults(Old);
   3679         ValueExprMap.erase(It);
   3680       }
   3681     }
   3682 
   3683     PushDefUseChildren(I, Worklist);
   3684   }
   3685 }
   3686 
   3687 namespace {
   3688 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
   3689 public:
   3690   static const SCEV *rewrite(const SCEV *S, const Loop *L,
   3691                              ScalarEvolution &SE) {
   3692     SCEVInitRewriter Rewriter(L, SE);
   3693     const SCEV *Result = Rewriter.visit(S);
   3694     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
   3695   }
   3696 
   3697   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
   3698       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
   3699 
   3700   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   3701     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
   3702       Valid = false;
   3703     return Expr;
   3704   }
   3705 
   3706   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
   3707     // Only allow AddRecExprs for this loop.
   3708     if (Expr->getLoop() == L)
   3709       return Expr->getStart();
   3710     Valid = false;
   3711     return Expr;
   3712   }
   3713 
   3714   bool isValid() { return Valid; }
   3715 
   3716 private:
   3717   const Loop *L;
   3718   bool Valid;
   3719 };
   3720 
   3721 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
   3722 public:
   3723   static const SCEV *rewrite(const SCEV *S, const Loop *L,
   3724                              ScalarEvolution &SE) {
   3725     SCEVShiftRewriter Rewriter(L, SE);
   3726     const SCEV *Result = Rewriter.visit(S);
   3727     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
   3728   }
   3729 
   3730   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
   3731       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
   3732 
   3733   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   3734     // Only allow AddRecExprs for this loop.
   3735     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
   3736       Valid = false;
   3737     return Expr;
   3738   }
   3739 
   3740   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
   3741     if (Expr->getLoop() == L && Expr->isAffine())
   3742       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
   3743     Valid = false;
   3744     return Expr;
   3745   }
   3746   bool isValid() { return Valid; }
   3747 
   3748 private:
   3749   const Loop *L;
   3750   bool Valid;
   3751 };
   3752 } // end anonymous namespace
   3753 
   3754 SCEV::NoWrapFlags
   3755 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
   3756   if (!AR->isAffine())
   3757     return SCEV::FlagAnyWrap;
   3758 
   3759   typedef OverflowingBinaryOperator OBO;
   3760   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
   3761 
   3762   if (!AR->hasNoSignedWrap()) {
   3763     ConstantRange AddRecRange = getSignedRange(AR);
   3764     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
   3765 
   3766     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
   3767         Instruction::Add, IncRange, OBO::NoSignedWrap);
   3768     if (NSWRegion.contains(AddRecRange))
   3769       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
   3770   }
   3771 
   3772   if (!AR->hasNoUnsignedWrap()) {
   3773     ConstantRange AddRecRange = getUnsignedRange(AR);
   3774     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
   3775 
   3776     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
   3777         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
   3778     if (NUWRegion.contains(AddRecRange))
   3779       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
   3780   }
   3781 
   3782   return Result;
   3783 }
   3784 
   3785 namespace {
   3786 /// Represents an abstract binary operation.  This may exist as a
   3787 /// normal instruction or constant expression, or may have been
   3788 /// derived from an expression tree.
   3789 struct BinaryOp {
   3790   unsigned Opcode;
   3791   Value *LHS;
   3792   Value *RHS;
   3793   bool IsNSW;
   3794   bool IsNUW;
   3795 
   3796   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
   3797   /// constant expression.
   3798   Operator *Op;
   3799 
   3800   explicit BinaryOp(Operator *Op)
   3801       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
   3802         IsNSW(false), IsNUW(false), Op(Op) {
   3803     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
   3804       IsNSW = OBO->hasNoSignedWrap();
   3805       IsNUW = OBO->hasNoUnsignedWrap();
   3806     }
   3807   }
   3808 
   3809   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
   3810                     bool IsNUW = false)
   3811       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
   3812         Op(nullptr) {}
   3813 };
   3814 }
   3815 
   3816 
   3817 /// Try to map \p V into a BinaryOp, and return \c None on failure.
   3818 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
   3819   auto *Op = dyn_cast<Operator>(V);
   3820   if (!Op)
   3821     return None;
   3822 
   3823   // Implementation detail: all the cleverness here should happen without
   3824   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
   3825   // SCEV expressions when possible, and we should not break that.
   3826 
   3827   switch (Op->getOpcode()) {
   3828   case Instruction::Add:
   3829   case Instruction::Sub:
   3830   case Instruction::Mul:
   3831   case Instruction::UDiv:
   3832   case Instruction::And:
   3833   case Instruction::Or:
   3834   case Instruction::AShr:
   3835   case Instruction::Shl:
   3836     return BinaryOp(Op);
   3837 
   3838   case Instruction::Xor:
   3839     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
   3840       // If the RHS of the xor is a signbit, then this is just an add.
   3841       // Instcombine turns add of signbit into xor as a strength reduction step.
   3842       if (RHSC->getValue().isSignBit())
   3843         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
   3844     return BinaryOp(Op);
   3845 
   3846   case Instruction::LShr:
   3847     // Turn logical shift right of a constant into a unsigned divide.
   3848     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
   3849       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
   3850 
   3851       // If the shift count is not less than the bitwidth, the result of
   3852       // the shift is undefined. Don't try to analyze it, because the
   3853       // resolution chosen here may differ from the resolution chosen in
   3854       // other parts of the compiler.
   3855       if (SA->getValue().ult(BitWidth)) {
   3856         Constant *X =
   3857             ConstantInt::get(SA->getContext(),
   3858                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   3859         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
   3860       }
   3861     }
   3862     return BinaryOp(Op);
   3863 
   3864   case Instruction::ExtractValue: {
   3865     auto *EVI = cast<ExtractValueInst>(Op);
   3866     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
   3867       break;
   3868 
   3869     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
   3870     if (!CI)
   3871       break;
   3872 
   3873     if (auto *F = CI->getCalledFunction())
   3874       switch (F->getIntrinsicID()) {
   3875       case Intrinsic::sadd_with_overflow:
   3876       case Intrinsic::uadd_with_overflow: {
   3877         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
   3878           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
   3879                           CI->getArgOperand(1));
   3880 
   3881         // Now that we know that all uses of the arithmetic-result component of
   3882         // CI are guarded by the overflow check, we can go ahead and pretend
   3883         // that the arithmetic is non-overflowing.
   3884         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
   3885           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
   3886                           CI->getArgOperand(1), /* IsNSW = */ true,
   3887                           /* IsNUW = */ false);
   3888         else
   3889           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
   3890                           CI->getArgOperand(1), /* IsNSW = */ false,
   3891                           /* IsNUW*/ true);
   3892       }
   3893 
   3894       case Intrinsic::ssub_with_overflow:
   3895       case Intrinsic::usub_with_overflow:
   3896         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
   3897                         CI->getArgOperand(1));
   3898 
   3899       case Intrinsic::smul_with_overflow:
   3900       case Intrinsic::umul_with_overflow:
   3901         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
   3902                         CI->getArgOperand(1));
   3903       default:
   3904         break;
   3905       }
   3906   }
   3907 
   3908   default:
   3909     break;
   3910   }
   3911 
   3912   return None;
   3913 }
   3914 
   3915 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
   3916   const Loop *L = LI.getLoopFor(PN->getParent());
   3917   if (!L || L->getHeader() != PN->getParent())
   3918     return nullptr;
   3919 
   3920   // The loop may have multiple entrances or multiple exits; we can analyze
   3921   // this phi as an addrec if it has a unique entry value and a unique
   3922   // backedge value.
   3923   Value *BEValueV = nullptr, *StartValueV = nullptr;
   3924   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   3925     Value *V = PN->getIncomingValue(i);
   3926     if (L->contains(PN->getIncomingBlock(i))) {
   3927       if (!BEValueV) {
   3928         BEValueV = V;
   3929       } else if (BEValueV != V) {
   3930         BEValueV = nullptr;
   3931         break;
   3932       }
   3933     } else if (!StartValueV) {
   3934       StartValueV = V;
   3935     } else if (StartValueV != V) {
   3936       StartValueV = nullptr;
   3937       break;
   3938     }
   3939   }
   3940   if (BEValueV && StartValueV) {
   3941     // While we are analyzing this PHI node, handle its value symbolically.
   3942     const SCEV *SymbolicName = getUnknown(PN);
   3943     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
   3944            "PHI node already processed?");
   3945     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
   3946 
   3947     // Using this symbolic name for the PHI, analyze the value coming around
   3948     // the back-edge.
   3949     const SCEV *BEValue = getSCEV(BEValueV);
   3950 
   3951     // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3952     // has a special value for the first iteration of the loop.
   3953 
   3954     // If the value coming around the backedge is an add with the symbolic
   3955     // value we just inserted, then we found a simple induction variable!
   3956     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3957       // If there is a single occurrence of the symbolic value, replace it
   3958       // with a recurrence.
   3959       unsigned FoundIndex = Add->getNumOperands();
   3960       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3961         if (Add->getOperand(i) == SymbolicName)
   3962           if (FoundIndex == e) {
   3963             FoundIndex = i;
   3964             break;
   3965           }
   3966 
   3967       if (FoundIndex != Add->getNumOperands()) {
   3968         // Create an add with everything but the specified operand.
   3969         SmallVector<const SCEV *, 8> Ops;
   3970         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3971           if (i != FoundIndex)
   3972             Ops.push_back(Add->getOperand(i));
   3973         const SCEV *Accum = getAddExpr(Ops);
   3974 
   3975         // This is not a valid addrec if the step amount is varying each
   3976         // loop iteration, but is not itself an addrec in this loop.
   3977         if (isLoopInvariant(Accum, L) ||
   3978             (isa<SCEVAddRecExpr>(Accum) &&
   3979              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3980           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3981 
   3982           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
   3983             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
   3984               if (BO->IsNUW)
   3985                 Flags = setFlags(Flags, SCEV::FlagNUW);
   3986               if (BO->IsNSW)
   3987                 Flags = setFlags(Flags, SCEV::FlagNSW);
   3988             }
   3989           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
   3990             // If the increment is an inbounds GEP, then we know the address
   3991             // space cannot be wrapped around. We cannot make any guarantee
   3992             // about signed or unsigned overflow because pointers are
   3993             // unsigned but we may have a negative index from the base
   3994             // pointer. We can guarantee that no unsigned wrap occurs if the
   3995             // indices form a positive value.
   3996             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
   3997               Flags = setFlags(Flags, SCEV::FlagNW);
   3998 
   3999               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
   4000               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
   4001                 Flags = setFlags(Flags, SCEV::FlagNUW);
   4002             }
   4003 
   4004             // We cannot transfer nuw and nsw flags from subtraction
   4005             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
   4006             // for instance.
   4007           }
   4008 
   4009           const SCEV *StartVal = getSCEV(StartValueV);
   4010           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   4011 
   4012           // Okay, for the entire analysis of this edge we assumed the PHI
   4013           // to be symbolic.  We now need to go back and purge all of the
   4014           // entries for the scalars that use the symbolic expression.
   4015           forgetSymbolicName(PN, SymbolicName);
   4016           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   4017 
   4018           // We can add Flags to the post-inc expression only if we
   4019           // know that it us *undefined behavior* for BEValueV to
   4020           // overflow.
   4021           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
   4022             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
   4023               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
   4024 
   4025           return PHISCEV;
   4026         }
   4027       }
   4028     } else {
   4029       // Otherwise, this could be a loop like this:
   4030       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   4031       // In this case, j = {1,+,1}  and BEValue is j.
   4032       // Because the other in-value of i (0) fits the evolution of BEValue
   4033       // i really is an addrec evolution.
   4034       //
   4035       // We can generalize this saying that i is the shifted value of BEValue
   4036       // by one iteration:
   4037       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
   4038       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
   4039       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
   4040       if (Shifted != getCouldNotCompute() &&
   4041           Start != getCouldNotCompute()) {
   4042         const SCEV *StartVal = getSCEV(StartValueV);
   4043         if (Start == StartVal) {
   4044           // Okay, for the entire analysis of this edge we assumed the PHI
   4045           // to be symbolic.  We now need to go back and purge all of the
   4046           // entries for the scalars that use the symbolic expression.
   4047           forgetSymbolicName(PN, SymbolicName);
   4048           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
   4049           return Shifted;
   4050         }
   4051       }
   4052     }
   4053 
   4054     // Remove the temporary PHI node SCEV that has been inserted while intending
   4055     // to create an AddRecExpr for this PHI node. We can not keep this temporary
   4056     // as it will prevent later (possibly simpler) SCEV expressions to be added
   4057     // to the ValueExprMap.
   4058     ValueExprMap.erase(PN);
   4059   }
   4060 
   4061   return nullptr;
   4062 }
   4063 
   4064 // Checks if the SCEV S is available at BB.  S is considered available at BB
   4065 // if S can be materialized at BB without introducing a fault.
   4066 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
   4067                                BasicBlock *BB) {
   4068   struct CheckAvailable {
   4069     bool TraversalDone = false;
   4070     bool Available = true;
   4071 
   4072     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
   4073     BasicBlock *BB = nullptr;
   4074     DominatorTree &DT;
   4075 
   4076     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
   4077       : L(L), BB(BB), DT(DT) {}
   4078 
   4079     bool setUnavailable() {
   4080       TraversalDone = true;
   4081       Available = false;
   4082       return false;
   4083     }
   4084 
   4085     bool follow(const SCEV *S) {
   4086       switch (S->getSCEVType()) {
   4087       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
   4088       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
   4089         // These expressions are available if their operand(s) is/are.
   4090         return true;
   4091 
   4092       case scAddRecExpr: {
   4093         // We allow add recurrences that are on the loop BB is in, or some
   4094         // outer loop.  This guarantees availability because the value of the
   4095         // add recurrence at BB is simply the "current" value of the induction
   4096         // variable.  We can relax this in the future; for instance an add
   4097         // recurrence on a sibling dominating loop is also available at BB.
   4098         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
   4099         if (L && (ARLoop == L || ARLoop->contains(L)))
   4100           return true;
   4101 
   4102         return setUnavailable();
   4103       }
   4104 
   4105       case scUnknown: {
   4106         // For SCEVUnknown, we check for simple dominance.
   4107         const auto *SU = cast<SCEVUnknown>(S);
   4108         Value *V = SU->getValue();
   4109 
   4110         if (isa<Argument>(V))
   4111           return false;
   4112 
   4113         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
   4114           return false;
   4115 
   4116         return setUnavailable();
   4117       }
   4118 
   4119       case scUDivExpr:
   4120       case scCouldNotCompute:
   4121         // We do not try to smart about these at all.
   4122         return setUnavailable();
   4123       }
   4124       llvm_unreachable("switch should be fully covered!");
   4125     }
   4126 
   4127     bool isDone() { return TraversalDone; }
   4128   };
   4129 
   4130   CheckAvailable CA(L, BB, DT);
   4131   SCEVTraversal<CheckAvailable> ST(CA);
   4132 
   4133   ST.visitAll(S);
   4134   return CA.Available;
   4135 }
   4136 
   4137 // Try to match a control flow sequence that branches out at BI and merges back
   4138 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
   4139 // match.
   4140 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
   4141                           Value *&C, Value *&LHS, Value *&RHS) {
   4142   C = BI->getCondition();
   4143 
   4144   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
   4145   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
   4146 
   4147   if (!LeftEdge.isSingleEdge())
   4148     return false;
   4149 
   4150   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
   4151 
   4152   Use &LeftUse = Merge->getOperandUse(0);
   4153   Use &RightUse = Merge->getOperandUse(1);
   4154 
   4155   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
   4156     LHS = LeftUse;
   4157     RHS = RightUse;
   4158     return true;
   4159   }
   4160 
   4161   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
   4162     LHS = RightUse;
   4163     RHS = LeftUse;
   4164     return true;
   4165   }
   4166 
   4167   return false;
   4168 }
   4169 
   4170 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
   4171   if (PN->getNumIncomingValues() == 2) {
   4172     const Loop *L = LI.getLoopFor(PN->getParent());
   4173 
   4174     // We don't want to break LCSSA, even in a SCEV expression tree.
   4175     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4176       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
   4177         return nullptr;
   4178 
   4179     // Try to match
   4180     //
   4181     //  br %cond, label %left, label %right
   4182     // left:
   4183     //  br label %merge
   4184     // right:
   4185     //  br label %merge
   4186     // merge:
   4187     //  V = phi [ %x, %left ], [ %y, %right ]
   4188     //
   4189     // as "select %cond, %x, %y"
   4190 
   4191     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
   4192     assert(IDom && "At least the entry block should dominate PN");
   4193 
   4194     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
   4195     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
   4196 
   4197     if (BI && BI->isConditional() &&
   4198         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
   4199         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
   4200         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
   4201       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
   4202   }
   4203 
   4204   return nullptr;
   4205 }
   4206 
   4207 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   4208   if (const SCEV *S = createAddRecFromPHI(PN))
   4209     return S;
   4210 
   4211   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
   4212     return S;
   4213 
   4214   // If the PHI has a single incoming value, follow that value, unless the
   4215   // PHI's incoming blocks are in a different loop, in which case doing so
   4216   // risks breaking LCSSA form. Instcombine would normally zap these, but
   4217   // it doesn't have DominatorTree information, so it may miss cases.
   4218   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
   4219     if (LI.replacementPreservesLCSSAForm(PN, V))
   4220       return getSCEV(V);
   4221 
   4222   // If it's not a loop phi, we can't handle it yet.
   4223   return getUnknown(PN);
   4224 }
   4225 
   4226 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
   4227                                                       Value *Cond,
   4228                                                       Value *TrueVal,
   4229                                                       Value *FalseVal) {
   4230   // Handle "constant" branch or select. This can occur for instance when a
   4231   // loop pass transforms an inner loop and moves on to process the outer loop.
   4232   if (auto *CI = dyn_cast<ConstantInt>(Cond))
   4233     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
   4234 
   4235   // Try to match some simple smax or umax patterns.
   4236   auto *ICI = dyn_cast<ICmpInst>(Cond);
   4237   if (!ICI)
   4238     return getUnknown(I);
   4239 
   4240   Value *LHS = ICI->getOperand(0);
   4241   Value *RHS = ICI->getOperand(1);
   4242 
   4243   switch (ICI->getPredicate()) {
   4244   case ICmpInst::ICMP_SLT:
   4245   case ICmpInst::ICMP_SLE:
   4246     std::swap(LHS, RHS);
   4247   // fall through
   4248   case ICmpInst::ICMP_SGT:
   4249   case ICmpInst::ICMP_SGE:
   4250     // a >s b ? a+x : b+x  ->  smax(a, b)+x
   4251     // a >s b ? b+x : a+x  ->  smin(a, b)+x
   4252     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
   4253       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
   4254       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
   4255       const SCEV *LA = getSCEV(TrueVal);
   4256       const SCEV *RA = getSCEV(FalseVal);
   4257       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4258       const SCEV *RDiff = getMinusSCEV(RA, RS);
   4259       if (LDiff == RDiff)
   4260         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   4261       LDiff = getMinusSCEV(LA, RS);
   4262       RDiff = getMinusSCEV(RA, LS);
   4263       if (LDiff == RDiff)
   4264         return getAddExpr(getSMinExpr(LS, RS), LDiff);
   4265     }
   4266     break;
   4267   case ICmpInst::ICMP_ULT:
   4268   case ICmpInst::ICMP_ULE:
   4269     std::swap(LHS, RHS);
   4270   // fall through
   4271   case ICmpInst::ICMP_UGT:
   4272   case ICmpInst::ICMP_UGE:
   4273     // a >u b ? a+x : b+x  ->  umax(a, b)+x
   4274     // a >u b ? b+x : a+x  ->  umin(a, b)+x
   4275     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
   4276       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4277       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
   4278       const SCEV *LA = getSCEV(TrueVal);
   4279       const SCEV *RA = getSCEV(FalseVal);
   4280       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4281       const SCEV *RDiff = getMinusSCEV(RA, RS);
   4282       if (LDiff == RDiff)
   4283         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   4284       LDiff = getMinusSCEV(LA, RS);
   4285       RDiff = getMinusSCEV(RA, LS);
   4286       if (LDiff == RDiff)
   4287         return getAddExpr(getUMinExpr(LS, RS), LDiff);
   4288     }
   4289     break;
   4290   case ICmpInst::ICMP_NE:
   4291     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   4292     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
   4293         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4294       const SCEV *One = getOne(I->getType());
   4295       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4296       const SCEV *LA = getSCEV(TrueVal);
   4297       const SCEV *RA = getSCEV(FalseVal);
   4298       const SCEV *LDiff = getMinusSCEV(LA, LS);
   4299       const SCEV *RDiff = getMinusSCEV(RA, One);
   4300       if (LDiff == RDiff)
   4301         return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4302     }
   4303     break;
   4304   case ICmpInst::ICMP_EQ:
   4305     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   4306     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
   4307         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
   4308       const SCEV *One = getOne(I->getType());
   4309       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
   4310       const SCEV *LA = getSCEV(TrueVal);
   4311       const SCEV *RA = getSCEV(FalseVal);
   4312       const SCEV *LDiff = getMinusSCEV(LA, One);
   4313       const SCEV *RDiff = getMinusSCEV(RA, LS);
   4314       if (LDiff == RDiff)
   4315         return getAddExpr(getUMaxExpr(One, LS), LDiff);
   4316     }
   4317     break;
   4318   default:
   4319     break;
   4320   }
   4321 
   4322   return getUnknown(I);
   4323 }
   4324 
   4325 /// Expand GEP instructions into add and multiply operations. This allows them
   4326 /// to be analyzed by regular SCEV code.
   4327 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   4328   // Don't attempt to analyze GEPs over unsized objects.
   4329   if (!GEP->getSourceElementType()->isSized())
   4330     return getUnknown(GEP);
   4331 
   4332   SmallVector<const SCEV *, 4> IndexExprs;
   4333   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
   4334     IndexExprs.push_back(getSCEV(*Index));
   4335   return getGEPExpr(GEP->getSourceElementType(),
   4336                     getSCEV(GEP->getPointerOperand()),
   4337                     IndexExprs, GEP->isInBounds());
   4338 }
   4339 
   4340 uint32_t
   4341 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   4342   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   4343     return C->getAPInt().countTrailingZeros();
   4344 
   4345   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   4346     return std::min(GetMinTrailingZeros(T->getOperand()),
   4347                     (uint32_t)getTypeSizeInBits(T->getType()));
   4348 
   4349   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   4350     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   4351     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   4352              getTypeSizeInBits(E->getType()) : OpRes;
   4353   }
   4354 
   4355   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   4356     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   4357     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   4358              getTypeSizeInBits(E->getType()) : OpRes;
   4359   }
   4360 
   4361   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   4362     // The result is the min of all operands results.
   4363     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   4364     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   4365       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   4366     return MinOpRes;
   4367   }
   4368 
   4369   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   4370     // The result is the sum of all operands results.
   4371     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   4372     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   4373     for (unsigned i = 1, e = M->getNumOperands();
   4374          SumOpRes != BitWidth && i != e; ++i)
   4375       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   4376                           BitWidth);
   4377     return SumOpRes;
   4378   }
   4379 
   4380   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   4381     // The result is the min of all operands results.
   4382     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   4383     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   4384       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   4385     return MinOpRes;
   4386   }
   4387 
   4388   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   4389     // The result is the min of all operands results.
   4390     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   4391     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   4392       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   4393     return MinOpRes;
   4394   }
   4395 
   4396   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   4397     // The result is the min of all operands results.
   4398     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   4399     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   4400       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   4401     return MinOpRes;
   4402   }
   4403 
   4404   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   4405     // For a SCEVUnknown, ask ValueTracking.
   4406     unsigned BitWidth = getTypeSizeInBits(U->getType());
   4407     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   4408     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
   4409                      nullptr, &DT);
   4410     return Zeros.countTrailingOnes();
   4411   }
   4412 
   4413   // SCEVUDivExpr
   4414   return 0;
   4415 }
   4416 
   4417 /// Helper method to assign a range to V from metadata present in the IR.
   4418 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
   4419   if (Instruction *I = dyn_cast<Instruction>(V))
   4420     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
   4421       return getConstantRangeFromMetadata(*MD);
   4422 
   4423   return None;
   4424 }
   4425 
   4426 /// Determine the range for a particular SCEV.  If SignHint is
   4427 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
   4428 /// with a "cleaner" unsigned (resp. signed) representation.
   4429 ConstantRange
   4430 ScalarEvolution::getRange(const SCEV *S,
   4431                           ScalarEvolution::RangeSignHint SignHint) {
   4432   DenseMap<const SCEV *, ConstantRange> &Cache =
   4433       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
   4434                                                        : SignedRanges;
   4435 
   4436   // See if we've computed this range already.
   4437   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
   4438   if (I != Cache.end())
   4439     return I->second;
   4440 
   4441   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   4442     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
   4443 
   4444   unsigned BitWidth = getTypeSizeInBits(S->getType());
   4445   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   4446 
   4447   // If the value has known zeros, the maximum value will have those known zeros
   4448   // as well.
   4449   uint32_t TZ = GetMinTrailingZeros(S);
   4450   if (TZ != 0) {
   4451     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
   4452       ConservativeResult =
   4453           ConstantRange(APInt::getMinValue(BitWidth),
   4454                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   4455     else
   4456       ConservativeResult = ConstantRange(
   4457           APInt::getSignedMinValue(BitWidth),
   4458           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   4459   }
   4460 
   4461   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   4462     ConstantRange X = getRange(Add->getOperand(0), SignHint);
   4463     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   4464       X = X.add(getRange(Add->getOperand(i), SignHint));
   4465     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
   4466   }
   4467 
   4468   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   4469     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
   4470     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   4471       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
   4472     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
   4473   }
   4474 
   4475   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   4476     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
   4477     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   4478       X = X.smax(getRange(SMax->getOperand(i), SignHint));
   4479     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
   4480   }
   4481 
   4482   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   4483     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
   4484     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   4485       X = X.umax(getRange(UMax->getOperand(i), SignHint));
   4486     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
   4487   }
   4488 
   4489   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   4490     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
   4491     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
   4492     return setRange(UDiv, SignHint,
   4493                     ConservativeResult.intersectWith(X.udiv(Y)));
   4494   }
   4495 
   4496   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   4497     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
   4498     return setRange(ZExt, SignHint,
   4499                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   4500   }
   4501 
   4502   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   4503     ConstantRange X = getRange(SExt->getOperand(), SignHint);
   4504     return setRange(SExt, SignHint,
   4505                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   4506   }
   4507 
   4508   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   4509     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
   4510     return setRange(Trunc, SignHint,
   4511                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
   4512   }
   4513 
   4514   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   4515     // If there's no unsigned wrap, the value will never be less than its
   4516     // initial value.
   4517     if (AddRec->hasNoUnsignedWrap())
   4518       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   4519         if (!C->getValue()->isZero())
   4520           ConservativeResult = ConservativeResult.intersectWith(
   4521               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
   4522 
   4523     // If there's no signed wrap, and all the operands have the same sign or
   4524     // zero, the value won't ever change sign.
   4525     if (AddRec->hasNoSignedWrap()) {
   4526       bool AllNonNeg = true;
   4527       bool AllNonPos = true;
   4528       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   4529         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   4530         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   4531       }
   4532       if (AllNonNeg)
   4533         ConservativeResult = ConservativeResult.intersectWith(
   4534           ConstantRange(APInt(BitWidth, 0),
   4535                         APInt::getSignedMinValue(BitWidth)));
   4536       else if (AllNonPos)
   4537         ConservativeResult = ConservativeResult.intersectWith(
   4538           ConstantRange(APInt::getSignedMinValue(BitWidth),
   4539                         APInt(BitWidth, 1)));
   4540     }
   4541 
   4542     // TODO: non-affine addrec
   4543     if (AddRec->isAffine()) {
   4544       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   4545       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   4546           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   4547         auto RangeFromAffine = getRangeForAffineAR(
   4548             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
   4549             BitWidth);
   4550         if (!RangeFromAffine.isFullSet())
   4551           ConservativeResult =
   4552               ConservativeResult.intersectWith(RangeFromAffine);
   4553 
   4554         auto RangeFromFactoring = getRangeViaFactoring(
   4555             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
   4556             BitWidth);
   4557         if (!RangeFromFactoring.isFullSet())
   4558           ConservativeResult =
   4559               ConservativeResult.intersectWith(RangeFromFactoring);
   4560       }
   4561     }
   4562 
   4563     return setRange(AddRec, SignHint, ConservativeResult);
   4564   }
   4565 
   4566   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   4567     // Check if the IR explicitly contains !range metadata.
   4568     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
   4569     if (MDRange.hasValue())
   4570       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
   4571 
   4572     // Split here to avoid paying the compile-time cost of calling both
   4573     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
   4574     // if needed.
   4575     const DataLayout &DL = getDataLayout();
   4576     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
   4577       // For a SCEVUnknown, ask ValueTracking.
   4578       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   4579       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
   4580       if (Ones != ~Zeros + 1)
   4581         ConservativeResult =
   4582             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
   4583     } else {
   4584       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
   4585              "generalize as needed!");
   4586       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
   4587       if (NS > 1)
   4588         ConservativeResult = ConservativeResult.intersectWith(
   4589             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   4590                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
   4591     }
   4592 
   4593     return setRange(U, SignHint, ConservativeResult);
   4594   }
   4595 
   4596   return setRange(S, SignHint, ConservativeResult);
   4597 }
   4598 
   4599 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
   4600                                                    const SCEV *Step,
   4601                                                    const SCEV *MaxBECount,
   4602                                                    unsigned BitWidth) {
   4603   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
   4604          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
   4605          "Precondition!");
   4606 
   4607   ConstantRange Result(BitWidth, /* isFullSet = */ true);
   4608 
   4609   // Check for overflow.  This must be done with ConstantRange arithmetic
   4610   // because we could be called from within the ScalarEvolution overflow
   4611   // checking code.
   4612 
   4613   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
   4614   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   4615   ConstantRange ZExtMaxBECountRange =
   4616       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
   4617 
   4618   ConstantRange StepSRange = getSignedRange(Step);
   4619   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
   4620 
   4621   ConstantRange StartURange = getUnsignedRange(Start);
   4622   ConstantRange EndURange =
   4623       StartURange.add(MaxBECountRange.multiply(StepSRange));
   4624 
   4625   // Check for unsigned overflow.
   4626   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
   4627   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
   4628   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   4629       ZExtEndURange) {
   4630     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
   4631                                EndURange.getUnsignedMin());
   4632     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
   4633                                EndURange.getUnsignedMax());
   4634     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
   4635     if (!IsFullRange)
   4636       Result =
   4637           Result.intersectWith(ConstantRange(Min, Max + 1));
   4638   }
   4639 
   4640   ConstantRange StartSRange = getSignedRange(Start);
   4641   ConstantRange EndSRange =
   4642       StartSRange.add(MaxBECountRange.multiply(StepSRange));
   4643 
   4644   // Check for signed overflow. This must be done with ConstantRange
   4645   // arithmetic because we could be called from within the ScalarEvolution
   4646   // overflow checking code.
   4647   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
   4648   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
   4649   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
   4650       SExtEndSRange) {
   4651     APInt Min =
   4652         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
   4653     APInt Max =
   4654         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
   4655     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
   4656     if (!IsFullRange)
   4657       Result =
   4658           Result.intersectWith(ConstantRange(Min, Max + 1));
   4659   }
   4660 
   4661   return Result;
   4662 }
   4663 
   4664 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
   4665                                                     const SCEV *Step,
   4666                                                     const SCEV *MaxBECount,
   4667                                                     unsigned BitWidth) {
   4668   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
   4669   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
   4670 
   4671   struct SelectPattern {
   4672     Value *Condition = nullptr;
   4673     APInt TrueValue;
   4674     APInt FalseValue;
   4675 
   4676     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
   4677                            const SCEV *S) {
   4678       Optional<unsigned> CastOp;
   4679       APInt Offset(BitWidth, 0);
   4680 
   4681       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
   4682              "Should be!");
   4683 
   4684       // Peel off a constant offset:
   4685       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
   4686         // In the future we could consider being smarter here and handle
   4687         // {Start+Step,+,Step} too.
   4688         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
   4689           return;
   4690 
   4691         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
   4692         S = SA->getOperand(1);
   4693       }
   4694 
   4695       // Peel off a cast operation
   4696       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
   4697         CastOp = SCast->getSCEVType();
   4698         S = SCast->getOperand();
   4699       }
   4700 
   4701       using namespace llvm::PatternMatch;
   4702 
   4703       auto *SU = dyn_cast<SCEVUnknown>(S);
   4704       const APInt *TrueVal, *FalseVal;
   4705       if (!SU ||
   4706           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
   4707                                           m_APInt(FalseVal)))) {
   4708         Condition = nullptr;
   4709         return;
   4710       }
   4711 
   4712       TrueValue = *TrueVal;
   4713       FalseValue = *FalseVal;
   4714 
   4715       // Re-apply the cast we peeled off earlier
   4716       if (CastOp.hasValue())
   4717         switch (*CastOp) {
   4718         default:
   4719           llvm_unreachable("Unknown SCEV cast type!");
   4720 
   4721         case scTruncate:
   4722           TrueValue = TrueValue.trunc(BitWidth);
   4723           FalseValue = FalseValue.trunc(BitWidth);
   4724           break;
   4725         case scZeroExtend:
   4726           TrueValue = TrueValue.zext(BitWidth);
   4727           FalseValue = FalseValue.zext(BitWidth);
   4728           break;
   4729         case scSignExtend:
   4730           TrueValue = TrueValue.sext(BitWidth);
   4731           FalseValue = FalseValue.sext(BitWidth);
   4732           break;
   4733         }
   4734 
   4735       // Re-apply the constant offset we peeled off earlier
   4736       TrueValue += Offset;
   4737       FalseValue += Offset;
   4738     }
   4739 
   4740     bool isRecognized() { return Condition != nullptr; }
   4741   };
   4742 
   4743   SelectPattern StartPattern(*this, BitWidth, Start);
   4744   if (!StartPattern.isRecognized())
   4745     return ConstantRange(BitWidth, /* isFullSet = */ true);
   4746 
   4747   SelectPattern StepPattern(*this, BitWidth, Step);
   4748   if (!StepPattern.isRecognized())
   4749     return ConstantRange(BitWidth, /* isFullSet = */ true);
   4750 
   4751   if (StartPattern.Condition != StepPattern.Condition) {
   4752     // We don't handle this case today; but we could, by considering four
   4753     // possibilities below instead of two. I'm not sure if there are cases where
   4754     // that will help over what getRange already does, though.
   4755     return ConstantRange(BitWidth, /* isFullSet = */ true);
   4756   }
   4757 
   4758   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
   4759   // construct arbitrary general SCEV expressions here.  This function is called
   4760   // from deep in the call stack, and calling getSCEV (on a sext instruction,
   4761   // say) can end up caching a suboptimal value.
   4762 
   4763   // FIXME: without the explicit `this` receiver below, MSVC errors out with
   4764   // C2352 and C2512 (otherwise it isn't needed).
   4765 
   4766   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
   4767   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
   4768   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
   4769   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
   4770 
   4771   ConstantRange TrueRange =
   4772       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
   4773   ConstantRange FalseRange =
   4774       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
   4775 
   4776   return TrueRange.unionWith(FalseRange);
   4777 }
   4778 
   4779 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
   4780   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
   4781   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
   4782 
   4783   // Return early if there are no flags to propagate to the SCEV.
   4784   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   4785   if (BinOp->hasNoUnsignedWrap())
   4786     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
   4787   if (BinOp->hasNoSignedWrap())
   4788     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
   4789   if (Flags == SCEV::FlagAnyWrap)
   4790     return SCEV::FlagAnyWrap;
   4791 
   4792   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
   4793 }
   4794 
   4795 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
   4796   // Here we check that I is in the header of the innermost loop containing I,
   4797   // since we only deal with instructions in the loop header. The actual loop we
   4798   // need to check later will come from an add recurrence, but getting that
   4799   // requires computing the SCEV of the operands, which can be expensive. This
   4800   // check we can do cheaply to rule out some cases early.
   4801   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
   4802   if (InnermostContainingLoop == nullptr ||
   4803       InnermostContainingLoop->getHeader() != I->getParent())
   4804     return false;
   4805 
   4806   // Only proceed if we can prove that I does not yield poison.
   4807   if (!isKnownNotFullPoison(I)) return false;
   4808 
   4809   // At this point we know that if I is executed, then it does not wrap
   4810   // according to at least one of NSW or NUW. If I is not executed, then we do
   4811   // not know if the calculation that I represents would wrap. Multiple
   4812   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
   4813   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
   4814   // derived from other instructions that map to the same SCEV. We cannot make
   4815   // that guarantee for cases where I is not executed. So we need to find the
   4816   // loop that I is considered in relation to and prove that I is executed for
   4817   // every iteration of that loop. That implies that the value that I
   4818   // calculates does not wrap anywhere in the loop, so then we can apply the
   4819   // flags to the SCEV.
   4820   //
   4821   // We check isLoopInvariant to disambiguate in case we are adding recurrences
   4822   // from different loops, so that we know which loop to prove that I is
   4823   // executed in.
   4824   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
   4825     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
   4826     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
   4827       bool AllOtherOpsLoopInvariant = true;
   4828       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
   4829            ++OtherOpIndex) {
   4830         if (OtherOpIndex != OpIndex) {
   4831           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
   4832           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
   4833             AllOtherOpsLoopInvariant = false;
   4834             break;
   4835           }
   4836         }
   4837       }
   4838       if (AllOtherOpsLoopInvariant &&
   4839           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
   4840         return true;
   4841     }
   4842   }
   4843   return false;
   4844 }
   4845 
   4846 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
   4847   // If we know that \c I can never be poison period, then that's enough.
   4848   if (isSCEVExprNeverPoison(I))
   4849     return true;
   4850 
   4851   // For an add recurrence specifically, we assume that infinite loops without
   4852   // side effects are undefined behavior, and then reason as follows:
   4853   //
   4854   // If the add recurrence is poison in any iteration, it is poison on all
   4855   // future iterations (since incrementing poison yields poison). If the result
   4856   // of the add recurrence is fed into the loop latch condition and the loop
   4857   // does not contain any throws or exiting blocks other than the latch, we now
   4858   // have the ability to "choose" whether the backedge is taken or not (by
   4859   // choosing a sufficiently evil value for the poison feeding into the branch)
   4860   // for every iteration including and after the one in which \p I first became
   4861   // poison.  There are two possibilities (let's call the iteration in which \p
   4862   // I first became poison as K):
   4863   //
   4864   //  1. In the set of iterations including and after K, the loop body executes
   4865   //     no side effects.  In this case executing the backege an infinte number
   4866   //     of times will yield undefined behavior.
   4867   //
   4868   //  2. In the set of iterations including and after K, the loop body executes
   4869   //     at least one side effect.  In this case, that specific instance of side
   4870   //     effect is control dependent on poison, which also yields undefined
   4871   //     behavior.
   4872 
   4873   auto *ExitingBB = L->getExitingBlock();
   4874   auto *LatchBB = L->getLoopLatch();
   4875   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
   4876     return false;
   4877 
   4878   SmallPtrSet<const Instruction *, 16> Pushed;
   4879   SmallVector<const Instruction *, 8> PoisonStack;
   4880 
   4881   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
   4882   // things that are known to be fully poison under that assumption go on the
   4883   // PoisonStack.
   4884   Pushed.insert(I);
   4885   PoisonStack.push_back(I);
   4886 
   4887   bool LatchControlDependentOnPoison = false;
   4888   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
   4889     const Instruction *Poison = PoisonStack.pop_back_val();
   4890 
   4891     for (auto *PoisonUser : Poison->users()) {
   4892       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
   4893         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
   4894           PoisonStack.push_back(cast<Instruction>(PoisonUser));
   4895       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
   4896         assert(BI->isConditional() && "Only possibility!");
   4897         if (BI->getParent() == LatchBB) {
   4898           LatchControlDependentOnPoison = true;
   4899           break;
   4900         }
   4901       }
   4902     }
   4903   }
   4904 
   4905   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
   4906 }
   4907 
   4908 bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
   4909   auto Itr = LoopHasNoAbnormalExits.find(L);
   4910   if (Itr == LoopHasNoAbnormalExits.end()) {
   4911     auto NoAbnormalExitInBB = [&](BasicBlock *BB) {
   4912       return all_of(*BB, [](Instruction &I) {
   4913         return isGuaranteedToTransferExecutionToSuccessor(&I);
   4914       });
   4915     };
   4916 
   4917     auto InsertPair = LoopHasNoAbnormalExits.insert(
   4918         {L, all_of(L->getBlocks(), NoAbnormalExitInBB)});
   4919     assert(InsertPair.second && "We just checked!");
   4920     Itr = InsertPair.first;
   4921   }
   4922 
   4923   return Itr->second;
   4924 }
   4925 
   4926 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   4927   if (!isSCEVable(V->getType()))
   4928     return getUnknown(V);
   4929 
   4930   if (Instruction *I = dyn_cast<Instruction>(V)) {
   4931     // Don't attempt to analyze instructions in blocks that aren't
   4932     // reachable. Such instructions don't matter, and they aren't required
   4933     // to obey basic rules for definitions dominating uses which this
   4934     // analysis depends on.
   4935     if (!DT.isReachableFromEntry(I->getParent()))
   4936       return getUnknown(V);
   4937   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   4938     return getConstant(CI);
   4939   else if (isa<ConstantPointerNull>(V))
   4940     return getZero(V->getType());
   4941   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   4942     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
   4943   else if (!isa<ConstantExpr>(V))
   4944     return getUnknown(V);
   4945 
   4946   Operator *U = cast<Operator>(V);
   4947   if (auto BO = MatchBinaryOp(U, DT)) {
   4948     switch (BO->Opcode) {
   4949     case Instruction::Add: {
   4950       // The simple thing to do would be to just call getSCEV on both operands
   4951       // and call getAddExpr with the result. However if we're looking at a
   4952       // bunch of things all added together, this can be quite inefficient,
   4953       // because it leads to N-1 getAddExpr calls for N ultimate operands.
   4954       // Instead, gather up all the operands and make a single getAddExpr call.
   4955       // LLVM IR canonical form means we need only traverse the left operands.
   4956       SmallVector<const SCEV *, 4> AddOps;
   4957       do {
   4958         if (BO->Op) {
   4959           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
   4960             AddOps.push_back(OpSCEV);
   4961             break;
   4962           }
   4963 
   4964           // If a NUW or NSW flag can be applied to the SCEV for this
   4965           // addition, then compute the SCEV for this addition by itself
   4966           // with a separate call to getAddExpr. We need to do that
   4967           // instead of pushing the operands of the addition onto AddOps,
   4968           // since the flags are only known to apply to this particular
   4969           // addition - they may not apply to other additions that can be
   4970           // formed with operands from AddOps.
   4971           const SCEV *RHS = getSCEV(BO->RHS);
   4972           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
   4973           if (Flags != SCEV::FlagAnyWrap) {
   4974             const SCEV *LHS = getSCEV(BO->LHS);
   4975             if (BO->Opcode == Instruction::Sub)
   4976               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
   4977             else
   4978               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
   4979             break;
   4980           }
   4981         }
   4982 
   4983         if (BO->Opcode == Instruction::Sub)
   4984           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
   4985         else
   4986           AddOps.push_back(getSCEV(BO->RHS));
   4987 
   4988         auto NewBO = MatchBinaryOp(BO->LHS, DT);
   4989         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
   4990                        NewBO->Opcode != Instruction::Sub)) {
   4991           AddOps.push_back(getSCEV(BO->LHS));
   4992           break;
   4993         }
   4994         BO = NewBO;
   4995       } while (true);
   4996 
   4997       return getAddExpr(AddOps);
   4998     }
   4999 
   5000     case Instruction::Mul: {
   5001       SmallVector<const SCEV *, 4> MulOps;
   5002       do {
   5003         if (BO->Op) {
   5004           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
   5005             MulOps.push_back(OpSCEV);
   5006             break;
   5007           }
   5008 
   5009           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
   5010           if (Flags != SCEV::FlagAnyWrap) {
   5011             MulOps.push_back(
   5012                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
   5013             break;
   5014           }
   5015         }
   5016 
   5017         MulOps.push_back(getSCEV(BO->RHS));
   5018         auto NewBO = MatchBinaryOp(BO->LHS, DT);
   5019         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
   5020           MulOps.push_back(getSCEV(BO->LHS));
   5021           break;
   5022         }
   5023         BO = NewBO;
   5024       } while (true);
   5025 
   5026       return getMulExpr(MulOps);
   5027     }
   5028     case Instruction::UDiv:
   5029       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
   5030     case Instruction::Sub: {
   5031       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   5032       if (BO->Op)
   5033         Flags = getNoWrapFlagsFromUB(BO->Op);
   5034       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
   5035     }
   5036     case Instruction::And:
   5037       // For an expression like x&255 that merely masks off the high bits,
   5038       // use zext(trunc(x)) as the SCEV expression.
   5039       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
   5040         if (CI->isNullValue())
   5041           return getSCEV(BO->RHS);
   5042         if (CI->isAllOnesValue())
   5043           return getSCEV(BO->LHS);
   5044         const APInt &A = CI->getValue();
   5045 
   5046         // Instcombine's ShrinkDemandedConstant may strip bits out of
   5047         // constants, obscuring what would otherwise be a low-bits mask.
   5048         // Use computeKnownBits to compute what ShrinkDemandedConstant
   5049         // knew about to reconstruct a low-bits mask value.
   5050         unsigned LZ = A.countLeadingZeros();
   5051         unsigned TZ = A.countTrailingZeros();
   5052         unsigned BitWidth = A.getBitWidth();
   5053         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   5054         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
   5055                          0, &AC, nullptr, &DT);
   5056 
   5057         APInt EffectiveMask =
   5058             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
   5059         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
   5060           const SCEV *MulCount = getConstant(ConstantInt::get(
   5061               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
   5062           return getMulExpr(
   5063               getZeroExtendExpr(
   5064                   getTruncateExpr(
   5065                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
   5066                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
   5067                   BO->LHS->getType()),
   5068               MulCount);
   5069         }
   5070       }
   5071       break;
   5072 
   5073     case Instruction::Or:
   5074       // If the RHS of the Or is a constant, we may have something like:
   5075       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   5076       // optimizations will transparently handle this case.
   5077       //
   5078       // In order for this transformation to be safe, the LHS must be of the
   5079       // form X*(2^n) and the Or constant must be less than 2^n.
   5080       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
   5081         const SCEV *LHS = getSCEV(BO->LHS);
   5082         const APInt &CIVal = CI->getValue();
   5083         if (GetMinTrailingZeros(LHS) >=
   5084             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   5085           // Build a plain add SCEV.
   5086           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   5087           // If the LHS of the add was an addrec and it has no-wrap flags,
   5088           // transfer the no-wrap flags, since an or won't introduce a wrap.
   5089           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   5090             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   5091             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   5092                 OldAR->getNoWrapFlags());
   5093           }
   5094           return S;
   5095         }
   5096       }
   5097       break;
   5098 
   5099     case Instruction::Xor:
   5100       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
   5101         // If the RHS of xor is -1, then this is a not operation.
   5102         if (CI->isAllOnesValue())
   5103           return getNotSCEV(getSCEV(BO->LHS));
   5104 
   5105         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   5106         // This is a variant of the check for xor with -1, and it handles
   5107         // the case where instcombine has trimmed non-demanded bits out
   5108         // of an xor with -1.
   5109         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
   5110           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
   5111             if (LBO->getOpcode() == Instruction::And &&
   5112                 LCI->getValue() == CI->getValue())
   5113               if (const SCEVZeroExtendExpr *Z =
   5114                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
   5115                 Type *UTy = BO->LHS->getType();
   5116                 const SCEV *Z0 = Z->getOperand();
   5117                 Type *Z0Ty = Z0->getType();
   5118                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   5119 
   5120                 // If C is a low-bits mask, the zero extend is serving to
   5121                 // mask off the high bits. Complement the operand and
   5122                 // re-apply the zext.
   5123                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
   5124                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   5125 
   5126                 // If C is a single bit, it may be in the sign-bit position
   5127                 // before the zero-extend. In this case, represent the xor
   5128                 // using an add, which is equivalent, and re-apply the zext.
   5129                 APInt Trunc = CI->getValue().trunc(Z0TySize);
   5130                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   5131                     Trunc.isSignBit())
   5132                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   5133                                            UTy);
   5134               }
   5135       }
   5136       break;
   5137 
   5138   case Instruction::Shl:
   5139     // Turn shift left of a constant amount into a multiply.
   5140     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
   5141       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
   5142 
   5143       // If the shift count is not less than the bitwidth, the result of
   5144       // the shift is undefined. Don't try to analyze it, because the
   5145       // resolution chosen here may differ from the resolution chosen in
   5146       // other parts of the compiler.
   5147       if (SA->getValue().uge(BitWidth))
   5148         break;
   5149 
   5150       // It is currently not resolved how to interpret NSW for left
   5151       // shift by BitWidth - 1, so we avoid applying flags in that
   5152       // case. Remove this check (or this comment) once the situation
   5153       // is resolved. See
   5154       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
   5155       // and http://reviews.llvm.org/D8890 .
   5156       auto Flags = SCEV::FlagAnyWrap;
   5157       if (BO->Op && SA->getValue().ult(BitWidth - 1))
   5158         Flags = getNoWrapFlagsFromUB(BO->Op);
   5159 
   5160       Constant *X = ConstantInt::get(getContext(),
   5161         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
   5162       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
   5163     }
   5164     break;
   5165 
   5166     case Instruction::AShr:
   5167       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   5168       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
   5169         if (Operator *L = dyn_cast<Operator>(BO->LHS))
   5170           if (L->getOpcode() == Instruction::Shl &&
   5171               L->getOperand(1) == BO->RHS) {
   5172             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
   5173 
   5174             // If the shift count is not less than the bitwidth, the result of
   5175             // the shift is undefined. Don't try to analyze it, because the
   5176             // resolution chosen here may differ from the resolution chosen in
   5177             // other parts of the compiler.
   5178             if (CI->getValue().uge(BitWidth))
   5179               break;
   5180 
   5181             uint64_t Amt = BitWidth - CI->getZExtValue();
   5182             if (Amt == BitWidth)
   5183               return getSCEV(L->getOperand(0)); // shift by zero --> noop
   5184             return getSignExtendExpr(
   5185                 getTruncateExpr(getSCEV(L->getOperand(0)),
   5186                                 IntegerType::get(getContext(), Amt)),
   5187                 BO->LHS->getType());
   5188           }
   5189       break;
   5190     }
   5191   }
   5192 
   5193   switch (U->getOpcode()) {
   5194   case Instruction::Trunc:
   5195     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   5196 
   5197   case Instruction::ZExt:
   5198     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   5199 
   5200   case Instruction::SExt:
   5201     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   5202 
   5203   case Instruction::BitCast:
   5204     // BitCasts are no-op casts so we just eliminate the cast.
   5205     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   5206       return getSCEV(U->getOperand(0));
   5207     break;
   5208 
   5209   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   5210   // lead to pointer expressions which cannot safely be expanded to GEPs,
   5211   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   5212   // simplifying integer expressions.
   5213 
   5214   case Instruction::GetElementPtr:
   5215     return createNodeForGEP(cast<GEPOperator>(U));
   5216 
   5217   case Instruction::PHI:
   5218     return createNodeForPHI(cast<PHINode>(U));
   5219 
   5220   case Instruction::Select:
   5221     // U can also be a select constant expr, which let fall through.  Since
   5222     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
   5223     // constant expressions cannot have instructions as operands, we'd have
   5224     // returned getUnknown for a select constant expressions anyway.
   5225     if (isa<Instruction>(U))
   5226       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
   5227                                       U->getOperand(1), U->getOperand(2));
   5228     break;
   5229 
   5230   case Instruction::Call:
   5231   case Instruction::Invoke:
   5232     if (Value *RV = CallSite(U).getReturnedArgOperand())
   5233       return getSCEV(RV);
   5234     break;
   5235   }
   5236 
   5237   return getUnknown(V);
   5238 }
   5239 
   5240 
   5241 
   5242 //===----------------------------------------------------------------------===//
   5243 //                   Iteration Count Computation Code
   5244 //
   5245 
   5246 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
   5247   if (BasicBlock *ExitingBB = L->getExitingBlock())
   5248     return getSmallConstantTripCount(L, ExitingBB);
   5249 
   5250   // No trip count information for multiple exits.
   5251   return 0;
   5252 }
   5253 
   5254 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
   5255                                                     BasicBlock *ExitingBlock) {
   5256   assert(ExitingBlock && "Must pass a non-null exiting block!");
   5257   assert(L->isLoopExiting(ExitingBlock) &&
   5258          "Exiting block must actually branch out of the loop!");
   5259   const SCEVConstant *ExitCount =
   5260       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   5261   if (!ExitCount)
   5262     return 0;
   5263 
   5264   ConstantInt *ExitConst = ExitCount->getValue();
   5265 
   5266   // Guard against huge trip counts.
   5267   if (ExitConst->getValue().getActiveBits() > 32)
   5268     return 0;
   5269 
   5270   // In case of integer overflow, this returns 0, which is correct.
   5271   return ((unsigned)ExitConst->getZExtValue()) + 1;
   5272 }
   5273 
   5274 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
   5275   if (BasicBlock *ExitingBB = L->getExitingBlock())
   5276     return getSmallConstantTripMultiple(L, ExitingBB);
   5277 
   5278   // No trip multiple information for multiple exits.
   5279   return 0;
   5280 }
   5281 
   5282 /// Returns the largest constant divisor of the trip count of this loop as a
   5283 /// normal unsigned value, if possible. This means that the actual trip count is
   5284 /// always a multiple of the returned value (don't forget the trip count could
   5285 /// very well be zero as well!).
   5286 ///
   5287 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   5288 /// multiple of a constant (which is also the case if the trip count is simply
   5289 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   5290 /// if the trip count is very large (>= 2^32).
   5291 ///
   5292 /// As explained in the comments for getSmallConstantTripCount, this assumes
   5293 /// that control exits the loop via ExitingBlock.
   5294 unsigned
   5295 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
   5296                                               BasicBlock *ExitingBlock) {
   5297   assert(ExitingBlock && "Must pass a non-null exiting block!");
   5298   assert(L->isLoopExiting(ExitingBlock) &&
   5299          "Exiting block must actually branch out of the loop!");
   5300   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   5301   if (ExitCount == getCouldNotCompute())
   5302     return 1;
   5303 
   5304   // Get the trip count from the BE count by adding 1.
   5305   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
   5306   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   5307   // to factor simple cases.
   5308   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   5309     TCMul = Mul->getOperand(0);
   5310 
   5311   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   5312   if (!MulC)
   5313     return 1;
   5314 
   5315   ConstantInt *Result = MulC->getValue();
   5316 
   5317   // Guard against huge trip counts (this requires checking
   5318   // for zero to handle the case where the trip count == -1 and the
   5319   // addition wraps).
   5320   if (!Result || Result->getValue().getActiveBits() > 32 ||
   5321       Result->getValue().getActiveBits() == 0)
   5322     return 1;
   5323 
   5324   return (unsigned)Result->getZExtValue();
   5325 }
   5326 
   5327 /// Get the expression for the number of loop iterations for which this loop is
   5328 /// guaranteed not to exit via ExitingBlock. Otherwise return
   5329 /// SCEVCouldNotCompute.
   5330 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   5331   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   5332 }
   5333 
   5334 const SCEV *
   5335 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
   5336                                                  SCEVUnionPredicate &Preds) {
   5337   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
   5338 }
   5339 
   5340 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   5341   return getBackedgeTakenInfo(L).getExact(this);
   5342 }
   5343 
   5344 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
   5345 /// known never to be less than the actual backedge taken count.
   5346 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   5347   return getBackedgeTakenInfo(L).getMax(this);
   5348 }
   5349 
   5350 /// Push PHI nodes in the header of the given loop onto the given Worklist.
   5351 static void
   5352 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   5353   BasicBlock *Header = L->getHeader();
   5354 
   5355   // Push all Loop-header PHIs onto the Worklist stack.
   5356   for (BasicBlock::iterator I = Header->begin();
   5357        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   5358     Worklist.push_back(PN);
   5359 }
   5360 
   5361 const ScalarEvolution::BackedgeTakenInfo &
   5362 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
   5363   auto &BTI = getBackedgeTakenInfo(L);
   5364   if (BTI.hasFullInfo())
   5365     return BTI;
   5366 
   5367   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
   5368 
   5369   if (!Pair.second)
   5370     return Pair.first->second;
   5371 
   5372   BackedgeTakenInfo Result =
   5373       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
   5374 
   5375   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
   5376 }
   5377 
   5378 const ScalarEvolution::BackedgeTakenInfo &
   5379 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   5380   // Initially insert an invalid entry for this loop. If the insertion
   5381   // succeeds, proceed to actually compute a backedge-taken count and
   5382   // update the value. The temporary CouldNotCompute value tells SCEV
   5383   // code elsewhere that it shouldn't attempt to request a new
   5384   // backedge-taken count, which could result in infinite recursion.
   5385   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   5386       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
   5387   if (!Pair.second)
   5388     return Pair.first->second;
   5389 
   5390   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
   5391   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   5392   // must be cleared in this scope.
   5393   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
   5394 
   5395   if (Result.getExact(this) != getCouldNotCompute()) {
   5396     assert(isLoopInvariant(Result.getExact(this), L) &&
   5397            isLoopInvariant(Result.getMax(this), L) &&
   5398            "Computed backedge-taken count isn't loop invariant for loop!");
   5399     ++NumTripCountsComputed;
   5400   }
   5401   else if (Result.getMax(this) == getCouldNotCompute() &&
   5402            isa<PHINode>(L->getHeader()->begin())) {
   5403     // Only count loops that have phi nodes as not being computable.
   5404     ++NumTripCountsNotComputed;
   5405   }
   5406 
   5407   // Now that we know more about the trip count for this loop, forget any
   5408   // existing SCEV values for PHI nodes in this loop since they are only
   5409   // conservative estimates made without the benefit of trip count
   5410   // information. This is similar to the code in forgetLoop, except that
   5411   // it handles SCEVUnknown PHI nodes specially.
   5412   if (Result.hasAnyInfo()) {
   5413     SmallVector<Instruction *, 16> Worklist;
   5414     PushLoopPHIs(L, Worklist);
   5415 
   5416     SmallPtrSet<Instruction *, 8> Visited;
   5417     while (!Worklist.empty()) {
   5418       Instruction *I = Worklist.pop_back_val();
   5419       if (!Visited.insert(I).second)
   5420         continue;
   5421 
   5422       ValueExprMapType::iterator It =
   5423         ValueExprMap.find_as(static_cast<Value *>(I));
   5424       if (It != ValueExprMap.end()) {
   5425         const SCEV *Old = It->second;
   5426 
   5427         // SCEVUnknown for a PHI either means that it has an unrecognized
   5428         // structure, or it's a PHI that's in the progress of being computed
   5429         // by createNodeForPHI.  In the former case, additional loop trip
   5430         // count information isn't going to change anything. In the later
   5431         // case, createNodeForPHI will perform the necessary updates on its
   5432         // own when it gets to that point.
   5433         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   5434           forgetMemoizedResults(Old);
   5435           ValueExprMap.erase(It);
   5436         }
   5437         if (PHINode *PN = dyn_cast<PHINode>(I))
   5438           ConstantEvolutionLoopExitValue.erase(PN);
   5439       }
   5440 
   5441       PushDefUseChildren(I, Worklist);
   5442     }
   5443   }
   5444 
   5445   // Re-lookup the insert position, since the call to
   5446   // computeBackedgeTakenCount above could result in a
   5447   // recusive call to getBackedgeTakenInfo (on a different
   5448   // loop), which would invalidate the iterator computed
   5449   // earlier.
   5450   return BackedgeTakenCounts.find(L)->second = Result;
   5451 }
   5452 
   5453 void ScalarEvolution::forgetLoop(const Loop *L) {
   5454   // Drop any stored trip count value.
   5455   auto RemoveLoopFromBackedgeMap =
   5456       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
   5457         auto BTCPos = Map.find(L);
   5458         if (BTCPos != Map.end()) {
   5459           BTCPos->second.clear();
   5460           Map.erase(BTCPos);
   5461         }
   5462       };
   5463 
   5464   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
   5465   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
   5466 
   5467   // Drop information about expressions based on loop-header PHIs.
   5468   SmallVector<Instruction *, 16> Worklist;
   5469   PushLoopPHIs(L, Worklist);
   5470 
   5471   SmallPtrSet<Instruction *, 8> Visited;
   5472   while (!Worklist.empty()) {
   5473     Instruction *I = Worklist.pop_back_val();
   5474     if (!Visited.insert(I).second)
   5475       continue;
   5476 
   5477     ValueExprMapType::iterator It =
   5478       ValueExprMap.find_as(static_cast<Value *>(I));
   5479     if (It != ValueExprMap.end()) {
   5480       forgetMemoizedResults(It->second);
   5481       ValueExprMap.erase(It);
   5482       if (PHINode *PN = dyn_cast<PHINode>(I))
   5483         ConstantEvolutionLoopExitValue.erase(PN);
   5484     }
   5485 
   5486     PushDefUseChildren(I, Worklist);
   5487   }
   5488 
   5489   // Forget all contained loops too, to avoid dangling entries in the
   5490   // ValuesAtScopes map.
   5491   for (Loop *I : *L)
   5492     forgetLoop(I);
   5493 
   5494   LoopHasNoAbnormalExits.erase(L);
   5495 }
   5496 
   5497 void ScalarEvolution::forgetValue(Value *V) {
   5498   Instruction *I = dyn_cast<Instruction>(V);
   5499   if (!I) return;
   5500 
   5501   // Drop information about expressions based on loop-header PHIs.
   5502   SmallVector<Instruction *, 16> Worklist;
   5503   Worklist.push_back(I);
   5504 
   5505   SmallPtrSet<Instruction *, 8> Visited;
   5506   while (!Worklist.empty()) {
   5507     I = Worklist.pop_back_val();
   5508     if (!Visited.insert(I).second)
   5509       continue;
   5510 
   5511     ValueExprMapType::iterator It =
   5512       ValueExprMap.find_as(static_cast<Value *>(I));
   5513     if (It != ValueExprMap.end()) {
   5514       forgetMemoizedResults(It->second);
   5515       ValueExprMap.erase(It);
   5516       if (PHINode *PN = dyn_cast<PHINode>(I))
   5517         ConstantEvolutionLoopExitValue.erase(PN);
   5518     }
   5519 
   5520     PushDefUseChildren(I, Worklist);
   5521   }
   5522 }
   5523 
   5524 /// Get the exact loop backedge taken count considering all loop exits. A
   5525 /// computable result can only be returned for loops with a single exit.
   5526 /// Returning the minimum taken count among all exits is incorrect because one
   5527 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
   5528 /// the limit of each loop test is never skipped. This is a valid assumption as
   5529 /// long as the loop exits via that test. For precise results, it is the
   5530 /// caller's responsibility to specify the relevant loop exit using
   5531 /// getExact(ExitingBlock, SE).
   5532 const SCEV *
   5533 ScalarEvolution::BackedgeTakenInfo::getExact(
   5534     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
   5535   // If any exits were not computable, the loop is not computable.
   5536   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   5537 
   5538   // We need exactly one computable exit.
   5539   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   5540   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   5541 
   5542   const SCEV *BECount = nullptr;
   5543   for (auto &ENT : ExitNotTaken) {
   5544     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   5545 
   5546     if (!BECount)
   5547       BECount = ENT.ExactNotTaken;
   5548     else if (BECount != ENT.ExactNotTaken)
   5549       return SE->getCouldNotCompute();
   5550     if (Preds && ENT.getPred())
   5551       Preds->add(ENT.getPred());
   5552 
   5553     assert((Preds || ENT.hasAlwaysTruePred()) &&
   5554            "Predicate should be always true!");
   5555   }
   5556 
   5557   assert(BECount && "Invalid not taken count for loop exit");
   5558   return BECount;
   5559 }
   5560 
   5561 /// Get the exact not taken count for this loop exit.
   5562 const SCEV *
   5563 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   5564                                              ScalarEvolution *SE) const {
   5565   for (auto &ENT : ExitNotTaken)
   5566     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
   5567       return ENT.ExactNotTaken;
   5568 
   5569   return SE->getCouldNotCompute();
   5570 }
   5571 
   5572 /// getMax - Get the max backedge taken count for the loop.
   5573 const SCEV *
   5574 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   5575   for (auto &ENT : ExitNotTaken)
   5576     if (!ENT.hasAlwaysTruePred())
   5577       return SE->getCouldNotCompute();
   5578 
   5579   return Max ? Max : SE->getCouldNotCompute();
   5580 }
   5581 
   5582 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
   5583                                                     ScalarEvolution *SE) const {
   5584   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
   5585     return true;
   5586 
   5587   if (!ExitNotTaken.ExitingBlock)
   5588     return false;
   5589 
   5590   for (auto &ENT : ExitNotTaken)
   5591     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
   5592         SE->hasOperand(ENT.ExactNotTaken, S))
   5593       return true;
   5594 
   5595   return false;
   5596 }
   5597 
   5598 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   5599 /// computable exit into a persistent ExitNotTakenInfo array.
   5600 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   5601     SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
   5602     : Max(MaxCount) {
   5603 
   5604   if (!Complete)
   5605     ExitNotTaken.setIncomplete();
   5606 
   5607   unsigned NumExits = ExitCounts.size();
   5608   if (NumExits == 0) return;
   5609 
   5610   ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
   5611   ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
   5612 
   5613   // Determine the number of ExitNotTakenExtras structures that we need.
   5614   unsigned ExtraInfoSize = 0;
   5615   if (NumExits > 1)
   5616     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
   5617                                       ExitCounts.end(), [](EdgeInfo &Entry) {
   5618                                         return !Entry.Pred.isAlwaysTrue();
   5619                                       });
   5620   else if (!ExitCounts[0].Pred.isAlwaysTrue())
   5621     ExtraInfoSize = 1;
   5622 
   5623   ExitNotTakenExtras *ENT = nullptr;
   5624 
   5625   // Allocate the ExitNotTakenExtras structures and initialize the first
   5626   // element (ExitNotTaken).
   5627   if (ExtraInfoSize > 0) {
   5628     ENT = new ExitNotTakenExtras[ExtraInfoSize];
   5629     ExitNotTaken.ExtraInfo = &ENT[0];
   5630     *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
   5631   }
   5632 
   5633   if (NumExits == 1)
   5634     return;
   5635 
   5636   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
   5637 
   5638   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
   5639 
   5640   // Handle the rare case of multiple computable exits.
   5641   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
   5642     ExitNotTakenExtras *Ptr = nullptr;
   5643     if (!ExitCounts[i].Pred.isAlwaysTrue()) {
   5644       Ptr = &ENT[PredPos++];
   5645       Ptr->Pred = std::move(ExitCounts[i].Pred);
   5646     }
   5647 
   5648     Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
   5649   }
   5650 }
   5651 
   5652 /// Invalidate this result and free the ExitNotTakenInfo array.
   5653 void ScalarEvolution::BackedgeTakenInfo::clear() {
   5654   ExitNotTaken.ExitingBlock = nullptr;
   5655   ExitNotTaken.ExactNotTaken = nullptr;
   5656   delete[] ExitNotTaken.ExtraInfo;
   5657 }
   5658 
   5659 /// Compute the number of times the backedge of the specified loop will execute.
   5660 ScalarEvolution::BackedgeTakenInfo
   5661 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
   5662                                            bool AllowPredicates) {
   5663   SmallVector<BasicBlock *, 8> ExitingBlocks;
   5664   L->getExitingBlocks(ExitingBlocks);
   5665 
   5666   SmallVector<EdgeInfo, 4> ExitCounts;
   5667   bool CouldComputeBECount = true;
   5668   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
   5669   const SCEV *MustExitMaxBECount = nullptr;
   5670   const SCEV *MayExitMaxBECount = nullptr;
   5671 
   5672   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
   5673   // and compute maxBECount.
   5674   // Do a union of all the predicates here.
   5675   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   5676     BasicBlock *ExitBB = ExitingBlocks[i];
   5677     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
   5678 
   5679     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
   5680            "Predicated exit limit when predicates are not allowed!");
   5681 
   5682     // 1. For each exit that can be computed, add an entry to ExitCounts.
   5683     // CouldComputeBECount is true only if all exits can be computed.
   5684     if (EL.Exact == getCouldNotCompute())
   5685       // We couldn't compute an exact value for this exit, so
   5686       // we won't be able to compute an exact value for the loop.
   5687       CouldComputeBECount = false;
   5688     else
   5689       ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
   5690 
   5691     // 2. Derive the loop's MaxBECount from each exit's max number of
   5692     // non-exiting iterations. Partition the loop exits into two kinds:
   5693     // LoopMustExits and LoopMayExits.
   5694     //
   5695     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
   5696     // is a LoopMayExit.  If any computable LoopMustExit is found, then
   5697     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
   5698     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
   5699     // considered greater than any computable EL.Max.
   5700     if (EL.Max != getCouldNotCompute() && Latch &&
   5701         DT.dominates(ExitBB, Latch)) {
   5702       if (!MustExitMaxBECount)
   5703         MustExitMaxBECount = EL.Max;
   5704       else {
   5705         MustExitMaxBECount =
   5706           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
   5707       }
   5708     } else if (MayExitMaxBECount != getCouldNotCompute()) {
   5709       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
   5710         MayExitMaxBECount = EL.Max;
   5711       else {
   5712         MayExitMaxBECount =
   5713           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
   5714       }
   5715     }
   5716   }
   5717   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
   5718     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
   5719   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   5720 }
   5721 
   5722 ScalarEvolution::ExitLimit
   5723 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
   5724                                   bool AllowPredicates) {
   5725 
   5726   // Okay, we've chosen an exiting block.  See what condition causes us to exit
   5727   // at this block and remember the exit block and whether all other targets
   5728   // lead to the loop header.
   5729   bool MustExecuteLoopHeader = true;
   5730   BasicBlock *Exit = nullptr;
   5731   for (auto *SBB : successors(ExitingBlock))
   5732     if (!L->contains(SBB)) {
   5733       if (Exit) // Multiple exit successors.
   5734         return getCouldNotCompute();
   5735       Exit = SBB;
   5736     } else if (SBB != L->getHeader()) {
   5737       MustExecuteLoopHeader = false;
   5738     }
   5739 
   5740   // At this point, we know we have a conditional branch that determines whether
   5741   // the loop is exited.  However, we don't know if the branch is executed each
   5742   // time through the loop.  If not, then the execution count of the branch will
   5743   // not be equal to the trip count of the loop.
   5744   //
   5745   // Currently we check for this by checking to see if the Exit branch goes to
   5746   // the loop header.  If so, we know it will always execute the same number of
   5747   // times as the loop.  We also handle the case where the exit block *is* the
   5748   // loop header.  This is common for un-rotated loops.
   5749   //
   5750   // If both of those tests fail, walk up the unique predecessor chain to the
   5751   // header, stopping if there is an edge that doesn't exit the loop. If the
   5752   // header is reached, the execution count of the branch will be equal to the
   5753   // trip count of the loop.
   5754   //
   5755   //  More extensive analysis could be done to handle more cases here.
   5756   //
   5757   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
   5758     // The simple checks failed, try climbing the unique predecessor chain
   5759     // up to the header.
   5760     bool Ok = false;
   5761     for (BasicBlock *BB = ExitingBlock; BB; ) {
   5762       BasicBlock *Pred = BB->getUniquePredecessor();
   5763       if (!Pred)
   5764         return getCouldNotCompute();
   5765       TerminatorInst *PredTerm = Pred->getTerminator();
   5766       for (const BasicBlock *PredSucc : PredTerm->successors()) {
   5767         if (PredSucc == BB)
   5768           continue;
   5769         // If the predecessor has a successor that isn't BB and isn't
   5770         // outside the loop, assume the worst.
   5771         if (L->contains(PredSucc))
   5772           return getCouldNotCompute();
   5773       }
   5774       if (Pred == L->getHeader()) {
   5775         Ok = true;
   5776         break;
   5777       }
   5778       BB = Pred;
   5779     }
   5780     if (!Ok)
   5781       return getCouldNotCompute();
   5782   }
   5783 
   5784   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
   5785   TerminatorInst *Term = ExitingBlock->getTerminator();
   5786   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
   5787     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
   5788     // Proceed to the next level to examine the exit condition expression.
   5789     return computeExitLimitFromCond(
   5790         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
   5791         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
   5792   }
   5793 
   5794   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
   5795     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
   5796                                                 /*ControlsExit=*/IsOnlyExit);
   5797 
   5798   return getCouldNotCompute();
   5799 }
   5800 
   5801 ScalarEvolution::ExitLimit
   5802 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
   5803                                           Value *ExitCond,
   5804                                           BasicBlock *TBB,
   5805                                           BasicBlock *FBB,
   5806                                           bool ControlsExit,
   5807                                           bool AllowPredicates) {
   5808   // Check if the controlling expression for this loop is an And or Or.
   5809   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   5810     if (BO->getOpcode() == Instruction::And) {
   5811       // Recurse on the operands of the and.
   5812       bool EitherMayExit = L->contains(TBB);
   5813       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   5814                                                ControlsExit && !EitherMayExit,
   5815                                                AllowPredicates);
   5816       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   5817                                                ControlsExit && !EitherMayExit,
   5818                                                AllowPredicates);
   5819       const SCEV *BECount = getCouldNotCompute();
   5820       const SCEV *MaxBECount = getCouldNotCompute();
   5821       if (EitherMayExit) {
   5822         // Both conditions must be true for the loop to continue executing.
   5823         // Choose the less conservative count.
   5824         if (EL0.Exact == getCouldNotCompute() ||
   5825             EL1.Exact == getCouldNotCompute())
   5826           BECount = getCouldNotCompute();
   5827         else
   5828           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   5829         if (EL0.Max == getCouldNotCompute())
   5830           MaxBECount = EL1.Max;
   5831         else if (EL1.Max == getCouldNotCompute())
   5832           MaxBECount = EL0.Max;
   5833         else
   5834           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5835       } else {
   5836         // Both conditions must be true at the same time for the loop to exit.
   5837         // For now, be conservative.
   5838         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   5839         if (EL0.Max == EL1.Max)
   5840           MaxBECount = EL0.Max;
   5841         if (EL0.Exact == EL1.Exact)
   5842           BECount = EL0.Exact;
   5843       }
   5844 
   5845       SCEVUnionPredicate NP;
   5846       NP.add(&EL0.Pred);
   5847       NP.add(&EL1.Pred);
   5848       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
   5849       // to be more aggressive when computing BECount than when computing
   5850       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
   5851       // to match, but for EL0.Max and EL1.Max to not.
   5852       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
   5853           !isa<SCEVCouldNotCompute>(BECount))
   5854         MaxBECount = BECount;
   5855 
   5856       return ExitLimit(BECount, MaxBECount, NP);
   5857     }
   5858     if (BO->getOpcode() == Instruction::Or) {
   5859       // Recurse on the operands of the or.
   5860       bool EitherMayExit = L->contains(FBB);
   5861       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
   5862                                                ControlsExit && !EitherMayExit,
   5863                                                AllowPredicates);
   5864       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
   5865                                                ControlsExit && !EitherMayExit,
   5866                                                AllowPredicates);
   5867       const SCEV *BECount = getCouldNotCompute();
   5868       const SCEV *MaxBECount = getCouldNotCompute();
   5869       if (EitherMayExit) {
   5870         // Both conditions must be false for the loop to continue executing.
   5871         // Choose the less conservative count.
   5872         if (EL0.Exact == getCouldNotCompute() ||
   5873             EL1.Exact == getCouldNotCompute())
   5874           BECount = getCouldNotCompute();
   5875         else
   5876           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   5877         if (EL0.Max == getCouldNotCompute())
   5878           MaxBECount = EL1.Max;
   5879         else if (EL1.Max == getCouldNotCompute())
   5880           MaxBECount = EL0.Max;
   5881         else
   5882           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   5883       } else {
   5884         // Both conditions must be false at the same time for the loop to exit.
   5885         // For now, be conservative.
   5886         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   5887         if (EL0.Max == EL1.Max)
   5888           MaxBECount = EL0.Max;
   5889         if (EL0.Exact == EL1.Exact)
   5890           BECount = EL0.Exact;
   5891       }
   5892 
   5893       SCEVUnionPredicate NP;
   5894       NP.add(&EL0.Pred);
   5895       NP.add(&EL1.Pred);
   5896       return ExitLimit(BECount, MaxBECount, NP);
   5897     }
   5898   }
   5899 
   5900   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   5901   // Proceed to the next level to examine the icmp.
   5902   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
   5903     ExitLimit EL =
   5904         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
   5905     if (EL.hasFullInfo() || !AllowPredicates)
   5906       return EL;
   5907 
   5908     // Try again, but use SCEV predicates this time.
   5909     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
   5910                                     /*AllowPredicates=*/true);
   5911   }
   5912 
   5913   // Check for a constant condition. These are normally stripped out by
   5914   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   5915   // preserve the CFG and is temporarily leaving constant conditions
   5916   // in place.
   5917   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   5918     if (L->contains(FBB) == !CI->getZExtValue())
   5919       // The backedge is always taken.
   5920       return getCouldNotCompute();
   5921     else
   5922       // The backedge is never taken.
   5923       return getZero(CI->getType());
   5924   }
   5925 
   5926   // If it's not an integer or pointer comparison then compute it the hard way.
   5927   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   5928 }
   5929 
   5930 ScalarEvolution::ExitLimit
   5931 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
   5932                                           ICmpInst *ExitCond,
   5933                                           BasicBlock *TBB,
   5934                                           BasicBlock *FBB,
   5935                                           bool ControlsExit,
   5936                                           bool AllowPredicates) {
   5937 
   5938   // If the condition was exit on true, convert the condition to exit on false
   5939   ICmpInst::Predicate Cond;
   5940   if (!L->contains(FBB))
   5941     Cond = ExitCond->getPredicate();
   5942   else
   5943     Cond = ExitCond->getInversePredicate();
   5944 
   5945   // Handle common loops like: for (X = "string"; *X; ++X)
   5946   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   5947     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   5948       ExitLimit ItCnt =
   5949         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   5950       if (ItCnt.hasAnyInfo())
   5951         return ItCnt;
   5952     }
   5953 
   5954   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   5955   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   5956 
   5957   // Try to evaluate any dependencies out of the loop.
   5958   LHS = getSCEVAtScope(LHS, L);
   5959   RHS = getSCEVAtScope(RHS, L);
   5960 
   5961   // At this point, we would like to compute how many iterations of the
   5962   // loop the predicate will return true for these inputs.
   5963   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   5964     // If there is a loop-invariant, force it into the RHS.
   5965     std::swap(LHS, RHS);
   5966     Cond = ICmpInst::getSwappedPredicate(Cond);
   5967   }
   5968 
   5969   // Simplify the operands before analyzing them.
   5970   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   5971 
   5972   // If we have a comparison of a chrec against a constant, try to use value
   5973   // ranges to answer this query.
   5974   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   5975     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   5976       if (AddRec->getLoop() == L) {
   5977         // Form the constant range.
   5978         ConstantRange CompRange(
   5979             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
   5980 
   5981         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   5982         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   5983       }
   5984 
   5985   switch (Cond) {
   5986   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   5987     // Convert to: while (X-Y != 0)
   5988     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
   5989                                 AllowPredicates);
   5990     if (EL.hasAnyInfo()) return EL;
   5991     break;
   5992   }
   5993   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   5994     // Convert to: while (X-Y == 0)
   5995     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
   5996     if (EL.hasAnyInfo()) return EL;
   5997     break;
   5998   }
   5999   case ICmpInst::ICMP_SLT:
   6000   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
   6001     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
   6002     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
   6003                                     AllowPredicates);
   6004     if (EL.hasAnyInfo()) return EL;
   6005     break;
   6006   }
   6007   case ICmpInst::ICMP_SGT:
   6008   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
   6009     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
   6010     ExitLimit EL =
   6011         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
   6012                             AllowPredicates);
   6013     if (EL.hasAnyInfo()) return EL;
   6014     break;
   6015   }
   6016   default:
   6017     break;
   6018   }
   6019 
   6020   auto *ExhaustiveCount =
   6021       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   6022 
   6023   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
   6024     return ExhaustiveCount;
   6025 
   6026   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
   6027                                       ExitCond->getOperand(1), L, Cond);
   6028 }
   6029 
   6030 ScalarEvolution::ExitLimit
   6031 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
   6032                                                       SwitchInst *Switch,
   6033                                                       BasicBlock *ExitingBlock,
   6034                                                       bool ControlsExit) {
   6035   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
   6036 
   6037   // Give up if the exit is the default dest of a switch.
   6038   if (Switch->getDefaultDest() == ExitingBlock)
   6039     return getCouldNotCompute();
   6040 
   6041   assert(L->contains(Switch->getDefaultDest()) &&
   6042          "Default case must not exit the loop!");
   6043   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
   6044   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
   6045 
   6046   // while (X != Y) --> while (X-Y != 0)
   6047   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
   6048   if (EL.hasAnyInfo())
   6049     return EL;
   6050 
   6051   return getCouldNotCompute();
   6052 }
   6053 
   6054 static ConstantInt *
   6055 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   6056                                 ScalarEvolution &SE) {
   6057   const SCEV *InVal = SE.getConstant(C);
   6058   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   6059   assert(isa<SCEVConstant>(Val) &&
   6060          "Evaluation of SCEV at constant didn't fold correctly?");
   6061   return cast<SCEVConstant>(Val)->getValue();
   6062 }
   6063 
   6064 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
   6065 /// compute the backedge execution count.
   6066 ScalarEvolution::ExitLimit
   6067 ScalarEvolution::computeLoadConstantCompareExitLimit(
   6068   LoadInst *LI,
   6069   Constant *RHS,
   6070   const Loop *L,
   6071   ICmpInst::Predicate predicate) {
   6072 
   6073   if (LI->isVolatile()) return getCouldNotCompute();
   6074 
   6075   // Check to see if the loaded pointer is a getelementptr of a global.
   6076   // TODO: Use SCEV instead of manually grubbing with GEPs.
   6077   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   6078   if (!GEP) return getCouldNotCompute();
   6079 
   6080   // Make sure that it is really a constant global we are gepping, with an
   6081   // initializer, and make sure the first IDX is really 0.
   6082   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   6083   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   6084       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   6085       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   6086     return getCouldNotCompute();
   6087 
   6088   // Okay, we allow one non-constant index into the GEP instruction.
   6089   Value *VarIdx = nullptr;
   6090   std::vector<Constant*> Indexes;
   6091   unsigned VarIdxNum = 0;
   6092   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   6093     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   6094       Indexes.push_back(CI);
   6095     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   6096       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   6097       VarIdx = GEP->getOperand(i);
   6098       VarIdxNum = i-2;
   6099       Indexes.push_back(nullptr);
   6100     }
   6101 
   6102   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   6103   if (!VarIdx)
   6104     return getCouldNotCompute();
   6105 
   6106   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   6107   // Check to see if X is a loop variant variable value now.
   6108   const SCEV *Idx = getSCEV(VarIdx);
   6109   Idx = getSCEVAtScope(Idx, L);
   6110 
   6111   // We can only recognize very limited forms of loop index expressions, in
   6112   // particular, only affine AddRec's like {C1,+,C2}.
   6113   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   6114   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   6115       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   6116       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   6117     return getCouldNotCompute();
   6118 
   6119   unsigned MaxSteps = MaxBruteForceIterations;
   6120   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   6121     ConstantInt *ItCst = ConstantInt::get(
   6122                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   6123     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   6124 
   6125     // Form the GEP offset.
   6126     Indexes[VarIdxNum] = Val;
   6127 
   6128     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   6129                                                          Indexes);
   6130     if (!Result) break;  // Cannot compute!
   6131 
   6132     // Evaluate the condition for this iteration.
   6133     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   6134     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   6135     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   6136       ++NumArrayLenItCounts;
   6137       return getConstant(ItCst);   // Found terminating iteration!
   6138     }
   6139   }
   6140   return getCouldNotCompute();
   6141 }
   6142 
   6143 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
   6144     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
   6145   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
   6146   if (!RHS)
   6147     return getCouldNotCompute();
   6148 
   6149   const BasicBlock *Latch = L->getLoopLatch();
   6150   if (!Latch)
   6151     return getCouldNotCompute();
   6152 
   6153   const BasicBlock *Predecessor = L->getLoopPredecessor();
   6154   if (!Predecessor)
   6155     return getCouldNotCompute();
   6156 
   6157   // Return true if V is of the form "LHS `shift_op` <positive constant>".
   6158   // Return LHS in OutLHS and shift_opt in OutOpCode.
   6159   auto MatchPositiveShift =
   6160       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
   6161 
   6162     using namespace PatternMatch;
   6163 
   6164     ConstantInt *ShiftAmt;
   6165     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   6166       OutOpCode = Instruction::LShr;
   6167     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   6168       OutOpCode = Instruction::AShr;
   6169     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
   6170       OutOpCode = Instruction::Shl;
   6171     else
   6172       return false;
   6173 
   6174     return ShiftAmt->getValue().isStrictlyPositive();
   6175   };
   6176 
   6177   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
   6178   //
   6179   // loop:
   6180   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
   6181   //   %iv.shifted = lshr i32 %iv, <positive constant>
   6182   //
   6183   // Return true on a succesful match.  Return the corresponding PHI node (%iv
   6184   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
   6185   auto MatchShiftRecurrence =
   6186       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
   6187     Optional<Instruction::BinaryOps> PostShiftOpCode;
   6188 
   6189     {
   6190       Instruction::BinaryOps OpC;
   6191       Value *V;
   6192 
   6193       // If we encounter a shift instruction, "peel off" the shift operation,
   6194       // and remember that we did so.  Later when we inspect %iv's backedge
   6195       // value, we will make sure that the backedge value uses the same
   6196       // operation.
   6197       //
   6198       // Note: the peeled shift operation does not have to be the same
   6199       // instruction as the one feeding into the PHI's backedge value.  We only
   6200       // really care about it being the same *kind* of shift instruction --
   6201       // that's all that is required for our later inferences to hold.
   6202       if (MatchPositiveShift(LHS, V, OpC)) {
   6203         PostShiftOpCode = OpC;
   6204         LHS = V;
   6205       }
   6206     }
   6207 
   6208     PNOut = dyn_cast<PHINode>(LHS);
   6209     if (!PNOut || PNOut->getParent() != L->getHeader())
   6210       return false;
   6211 
   6212     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
   6213     Value *OpLHS;
   6214 
   6215     return
   6216         // The backedge value for the PHI node must be a shift by a positive
   6217         // amount
   6218         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
   6219 
   6220         // of the PHI node itself
   6221         OpLHS == PNOut &&
   6222 
   6223         // and the kind of shift should be match the kind of shift we peeled
   6224         // off, if any.
   6225         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
   6226   };
   6227 
   6228   PHINode *PN;
   6229   Instruction::BinaryOps OpCode;
   6230   if (!MatchShiftRecurrence(LHS, PN, OpCode))
   6231     return getCouldNotCompute();
   6232 
   6233   const DataLayout &DL = getDataLayout();
   6234 
   6235   // The key rationale for this optimization is that for some kinds of shift
   6236   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
   6237   // within a finite number of iterations.  If the condition guarding the
   6238   // backedge (in the sense that the backedge is taken if the condition is true)
   6239   // is false for the value the shift recurrence stabilizes to, then we know
   6240   // that the backedge is taken only a finite number of times.
   6241 
   6242   ConstantInt *StableValue = nullptr;
   6243   switch (OpCode) {
   6244   default:
   6245     llvm_unreachable("Impossible case!");
   6246 
   6247   case Instruction::AShr: {
   6248     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
   6249     // bitwidth(K) iterations.
   6250     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
   6251     bool KnownZero, KnownOne;
   6252     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
   6253                    Predecessor->getTerminator(), &DT);
   6254     auto *Ty = cast<IntegerType>(RHS->getType());
   6255     if (KnownZero)
   6256       StableValue = ConstantInt::get(Ty, 0);
   6257     else if (KnownOne)
   6258       StableValue = ConstantInt::get(Ty, -1, true);
   6259     else
   6260       return getCouldNotCompute();
   6261 
   6262     break;
   6263   }
   6264   case Instruction::LShr:
   6265   case Instruction::Shl:
   6266     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
   6267     // stabilize to 0 in at most bitwidth(K) iterations.
   6268     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
   6269     break;
   6270   }
   6271 
   6272   auto *Result =
   6273       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
   6274   assert(Result->getType()->isIntegerTy(1) &&
   6275          "Otherwise cannot be an operand to a branch instruction");
   6276 
   6277   if (Result->isZeroValue()) {
   6278     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   6279     const SCEV *UpperBound =
   6280         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
   6281     SCEVUnionPredicate P;
   6282     return ExitLimit(getCouldNotCompute(), UpperBound, P);
   6283   }
   6284 
   6285   return getCouldNotCompute();
   6286 }
   6287 
   6288 /// Return true if we can constant fold an instruction of the specified type,
   6289 /// assuming that all operands were constants.
   6290 static bool CanConstantFold(const Instruction *I) {
   6291   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   6292       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   6293       isa<LoadInst>(I))
   6294     return true;
   6295 
   6296   if (const CallInst *CI = dyn_cast<CallInst>(I))
   6297     if (const Function *F = CI->getCalledFunction())
   6298       return canConstantFoldCallTo(F);
   6299   return false;
   6300 }
   6301 
   6302 /// Determine whether this instruction can constant evolve within this loop
   6303 /// assuming its operands can all constant evolve.
   6304 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   6305   // An instruction outside of the loop can't be derived from a loop PHI.
   6306   if (!L->contains(I)) return false;
   6307 
   6308   if (isa<PHINode>(I)) {
   6309     // We don't currently keep track of the control flow needed to evaluate
   6310     // PHIs, so we cannot handle PHIs inside of loops.
   6311     return L->getHeader() == I->getParent();
   6312   }
   6313 
   6314   // If we won't be able to constant fold this expression even if the operands
   6315   // are constants, bail early.
   6316   return CanConstantFold(I);
   6317 }
   6318 
   6319 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   6320 /// recursing through each instruction operand until reaching a loop header phi.
   6321 static PHINode *
   6322 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   6323                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   6324 
   6325   // Otherwise, we can evaluate this instruction if all of its operands are
   6326   // constant or derived from a PHI node themselves.
   6327   PHINode *PHI = nullptr;
   6328   for (Value *Op : UseInst->operands()) {
   6329     if (isa<Constant>(Op)) continue;
   6330 
   6331     Instruction *OpInst = dyn_cast<Instruction>(Op);
   6332     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
   6333 
   6334     PHINode *P = dyn_cast<PHINode>(OpInst);
   6335     if (!P)
   6336       // If this operand is already visited, reuse the prior result.
   6337       // We may have P != PHI if this is the deepest point at which the
   6338       // inconsistent paths meet.
   6339       P = PHIMap.lookup(OpInst);
   6340     if (!P) {
   6341       // Recurse and memoize the results, whether a phi is found or not.
   6342       // This recursive call invalidates pointers into PHIMap.
   6343       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   6344       PHIMap[OpInst] = P;
   6345     }
   6346     if (!P)
   6347       return nullptr;  // Not evolving from PHI
   6348     if (PHI && PHI != P)
   6349       return nullptr;  // Evolving from multiple different PHIs.
   6350     PHI = P;
   6351   }
   6352   // This is a expression evolving from a constant PHI!
   6353   return PHI;
   6354 }
   6355 
   6356 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   6357 /// in the loop that V is derived from.  We allow arbitrary operations along the
   6358 /// way, but the operands of an operation must either be constants or a value
   6359 /// derived from a constant PHI.  If this expression does not fit with these
   6360 /// constraints, return null.
   6361 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   6362   Instruction *I = dyn_cast<Instruction>(V);
   6363   if (!I || !canConstantEvolve(I, L)) return nullptr;
   6364 
   6365   if (PHINode *PN = dyn_cast<PHINode>(I))
   6366     return PN;
   6367 
   6368   // Record non-constant instructions contained by the loop.
   6369   DenseMap<Instruction *, PHINode *> PHIMap;
   6370   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   6371 }
   6372 
   6373 /// EvaluateExpression - Given an expression that passes the
   6374 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   6375 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   6376 /// reason, return null.
   6377 static Constant *EvaluateExpression(Value *V, const Loop *L,
   6378                                     DenseMap<Instruction *, Constant *> &Vals,
   6379                                     const DataLayout &DL,
   6380                                     const TargetLibraryInfo *TLI) {
   6381   // Convenient constant check, but redundant for recursive calls.
   6382   if (Constant *C = dyn_cast<Constant>(V)) return C;
   6383   Instruction *I = dyn_cast<Instruction>(V);
   6384   if (!I) return nullptr;
   6385 
   6386   if (Constant *C = Vals.lookup(I)) return C;
   6387 
   6388   // An instruction inside the loop depends on a value outside the loop that we
   6389   // weren't given a mapping for, or a value such as a call inside the loop.
   6390   if (!canConstantEvolve(I, L)) return nullptr;
   6391 
   6392   // An unmapped PHI can be due to a branch or another loop inside this loop,
   6393   // or due to this not being the initial iteration through a loop where we
   6394   // couldn't compute the evolution of this particular PHI last time.
   6395   if (isa<PHINode>(I)) return nullptr;
   6396 
   6397   std::vector<Constant*> Operands(I->getNumOperands());
   6398 
   6399   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   6400     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   6401     if (!Operand) {
   6402       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   6403       if (!Operands[i]) return nullptr;
   6404       continue;
   6405     }
   6406     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
   6407     Vals[Operand] = C;
   6408     if (!C) return nullptr;
   6409     Operands[i] = C;
   6410   }
   6411 
   6412   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   6413     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   6414                                            Operands[1], DL, TLI);
   6415   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   6416     if (!LI->isVolatile())
   6417       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
   6418   }
   6419   return ConstantFoldInstOperands(I, Operands, DL, TLI);
   6420 }
   6421 
   6422 
   6423 // If every incoming value to PN except the one for BB is a specific Constant,
   6424 // return that, else return nullptr.
   6425 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
   6426   Constant *IncomingVal = nullptr;
   6427 
   6428   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   6429     if (PN->getIncomingBlock(i) == BB)
   6430       continue;
   6431 
   6432     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
   6433     if (!CurrentVal)
   6434       return nullptr;
   6435 
   6436     if (IncomingVal != CurrentVal) {
   6437       if (IncomingVal)
   6438         return nullptr;
   6439       IncomingVal = CurrentVal;
   6440     }
   6441   }
   6442 
   6443   return IncomingVal;
   6444 }
   6445 
   6446 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   6447 /// in the header of its containing loop, we know the loop executes a
   6448 /// constant number of times, and the PHI node is just a recurrence
   6449 /// involving constants, fold it.
   6450 Constant *
   6451 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   6452                                                    const APInt &BEs,
   6453                                                    const Loop *L) {
   6454   auto I = ConstantEvolutionLoopExitValue.find(PN);
   6455   if (I != ConstantEvolutionLoopExitValue.end())
   6456     return I->second;
   6457 
   6458   if (BEs.ugt(MaxBruteForceIterations))
   6459     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
   6460 
   6461   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   6462 
   6463   DenseMap<Instruction *, Constant *> CurrentIterVals;
   6464   BasicBlock *Header = L->getHeader();
   6465   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   6466 
   6467   BasicBlock *Latch = L->getLoopLatch();
   6468   if (!Latch)
   6469     return nullptr;
   6470 
   6471   for (auto &I : *Header) {
   6472     PHINode *PHI = dyn_cast<PHINode>(&I);
   6473     if (!PHI) break;
   6474     auto *StartCST = getOtherIncomingValue(PHI, Latch);
   6475     if (!StartCST) continue;
   6476     CurrentIterVals[PHI] = StartCST;
   6477   }
   6478   if (!CurrentIterVals.count(PN))
   6479     return RetVal = nullptr;
   6480 
   6481   Value *BEValue = PN->getIncomingValueForBlock(Latch);
   6482 
   6483   // Execute the loop symbolically to determine the exit value.
   6484   if (BEs.getActiveBits() >= 32)
   6485     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
   6486 
   6487   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   6488   unsigned IterationNum = 0;
   6489   const DataLayout &DL = getDataLayout();
   6490   for (; ; ++IterationNum) {
   6491     if (IterationNum == NumIterations)
   6492       return RetVal = CurrentIterVals[PN];  // Got exit value!
   6493 
   6494     // Compute the value of the PHIs for the next iteration.
   6495     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   6496     DenseMap<Instruction *, Constant *> NextIterVals;
   6497     Constant *NextPHI =
   6498         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   6499     if (!NextPHI)
   6500       return nullptr;        // Couldn't evaluate!
   6501     NextIterVals[PN] = NextPHI;
   6502 
   6503     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   6504 
   6505     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   6506     // cease to be able to evaluate one of them or if they stop evolving,
   6507     // because that doesn't necessarily prevent us from computing PN.
   6508     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   6509     for (const auto &I : CurrentIterVals) {
   6510       PHINode *PHI = dyn_cast<PHINode>(I.first);
   6511       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   6512       PHIsToCompute.emplace_back(PHI, I.second);
   6513     }
   6514     // We use two distinct loops because EvaluateExpression may invalidate any
   6515     // iterators into CurrentIterVals.
   6516     for (const auto &I : PHIsToCompute) {
   6517       PHINode *PHI = I.first;
   6518       Constant *&NextPHI = NextIterVals[PHI];
   6519       if (!NextPHI) {   // Not already computed.
   6520         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
   6521         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   6522       }
   6523       if (NextPHI != I.second)
   6524         StoppedEvolving = false;
   6525     }
   6526 
   6527     // If all entries in CurrentIterVals == NextIterVals then we can stop
   6528     // iterating, the loop can't continue to change.
   6529     if (StoppedEvolving)
   6530       return RetVal = CurrentIterVals[PN];
   6531 
   6532     CurrentIterVals.swap(NextIterVals);
   6533   }
   6534 }
   6535 
   6536 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
   6537                                                           Value *Cond,
   6538                                                           bool ExitWhen) {
   6539   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   6540   if (!PN) return getCouldNotCompute();
   6541 
   6542   // If the loop is canonicalized, the PHI will have exactly two entries.
   6543   // That's the only form we support here.
   6544   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   6545 
   6546   DenseMap<Instruction *, Constant *> CurrentIterVals;
   6547   BasicBlock *Header = L->getHeader();
   6548   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   6549 
   6550   BasicBlock *Latch = L->getLoopLatch();
   6551   assert(Latch && "Should follow from NumIncomingValues == 2!");
   6552 
   6553   for (auto &I : *Header) {
   6554     PHINode *PHI = dyn_cast<PHINode>(&I);
   6555     if (!PHI)
   6556       break;
   6557     auto *StartCST = getOtherIncomingValue(PHI, Latch);
   6558     if (!StartCST) continue;
   6559     CurrentIterVals[PHI] = StartCST;
   6560   }
   6561   if (!CurrentIterVals.count(PN))
   6562     return getCouldNotCompute();
   6563 
   6564   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   6565   // the loop symbolically to determine when the condition gets a value of
   6566   // "ExitWhen".
   6567   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   6568   const DataLayout &DL = getDataLayout();
   6569   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   6570     auto *CondVal = dyn_cast_or_null<ConstantInt>(
   6571         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
   6572 
   6573     // Couldn't symbolically evaluate.
   6574     if (!CondVal) return getCouldNotCompute();
   6575 
   6576     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   6577       ++NumBruteForceTripCountsComputed;
   6578       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   6579     }
   6580 
   6581     // Update all the PHI nodes for the next iteration.
   6582     DenseMap<Instruction *, Constant *> NextIterVals;
   6583 
   6584     // Create a list of which PHIs we need to compute. We want to do this before
   6585     // calling EvaluateExpression on them because that may invalidate iterators
   6586     // into CurrentIterVals.
   6587     SmallVector<PHINode *, 8> PHIsToCompute;
   6588     for (const auto &I : CurrentIterVals) {
   6589       PHINode *PHI = dyn_cast<PHINode>(I.first);
   6590       if (!PHI || PHI->getParent() != Header) continue;
   6591       PHIsToCompute.push_back(PHI);
   6592     }
   6593     for (PHINode *PHI : PHIsToCompute) {
   6594       Constant *&NextPHI = NextIterVals[PHI];
   6595       if (NextPHI) continue;    // Already computed!
   6596 
   6597       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
   6598       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
   6599     }
   6600     CurrentIterVals.swap(NextIterVals);
   6601   }
   6602 
   6603   // Too many iterations were needed to evaluate.
   6604   return getCouldNotCompute();
   6605 }
   6606 
   6607 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   6608   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
   6609       ValuesAtScopes[V];
   6610   // Check to see if we've folded this expression at this loop before.
   6611   for (auto &LS : Values)
   6612     if (LS.first == L)
   6613       return LS.second ? LS.second : V;
   6614 
   6615   Values.emplace_back(L, nullptr);
   6616 
   6617   // Otherwise compute it.
   6618   const SCEV *C = computeSCEVAtScope(V, L);
   6619   for (auto &LS : reverse(ValuesAtScopes[V]))
   6620     if (LS.first == L) {
   6621       LS.second = C;
   6622       break;
   6623     }
   6624   return C;
   6625 }
   6626 
   6627 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   6628 /// will return Constants for objects which aren't represented by a
   6629 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   6630 /// Returns NULL if the SCEV isn't representable as a Constant.
   6631 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   6632   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
   6633     case scCouldNotCompute:
   6634     case scAddRecExpr:
   6635       break;
   6636     case scConstant:
   6637       return cast<SCEVConstant>(V)->getValue();
   6638     case scUnknown:
   6639       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   6640     case scSignExtend: {
   6641       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   6642       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   6643         return ConstantExpr::getSExt(CastOp, SS->getType());
   6644       break;
   6645     }
   6646     case scZeroExtend: {
   6647       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   6648       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   6649         return ConstantExpr::getZExt(CastOp, SZ->getType());
   6650       break;
   6651     }
   6652     case scTruncate: {
   6653       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   6654       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   6655         return ConstantExpr::getTrunc(CastOp, ST->getType());
   6656       break;
   6657     }
   6658     case scAddExpr: {
   6659       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   6660       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   6661         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   6662           unsigned AS = PTy->getAddressSpace();
   6663           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   6664           C = ConstantExpr::getBitCast(C, DestPtrTy);
   6665         }
   6666         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   6667           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   6668           if (!C2) return nullptr;
   6669 
   6670           // First pointer!
   6671           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   6672             unsigned AS = C2->getType()->getPointerAddressSpace();
   6673             std::swap(C, C2);
   6674             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
   6675             // The offsets have been converted to bytes.  We can add bytes to an
   6676             // i8* by GEP with the byte count in the first index.
   6677             C = ConstantExpr::getBitCast(C, DestPtrTy);
   6678           }
   6679 
   6680           // Don't bother trying to sum two pointers. We probably can't
   6681           // statically compute a load that results from it anyway.
   6682           if (C2->getType()->isPointerTy())
   6683             return nullptr;
   6684 
   6685           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
   6686             if (PTy->getElementType()->isStructTy())
   6687               C2 = ConstantExpr::getIntegerCast(
   6688                   C2, Type::getInt32Ty(C->getContext()), true);
   6689             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
   6690           } else
   6691             C = ConstantExpr::getAdd(C, C2);
   6692         }
   6693         return C;
   6694       }
   6695       break;
   6696     }
   6697     case scMulExpr: {
   6698       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   6699       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   6700         // Don't bother with pointers at all.
   6701         if (C->getType()->isPointerTy()) return nullptr;
   6702         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   6703           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   6704           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
   6705           C = ConstantExpr::getMul(C, C2);
   6706         }
   6707         return C;
   6708       }
   6709       break;
   6710     }
   6711     case scUDivExpr: {
   6712       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   6713       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   6714         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   6715           if (LHS->getType() == RHS->getType())
   6716             return ConstantExpr::getUDiv(LHS, RHS);
   6717       break;
   6718     }
   6719     case scSMaxExpr:
   6720     case scUMaxExpr:
   6721       break; // TODO: smax, umax.
   6722   }
   6723   return nullptr;
   6724 }
   6725 
   6726 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   6727   if (isa<SCEVConstant>(V)) return V;
   6728 
   6729   // If this instruction is evolved from a constant-evolving PHI, compute the
   6730   // exit value from the loop without using SCEVs.
   6731   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   6732     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   6733       const Loop *LI = this->LI[I->getParent()];
   6734       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   6735         if (PHINode *PN = dyn_cast<PHINode>(I))
   6736           if (PN->getParent() == LI->getHeader()) {
   6737             // Okay, there is no closed form solution for the PHI node.  Check
   6738             // to see if the loop that contains it has a known backedge-taken
   6739             // count.  If so, we may be able to force computation of the exit
   6740             // value.
   6741             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   6742             if (const SCEVConstant *BTCC =
   6743                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   6744               // Okay, we know how many times the containing loop executes.  If
   6745               // this is a constant evolving PHI node, get the final value at
   6746               // the specified iteration number.
   6747               Constant *RV =
   6748                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
   6749               if (RV) return getSCEV(RV);
   6750             }
   6751           }
   6752 
   6753       // Okay, this is an expression that we cannot symbolically evaluate
   6754       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   6755       // the arguments into constants, and if so, try to constant propagate the
   6756       // result.  This is particularly useful for computing loop exit values.
   6757       if (CanConstantFold(I)) {
   6758         SmallVector<Constant *, 4> Operands;
   6759         bool MadeImprovement = false;
   6760         for (Value *Op : I->operands()) {
   6761           if (Constant *C = dyn_cast<Constant>(Op)) {
   6762             Operands.push_back(C);
   6763             continue;
   6764           }
   6765 
   6766           // If any of the operands is non-constant and if they are
   6767           // non-integer and non-pointer, don't even try to analyze them
   6768           // with scev techniques.
   6769           if (!isSCEVable(Op->getType()))
   6770             return V;
   6771 
   6772           const SCEV *OrigV = getSCEV(Op);
   6773           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   6774           MadeImprovement |= OrigV != OpV;
   6775 
   6776           Constant *C = BuildConstantFromSCEV(OpV);
   6777           if (!C) return V;
   6778           if (C->getType() != Op->getType())
   6779             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   6780                                                               Op->getType(),
   6781                                                               false),
   6782                                       C, Op->getType());
   6783           Operands.push_back(C);
   6784         }
   6785 
   6786         // Check to see if getSCEVAtScope actually made an improvement.
   6787         if (MadeImprovement) {
   6788           Constant *C = nullptr;
   6789           const DataLayout &DL = getDataLayout();
   6790           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   6791             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   6792                                                 Operands[1], DL, &TLI);
   6793           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   6794             if (!LI->isVolatile())
   6795               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
   6796           } else
   6797             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
   6798           if (!C) return V;
   6799           return getSCEV(C);
   6800         }
   6801       }
   6802     }
   6803 
   6804     // This is some other type of SCEVUnknown, just return it.
   6805     return V;
   6806   }
   6807 
   6808   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   6809     // Avoid performing the look-up in the common case where the specified
   6810     // expression has no loop-variant portions.
   6811     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   6812       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   6813       if (OpAtScope != Comm->getOperand(i)) {
   6814         // Okay, at least one of these operands is loop variant but might be
   6815         // foldable.  Build a new instance of the folded commutative expression.
   6816         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   6817                                             Comm->op_begin()+i);
   6818         NewOps.push_back(OpAtScope);
   6819 
   6820         for (++i; i != e; ++i) {
   6821           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   6822           NewOps.push_back(OpAtScope);
   6823         }
   6824         if (isa<SCEVAddExpr>(Comm))
   6825           return getAddExpr(NewOps);
   6826         if (isa<SCEVMulExpr>(Comm))
   6827           return getMulExpr(NewOps);
   6828         if (isa<SCEVSMaxExpr>(Comm))
   6829           return getSMaxExpr(NewOps);
   6830         if (isa<SCEVUMaxExpr>(Comm))
   6831           return getUMaxExpr(NewOps);
   6832         llvm_unreachable("Unknown commutative SCEV type!");
   6833       }
   6834     }
   6835     // If we got here, all operands are loop invariant.
   6836     return Comm;
   6837   }
   6838 
   6839   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   6840     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   6841     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   6842     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   6843       return Div;   // must be loop invariant
   6844     return getUDivExpr(LHS, RHS);
   6845   }
   6846 
   6847   // If this is a loop recurrence for a loop that does not contain L, then we
   6848   // are dealing with the final value computed by the loop.
   6849   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   6850     // First, attempt to evaluate each operand.
   6851     // Avoid performing the look-up in the common case where the specified
   6852     // expression has no loop-variant portions.
   6853     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   6854       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   6855       if (OpAtScope == AddRec->getOperand(i))
   6856         continue;
   6857 
   6858       // Okay, at least one of these operands is loop variant but might be
   6859       // foldable.  Build a new instance of the folded commutative expression.
   6860       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   6861                                           AddRec->op_begin()+i);
   6862       NewOps.push_back(OpAtScope);
   6863       for (++i; i != e; ++i)
   6864         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   6865 
   6866       const SCEV *FoldedRec =
   6867         getAddRecExpr(NewOps, AddRec->getLoop(),
   6868                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   6869       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   6870       // The addrec may be folded to a nonrecurrence, for example, if the
   6871       // induction variable is multiplied by zero after constant folding. Go
   6872       // ahead and return the folded value.
   6873       if (!AddRec)
   6874         return FoldedRec;
   6875       break;
   6876     }
   6877 
   6878     // If the scope is outside the addrec's loop, evaluate it by using the
   6879     // loop exit value of the addrec.
   6880     if (!AddRec->getLoop()->contains(L)) {
   6881       // To evaluate this recurrence, we need to know how many times the AddRec
   6882       // loop iterates.  Compute this now.
   6883       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   6884       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   6885 
   6886       // Then, evaluate the AddRec.
   6887       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   6888     }
   6889 
   6890     return AddRec;
   6891   }
   6892 
   6893   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   6894     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6895     if (Op == Cast->getOperand())
   6896       return Cast;  // must be loop invariant
   6897     return getZeroExtendExpr(Op, Cast->getType());
   6898   }
   6899 
   6900   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   6901     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6902     if (Op == Cast->getOperand())
   6903       return Cast;  // must be loop invariant
   6904     return getSignExtendExpr(Op, Cast->getType());
   6905   }
   6906 
   6907   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   6908     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   6909     if (Op == Cast->getOperand())
   6910       return Cast;  // must be loop invariant
   6911     return getTruncateExpr(Op, Cast->getType());
   6912   }
   6913 
   6914   llvm_unreachable("Unknown SCEV type!");
   6915 }
   6916 
   6917 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   6918   return getSCEVAtScope(getSCEV(V), L);
   6919 }
   6920 
   6921 /// Finds the minimum unsigned root of the following equation:
   6922 ///
   6923 ///     A * X = B (mod N)
   6924 ///
   6925 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   6926 /// A and B isn't important.
   6927 ///
   6928 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   6929 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   6930                                                ScalarEvolution &SE) {
   6931   uint32_t BW = A.getBitWidth();
   6932   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   6933   assert(A != 0 && "A must be non-zero.");
   6934 
   6935   // 1. D = gcd(A, N)
   6936   //
   6937   // The gcd of A and N may have only one prime factor: 2. The number of
   6938   // trailing zeros in A is its multiplicity
   6939   uint32_t Mult2 = A.countTrailingZeros();
   6940   // D = 2^Mult2
   6941 
   6942   // 2. Check if B is divisible by D.
   6943   //
   6944   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   6945   // is not less than multiplicity of this prime factor for D.
   6946   if (B.countTrailingZeros() < Mult2)
   6947     return SE.getCouldNotCompute();
   6948 
   6949   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   6950   // modulo (N / D).
   6951   //
   6952   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   6953   // bit width during computations.
   6954   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   6955   APInt Mod(BW + 1, 0);
   6956   Mod.setBit(BW - Mult2);  // Mod = N / D
   6957   APInt I = AD.multiplicativeInverse(Mod);
   6958 
   6959   // 4. Compute the minimum unsigned root of the equation:
   6960   // I * (B / D) mod (N / D)
   6961   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   6962 
   6963   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   6964   // bits.
   6965   return SE.getConstant(Result.trunc(BW));
   6966 }
   6967 
   6968 /// Find the roots of the quadratic equation for the given quadratic chrec
   6969 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
   6970 /// two SCEVCouldNotCompute objects.
   6971 ///
   6972 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
   6973 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   6974   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   6975   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   6976   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   6977   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   6978 
   6979   // We currently can only solve this if the coefficients are constants.
   6980   if (!LC || !MC || !NC)
   6981     return None;
   6982 
   6983   uint32_t BitWidth = LC->getAPInt().getBitWidth();
   6984   const APInt &L = LC->getAPInt();
   6985   const APInt &M = MC->getAPInt();
   6986   const APInt &N = NC->getAPInt();
   6987   APInt Two(BitWidth, 2);
   6988   APInt Four(BitWidth, 4);
   6989 
   6990   {
   6991     using namespace APIntOps;
   6992     const APInt& C = L;
   6993     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   6994     // The B coefficient is M-N/2
   6995     APInt B(M);
   6996     B -= sdiv(N,Two);
   6997 
   6998     // The A coefficient is N/2
   6999     APInt A(N.sdiv(Two));
   7000 
   7001     // Compute the B^2-4ac term.
   7002     APInt SqrtTerm(B);
   7003     SqrtTerm *= B;
   7004     SqrtTerm -= Four * (A * C);
   7005 
   7006     if (SqrtTerm.isNegative()) {
   7007       // The loop is provably infinite.
   7008       return None;
   7009     }
   7010 
   7011     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   7012     // integer value or else APInt::sqrt() will assert.
   7013     APInt SqrtVal(SqrtTerm.sqrt());
   7014 
   7015     // Compute the two solutions for the quadratic formula.
   7016     // The divisions must be performed as signed divisions.
   7017     APInt NegB(-B);
   7018     APInt TwoA(A << 1);
   7019     if (TwoA.isMinValue())
   7020       return None;
   7021 
   7022     LLVMContext &Context = SE.getContext();
   7023 
   7024     ConstantInt *Solution1 =
   7025       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   7026     ConstantInt *Solution2 =
   7027       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   7028 
   7029     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
   7030                           cast<SCEVConstant>(SE.getConstant(Solution2)));
   7031   } // end APIntOps namespace
   7032 }
   7033 
   7034 ScalarEvolution::ExitLimit
   7035 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
   7036                               bool AllowPredicates) {
   7037 
   7038   // This is only used for loops with a "x != y" exit test. The exit condition
   7039   // is now expressed as a single expression, V = x-y. So the exit test is
   7040   // effectively V != 0.  We know and take advantage of the fact that this
   7041   // expression only being used in a comparison by zero context.
   7042 
   7043   SCEVUnionPredicate P;
   7044   // If the value is a constant
   7045   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   7046     // If the value is already zero, the branch will execute zero times.
   7047     if (C->getValue()->isZero()) return C;
   7048     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   7049   }
   7050 
   7051   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   7052   if (!AddRec && AllowPredicates)
   7053     // Try to make this an AddRec using runtime tests, in the first X
   7054     // iterations of this loop, where X is the SCEV expression found by the
   7055     // algorithm below.
   7056     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
   7057 
   7058   if (!AddRec || AddRec->getLoop() != L)
   7059     return getCouldNotCompute();
   7060 
   7061   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   7062   // the quadratic equation to solve it.
   7063   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   7064     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
   7065       const SCEVConstant *R1 = Roots->first;
   7066       const SCEVConstant *R2 = Roots->second;
   7067       // Pick the smallest positive root value.
   7068       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
   7069               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
   7070         if (!CB->getZExtValue())
   7071           std::swap(R1, R2); // R1 is the minimum root now.
   7072 
   7073         // We can only use this value if the chrec ends up with an exact zero
   7074         // value at this index.  When solving for "X*X != 5", for example, we
   7075         // should not accept a root of 2.
   7076         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   7077         if (Val->isZero())
   7078           return ExitLimit(R1, R1, P); // We found a quadratic root!
   7079       }
   7080     }
   7081     return getCouldNotCompute();
   7082   }
   7083 
   7084   // Otherwise we can only handle this if it is affine.
   7085   if (!AddRec->isAffine())
   7086     return getCouldNotCompute();
   7087 
   7088   // If this is an affine expression, the execution count of this branch is
   7089   // the minimum unsigned root of the following equation:
   7090   //
   7091   //     Start + Step*N = 0 (mod 2^BW)
   7092   //
   7093   // equivalent to:
   7094   //
   7095   //             Step*N = -Start (mod 2^BW)
   7096   //
   7097   // where BW is the common bit width of Start and Step.
   7098 
   7099   // Get the initial value for the loop.
   7100   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   7101   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   7102 
   7103   // For now we handle only constant steps.
   7104   //
   7105   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   7106   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   7107   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   7108   // We have not yet seen any such cases.
   7109   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   7110   if (!StepC || StepC->getValue()->equalsInt(0))
   7111     return getCouldNotCompute();
   7112 
   7113   // For positive steps (counting up until unsigned overflow):
   7114   //   N = -Start/Step (as unsigned)
   7115   // For negative steps (counting down to zero):
   7116   //   N = Start/-Step
   7117   // First compute the unsigned distance from zero in the direction of Step.
   7118   bool CountDown = StepC->getAPInt().isNegative();
   7119   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   7120 
   7121   // Handle unitary steps, which cannot wraparound.
   7122   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   7123   //   N = Distance (as unsigned)
   7124   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   7125     ConstantRange CR = getUnsignedRange(Start);
   7126     const SCEV *MaxBECount;
   7127     if (!CountDown && CR.getUnsignedMin().isMinValue())
   7128       // When counting up, the worst starting value is 1, not 0.
   7129       MaxBECount = CR.getUnsignedMax().isMinValue()
   7130         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   7131         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   7132     else
   7133       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   7134                                          : -CR.getUnsignedMin());
   7135     return ExitLimit(Distance, MaxBECount, P);
   7136   }
   7137 
   7138   // As a special case, handle the instance where Step is a positive power of
   7139   // two. In this case, determining whether Step divides Distance evenly can be
   7140   // done by counting and comparing the number of trailing zeros of Step and
   7141   // Distance.
   7142   if (!CountDown) {
   7143     const APInt &StepV = StepC->getAPInt();
   7144     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
   7145     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
   7146     // case is not handled as this code is guarded by !CountDown.
   7147     if (StepV.isPowerOf2() &&
   7148         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
   7149       // Here we've constrained the equation to be of the form
   7150       //
   7151       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
   7152       //
   7153       // where we're operating on a W bit wide integer domain and k is
   7154       // non-negative.  The smallest unsigned solution for X is the trip count.
   7155       //
   7156       // (0) is equivalent to:
   7157       //
   7158       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
   7159       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
   7160       // <=>  2^k * Distance' - X = L * 2^(W - N)
   7161       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
   7162       //
   7163       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
   7164       // by 2^(W - N).
   7165       //
   7166       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
   7167       //
   7168       // E.g. say we're solving
   7169       //
   7170       //   2 * Val = 2 * X  (in i8)   ... (3)
   7171       //
   7172       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
   7173       //
   7174       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
   7175       // necessarily the smallest unsigned value of X that satisfies (3).
   7176       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
   7177       // is i8 1, not i8 -127
   7178 
   7179       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
   7180 
   7181       // Since SCEV does not have a URem node, we construct one using a truncate
   7182       // and a zero extend.
   7183 
   7184       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
   7185       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
   7186       auto *WideTy = Distance->getType();
   7187 
   7188       const SCEV *Limit =
   7189           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
   7190       return ExitLimit(Limit, Limit, P);
   7191     }
   7192   }
   7193 
   7194   // If the condition controls loop exit (the loop exits only if the expression
   7195   // is true) and the addition is no-wrap we can use unsigned divide to
   7196   // compute the backedge count.  In this case, the step may not divide the
   7197   // distance, but we don't care because if the condition is "missed" the loop
   7198   // will have undefined behavior due to wrapping.
   7199   if (ControlsExit && AddRec->hasNoSelfWrap() &&
   7200       loopHasNoAbnormalExits(AddRec->getLoop())) {
   7201     const SCEV *Exact =
   7202         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   7203     return ExitLimit(Exact, Exact, P);
   7204   }
   7205 
   7206   // Then, try to solve the above equation provided that Start is constant.
   7207   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
   7208     const SCEV *E = SolveLinEquationWithOverflow(
   7209         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
   7210     return ExitLimit(E, E, P);
   7211   }
   7212   return getCouldNotCompute();
   7213 }
   7214 
   7215 ScalarEvolution::ExitLimit
   7216 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
   7217   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   7218   // handle them yet except for the trivial case.  This could be expanded in the
   7219   // future as needed.
   7220 
   7221   // If the value is a constant, check to see if it is known to be non-zero
   7222   // already.  If so, the backedge will execute zero times.
   7223   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   7224     if (!C->getValue()->isNullValue())
   7225       return getZero(C->getType());
   7226     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   7227   }
   7228 
   7229   // We could implement others, but I really doubt anyone writes loops like
   7230   // this, and if they did, they would already be constant folded.
   7231   return getCouldNotCompute();
   7232 }
   7233 
   7234 std::pair<BasicBlock *, BasicBlock *>
   7235 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   7236   // If the block has a unique predecessor, then there is no path from the
   7237   // predecessor to the block that does not go through the direct edge
   7238   // from the predecessor to the block.
   7239   if (BasicBlock *Pred = BB->getSinglePredecessor())
   7240     return {Pred, BB};
   7241 
   7242   // A loop's header is defined to be a block that dominates the loop.
   7243   // If the header has a unique predecessor outside the loop, it must be
   7244   // a block that has exactly one successor that can reach the loop.
   7245   if (Loop *L = LI.getLoopFor(BB))
   7246     return {L->getLoopPredecessor(), L->getHeader()};
   7247 
   7248   return {nullptr, nullptr};
   7249 }
   7250 
   7251 /// SCEV structural equivalence is usually sufficient for testing whether two
   7252 /// expressions are equal, however for the purposes of looking for a condition
   7253 /// guarding a loop, it can be useful to be a little more general, since a
   7254 /// front-end may have replicated the controlling expression.
   7255 ///
   7256 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   7257   // Quick check to see if they are the same SCEV.
   7258   if (A == B) return true;
   7259 
   7260   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
   7261     // Not all instructions that are "identical" compute the same value.  For
   7262     // instance, two distinct alloca instructions allocating the same type are
   7263     // identical and do not read memory; but compute distinct values.
   7264     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
   7265   };
   7266 
   7267   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   7268   // two different instructions with the same value. Check for this case.
   7269   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   7270     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   7271       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   7272         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   7273           if (ComputesEqualValues(AI, BI))
   7274             return true;
   7275 
   7276   // Otherwise assume they may have a different value.
   7277   return false;
   7278 }
   7279 
   7280 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   7281                                            const SCEV *&LHS, const SCEV *&RHS,
   7282                                            unsigned Depth) {
   7283   bool Changed = false;
   7284 
   7285   // If we hit the max recursion limit bail out.
   7286   if (Depth >= 3)
   7287     return false;
   7288 
   7289   // Canonicalize a constant to the right side.
   7290   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   7291     // Check for both operands constant.
   7292     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   7293       if (ConstantExpr::getICmp(Pred,
   7294                                 LHSC->getValue(),
   7295                                 RHSC->getValue())->isNullValue())
   7296         goto trivially_false;
   7297       else
   7298         goto trivially_true;
   7299     }
   7300     // Otherwise swap the operands to put the constant on the right.
   7301     std::swap(LHS, RHS);
   7302     Pred = ICmpInst::getSwappedPredicate(Pred);
   7303     Changed = true;
   7304   }
   7305 
   7306   // If we're comparing an addrec with a value which is loop-invariant in the
   7307   // addrec's loop, put the addrec on the left. Also make a dominance check,
   7308   // as both operands could be addrecs loop-invariant in each other's loop.
   7309   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   7310     const Loop *L = AR->getLoop();
   7311     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   7312       std::swap(LHS, RHS);
   7313       Pred = ICmpInst::getSwappedPredicate(Pred);
   7314       Changed = true;
   7315     }
   7316   }
   7317 
   7318   // If there's a constant operand, canonicalize comparisons with boundary
   7319   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   7320   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   7321     const APInt &RA = RC->getAPInt();
   7322     switch (Pred) {
   7323     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   7324     case ICmpInst::ICMP_EQ:
   7325     case ICmpInst::ICMP_NE:
   7326       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
   7327       if (!RA)
   7328         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
   7329           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
   7330             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
   7331                 ME->getOperand(0)->isAllOnesValue()) {
   7332               RHS = AE->getOperand(1);
   7333               LHS = ME->getOperand(1);
   7334               Changed = true;
   7335             }
   7336       break;
   7337     case ICmpInst::ICMP_UGE:
   7338       if ((RA - 1).isMinValue()) {
   7339         Pred = ICmpInst::ICMP_NE;
   7340         RHS = getConstant(RA - 1);
   7341         Changed = true;
   7342         break;
   7343       }
   7344       if (RA.isMaxValue()) {
   7345         Pred = ICmpInst::ICMP_EQ;
   7346         Changed = true;
   7347         break;
   7348       }
   7349       if (RA.isMinValue()) goto trivially_true;
   7350 
   7351       Pred = ICmpInst::ICMP_UGT;
   7352       RHS = getConstant(RA - 1);
   7353       Changed = true;
   7354       break;
   7355     case ICmpInst::ICMP_ULE:
   7356       if ((RA + 1).isMaxValue()) {
   7357         Pred = ICmpInst::ICMP_NE;
   7358         RHS = getConstant(RA + 1);
   7359         Changed = true;
   7360         break;
   7361       }
   7362       if (RA.isMinValue()) {
   7363         Pred = ICmpInst::ICMP_EQ;
   7364         Changed = true;
   7365         break;
   7366       }
   7367       if (RA.isMaxValue()) goto trivially_true;
   7368 
   7369       Pred = ICmpInst::ICMP_ULT;
   7370       RHS = getConstant(RA + 1);
   7371       Changed = true;
   7372       break;
   7373     case ICmpInst::ICMP_SGE:
   7374       if ((RA - 1).isMinSignedValue()) {
   7375         Pred = ICmpInst::ICMP_NE;
   7376         RHS = getConstant(RA - 1);
   7377         Changed = true;
   7378         break;
   7379       }
   7380       if (RA.isMaxSignedValue()) {
   7381         Pred = ICmpInst::ICMP_EQ;
   7382         Changed = true;
   7383         break;
   7384       }
   7385       if (RA.isMinSignedValue()) goto trivially_true;
   7386 
   7387       Pred = ICmpInst::ICMP_SGT;
   7388       RHS = getConstant(RA - 1);
   7389       Changed = true;
   7390       break;
   7391     case ICmpInst::ICMP_SLE:
   7392       if ((RA + 1).isMaxSignedValue()) {
   7393         Pred = ICmpInst::ICMP_NE;
   7394         RHS = getConstant(RA + 1);
   7395         Changed = true;
   7396         break;
   7397       }
   7398       if (RA.isMinSignedValue()) {
   7399         Pred = ICmpInst::ICMP_EQ;
   7400         Changed = true;
   7401         break;
   7402       }
   7403       if (RA.isMaxSignedValue()) goto trivially_true;
   7404 
   7405       Pred = ICmpInst::ICMP_SLT;
   7406       RHS = getConstant(RA + 1);
   7407       Changed = true;
   7408       break;
   7409     case ICmpInst::ICMP_UGT:
   7410       if (RA.isMinValue()) {
   7411         Pred = ICmpInst::ICMP_NE;
   7412         Changed = true;
   7413         break;
   7414       }
   7415       if ((RA + 1).isMaxValue()) {
   7416         Pred = ICmpInst::ICMP_EQ;
   7417         RHS = getConstant(RA + 1);
   7418         Changed = true;
   7419         break;
   7420       }
   7421       if (RA.isMaxValue()) goto trivially_false;
   7422       break;
   7423     case ICmpInst::ICMP_ULT:
   7424       if (RA.isMaxValue()) {
   7425         Pred = ICmpInst::ICMP_NE;
   7426         Changed = true;
   7427         break;
   7428       }
   7429       if ((RA - 1).isMinValue()) {
   7430         Pred = ICmpInst::ICMP_EQ;
   7431         RHS = getConstant(RA - 1);
   7432         Changed = true;
   7433         break;
   7434       }
   7435       if (RA.isMinValue()) goto trivially_false;
   7436       break;
   7437     case ICmpInst::ICMP_SGT:
   7438       if (RA.isMinSignedValue()) {
   7439         Pred = ICmpInst::ICMP_NE;
   7440         Changed = true;
   7441         break;
   7442       }
   7443       if ((RA + 1).isMaxSignedValue()) {
   7444         Pred = ICmpInst::ICMP_EQ;
   7445         RHS = getConstant(RA + 1);
   7446         Changed = true;
   7447         break;
   7448       }
   7449       if (RA.isMaxSignedValue()) goto trivially_false;
   7450       break;
   7451     case ICmpInst::ICMP_SLT:
   7452       if (RA.isMaxSignedValue()) {
   7453         Pred = ICmpInst::ICMP_NE;
   7454         Changed = true;
   7455         break;
   7456       }
   7457       if ((RA - 1).isMinSignedValue()) {
   7458        Pred = ICmpInst::ICMP_EQ;
   7459        RHS = getConstant(RA - 1);
   7460         Changed = true;
   7461        break;
   7462       }
   7463       if (RA.isMinSignedValue()) goto trivially_false;
   7464       break;
   7465     }
   7466   }
   7467 
   7468   // Check for obvious equality.
   7469   if (HasSameValue(LHS, RHS)) {
   7470     if (ICmpInst::isTrueWhenEqual(Pred))
   7471       goto trivially_true;
   7472     if (ICmpInst::isFalseWhenEqual(Pred))
   7473       goto trivially_false;
   7474   }
   7475 
   7476   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   7477   // adding or subtracting 1 from one of the operands.
   7478   switch (Pred) {
   7479   case ICmpInst::ICMP_SLE:
   7480     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   7481       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   7482                        SCEV::FlagNSW);
   7483       Pred = ICmpInst::ICMP_SLT;
   7484       Changed = true;
   7485     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   7486       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   7487                        SCEV::FlagNSW);
   7488       Pred = ICmpInst::ICMP_SLT;
   7489       Changed = true;
   7490     }
   7491     break;
   7492   case ICmpInst::ICMP_SGE:
   7493     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   7494       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   7495                        SCEV::FlagNSW);
   7496       Pred = ICmpInst::ICMP_SGT;
   7497       Changed = true;
   7498     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   7499       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   7500                        SCEV::FlagNSW);
   7501       Pred = ICmpInst::ICMP_SGT;
   7502       Changed = true;
   7503     }
   7504     break;
   7505   case ICmpInst::ICMP_ULE:
   7506     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   7507       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   7508                        SCEV::FlagNUW);
   7509       Pred = ICmpInst::ICMP_ULT;
   7510       Changed = true;
   7511     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   7512       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
   7513       Pred = ICmpInst::ICMP_ULT;
   7514       Changed = true;
   7515     }
   7516     break;
   7517   case ICmpInst::ICMP_UGE:
   7518     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   7519       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
   7520       Pred = ICmpInst::ICMP_UGT;
   7521       Changed = true;
   7522     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   7523       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   7524                        SCEV::FlagNUW);
   7525       Pred = ICmpInst::ICMP_UGT;
   7526       Changed = true;
   7527     }
   7528     break;
   7529   default:
   7530     break;
   7531   }
   7532 
   7533   // TODO: More simplifications are possible here.
   7534 
   7535   // Recursively simplify until we either hit a recursion limit or nothing
   7536   // changes.
   7537   if (Changed)
   7538     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
   7539 
   7540   return Changed;
   7541 
   7542 trivially_true:
   7543   // Return 0 == 0.
   7544   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   7545   Pred = ICmpInst::ICMP_EQ;
   7546   return true;
   7547 
   7548 trivially_false:
   7549   // Return 0 != 0.
   7550   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   7551   Pred = ICmpInst::ICMP_NE;
   7552   return true;
   7553 }
   7554 
   7555 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   7556   return getSignedRange(S).getSignedMax().isNegative();
   7557 }
   7558 
   7559 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   7560   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   7561 }
   7562 
   7563 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   7564   return !getSignedRange(S).getSignedMin().isNegative();
   7565 }
   7566 
   7567 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   7568   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   7569 }
   7570 
   7571 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   7572   return isKnownNegative(S) || isKnownPositive(S);
   7573 }
   7574 
   7575 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   7576                                        const SCEV *LHS, const SCEV *RHS) {
   7577   // Canonicalize the inputs first.
   7578   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   7579 
   7580   // If LHS or RHS is an addrec, check to see if the condition is true in
   7581   // every iteration of the loop.
   7582   // If LHS and RHS are both addrec, both conditions must be true in
   7583   // every iteration of the loop.
   7584   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
   7585   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
   7586   bool LeftGuarded = false;
   7587   bool RightGuarded = false;
   7588   if (LAR) {
   7589     const Loop *L = LAR->getLoop();
   7590     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
   7591         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
   7592       if (!RAR) return true;
   7593       LeftGuarded = true;
   7594     }
   7595   }
   7596   if (RAR) {
   7597     const Loop *L = RAR->getLoop();
   7598     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
   7599         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
   7600       if (!LAR) return true;
   7601       RightGuarded = true;
   7602     }
   7603   }
   7604   if (LeftGuarded && RightGuarded)
   7605     return true;
   7606 
   7607   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
   7608     return true;
   7609 
   7610   // Otherwise see what can be done with known constant ranges.
   7611   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
   7612 }
   7613 
   7614 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
   7615                                            ICmpInst::Predicate Pred,
   7616                                            bool &Increasing) {
   7617   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
   7618 
   7619 #ifndef NDEBUG
   7620   // Verify an invariant: inverting the predicate should turn a monotonically
   7621   // increasing change to a monotonically decreasing one, and vice versa.
   7622   bool IncreasingSwapped;
   7623   bool ResultSwapped = isMonotonicPredicateImpl(
   7624       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
   7625 
   7626   assert(Result == ResultSwapped && "should be able to analyze both!");
   7627   if (ResultSwapped)
   7628     assert(Increasing == !IncreasingSwapped &&
   7629            "monotonicity should flip as we flip the predicate");
   7630 #endif
   7631 
   7632   return Result;
   7633 }
   7634 
   7635 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
   7636                                                ICmpInst::Predicate Pred,
   7637                                                bool &Increasing) {
   7638 
   7639   // A zero step value for LHS means the induction variable is essentially a
   7640   // loop invariant value. We don't really depend on the predicate actually
   7641   // flipping from false to true (for increasing predicates, and the other way
   7642   // around for decreasing predicates), all we care about is that *if* the
   7643   // predicate changes then it only changes from false to true.
   7644   //
   7645   // A zero step value in itself is not very useful, but there may be places
   7646   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
   7647   // as general as possible.
   7648 
   7649   switch (Pred) {
   7650   default:
   7651     return false; // Conservative answer
   7652 
   7653   case ICmpInst::ICMP_UGT:
   7654   case ICmpInst::ICMP_UGE:
   7655   case ICmpInst::ICMP_ULT:
   7656   case ICmpInst::ICMP_ULE:
   7657     if (!LHS->hasNoUnsignedWrap())
   7658       return false;
   7659 
   7660     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
   7661     return true;
   7662 
   7663   case ICmpInst::ICMP_SGT:
   7664   case ICmpInst::ICMP_SGE:
   7665   case ICmpInst::ICMP_SLT:
   7666   case ICmpInst::ICMP_SLE: {
   7667     if (!LHS->hasNoSignedWrap())
   7668       return false;
   7669 
   7670     const SCEV *Step = LHS->getStepRecurrence(*this);
   7671 
   7672     if (isKnownNonNegative(Step)) {
   7673       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
   7674       return true;
   7675     }
   7676 
   7677     if (isKnownNonPositive(Step)) {
   7678       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
   7679       return true;
   7680     }
   7681 
   7682     return false;
   7683   }
   7684 
   7685   }
   7686 
   7687   llvm_unreachable("switch has default clause!");
   7688 }
   7689 
   7690 bool ScalarEvolution::isLoopInvariantPredicate(
   7691     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
   7692     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
   7693     const SCEV *&InvariantRHS) {
   7694 
   7695   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
   7696   if (!isLoopInvariant(RHS, L)) {
   7697     if (!isLoopInvariant(LHS, L))
   7698       return false;
   7699 
   7700     std::swap(LHS, RHS);
   7701     Pred = ICmpInst::getSwappedPredicate(Pred);
   7702   }
   7703 
   7704   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
   7705   if (!ArLHS || ArLHS->getLoop() != L)
   7706     return false;
   7707 
   7708   bool Increasing;
   7709   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
   7710     return false;
   7711 
   7712   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
   7713   // true as the loop iterates, and the backedge is control dependent on
   7714   // "ArLHS `Pred` RHS" == true then we can reason as follows:
   7715   //
   7716   //   * if the predicate was false in the first iteration then the predicate
   7717   //     is never evaluated again, since the loop exits without taking the
   7718   //     backedge.
   7719   //   * if the predicate was true in the first iteration then it will
   7720   //     continue to be true for all future iterations since it is
   7721   //     monotonically increasing.
   7722   //
   7723   // For both the above possibilities, we can replace the loop varying
   7724   // predicate with its value on the first iteration of the loop (which is
   7725   // loop invariant).
   7726   //
   7727   // A similar reasoning applies for a monotonically decreasing predicate, by
   7728   // replacing true with false and false with true in the above two bullets.
   7729 
   7730   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
   7731 
   7732   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
   7733     return false;
   7734 
   7735   InvariantPred = Pred;
   7736   InvariantLHS = ArLHS->getStart();
   7737   InvariantRHS = RHS;
   7738   return true;
   7739 }
   7740 
   7741 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
   7742     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
   7743   if (HasSameValue(LHS, RHS))
   7744     return ICmpInst::isTrueWhenEqual(Pred);
   7745 
   7746   // This code is split out from isKnownPredicate because it is called from
   7747   // within isLoopEntryGuardedByCond.
   7748 
   7749   auto CheckRanges =
   7750       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
   7751     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
   7752         .contains(RangeLHS);
   7753   };
   7754 
   7755   // The check at the top of the function catches the case where the values are
   7756   // known to be equal.
   7757   if (Pred == CmpInst::ICMP_EQ)
   7758     return false;
   7759 
   7760   if (Pred == CmpInst::ICMP_NE)
   7761     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
   7762            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
   7763            isKnownNonZero(getMinusSCEV(LHS, RHS));
   7764 
   7765   if (CmpInst::isSigned(Pred))
   7766     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
   7767 
   7768   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
   7769 }
   7770 
   7771 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
   7772                                                     const SCEV *LHS,
   7773                                                     const SCEV *RHS) {
   7774 
   7775   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
   7776   // Return Y via OutY.
   7777   auto MatchBinaryAddToConst =
   7778       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
   7779              SCEV::NoWrapFlags ExpectedFlags) {
   7780     const SCEV *NonConstOp, *ConstOp;
   7781     SCEV::NoWrapFlags FlagsPresent;
   7782 
   7783     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
   7784         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
   7785       return false;
   7786 
   7787     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
   7788     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
   7789   };
   7790 
   7791   APInt C;
   7792 
   7793   switch (Pred) {
   7794   default:
   7795     break;
   7796 
   7797   case ICmpInst::ICMP_SGE:
   7798     std::swap(LHS, RHS);
   7799   case ICmpInst::ICMP_SLE:
   7800     // X s<= (X + C)<nsw> if C >= 0
   7801     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
   7802       return true;
   7803 
   7804     // (X + C)<nsw> s<= X if C <= 0
   7805     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
   7806         !C.isStrictlyPositive())
   7807       return true;
   7808     break;
   7809 
   7810   case ICmpInst::ICMP_SGT:
   7811     std::swap(LHS, RHS);
   7812   case ICmpInst::ICMP_SLT:
   7813     // X s< (X + C)<nsw> if C > 0
   7814     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
   7815         C.isStrictlyPositive())
   7816       return true;
   7817 
   7818     // (X + C)<nsw> s< X if C < 0
   7819     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
   7820       return true;
   7821     break;
   7822   }
   7823 
   7824   return false;
   7825 }
   7826 
   7827 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
   7828                                                    const SCEV *LHS,
   7829                                                    const SCEV *RHS) {
   7830   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
   7831     return false;
   7832 
   7833   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
   7834   // the stack can result in exponential time complexity.
   7835   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
   7836 
   7837   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
   7838   //
   7839   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
   7840   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
   7841   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
   7842   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
   7843   // use isKnownPredicate later if needed.
   7844   return isKnownNonNegative(RHS) &&
   7845          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
   7846          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
   7847 }
   7848 
   7849 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
   7850                                         ICmpInst::Predicate Pred,
   7851                                         const SCEV *LHS, const SCEV *RHS) {
   7852   // No need to even try if we know the module has no guards.
   7853   if (!HasGuards)
   7854     return false;
   7855 
   7856   return any_of(*BB, [&](Instruction &I) {
   7857     using namespace llvm::PatternMatch;
   7858 
   7859     Value *Condition;
   7860     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
   7861                          m_Value(Condition))) &&
   7862            isImpliedCond(Pred, LHS, RHS, Condition, false);
   7863   });
   7864 }
   7865 
   7866 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   7867 /// protected by a conditional between LHS and RHS.  This is used to
   7868 /// to eliminate casts.
   7869 bool
   7870 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   7871                                              ICmpInst::Predicate Pred,
   7872                                              const SCEV *LHS, const SCEV *RHS) {
   7873   // Interpret a null as meaning no loop, where there is obviously no guard
   7874   // (interprocedural conditions notwithstanding).
   7875   if (!L) return true;
   7876 
   7877   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
   7878     return true;
   7879 
   7880   BasicBlock *Latch = L->getLoopLatch();
   7881   if (!Latch)
   7882     return false;
   7883 
   7884   BranchInst *LoopContinuePredicate =
   7885     dyn_cast<BranchInst>(Latch->getTerminator());
   7886   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
   7887       isImpliedCond(Pred, LHS, RHS,
   7888                     LoopContinuePredicate->getCondition(),
   7889                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
   7890     return true;
   7891 
   7892   // We don't want more than one activation of the following loops on the stack
   7893   // -- that can lead to O(n!) time complexity.
   7894   if (WalkingBEDominatingConds)
   7895     return false;
   7896 
   7897   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
   7898 
   7899   // See if we can exploit a trip count to prove the predicate.
   7900   const auto &BETakenInfo = getBackedgeTakenInfo(L);
   7901   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
   7902   if (LatchBECount != getCouldNotCompute()) {
   7903     // We know that Latch branches back to the loop header exactly
   7904     // LatchBECount times.  This means the backdege condition at Latch is
   7905     // equivalent to  "{0,+,1} u< LatchBECount".
   7906     Type *Ty = LatchBECount->getType();
   7907     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
   7908     const SCEV *LoopCounter =
   7909       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
   7910     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
   7911                       LatchBECount))
   7912       return true;
   7913   }
   7914 
   7915   // Check conditions due to any @llvm.assume intrinsics.
   7916   for (auto &AssumeVH : AC.assumptions()) {
   7917     if (!AssumeVH)
   7918       continue;
   7919     auto *CI = cast<CallInst>(AssumeVH);
   7920     if (!DT.dominates(CI, Latch->getTerminator()))
   7921       continue;
   7922 
   7923     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   7924       return true;
   7925   }
   7926 
   7927   // If the loop is not reachable from the entry block, we risk running into an
   7928   // infinite loop as we walk up into the dom tree.  These loops do not matter
   7929   // anyway, so we just return a conservative answer when we see them.
   7930   if (!DT.isReachableFromEntry(L->getHeader()))
   7931     return false;
   7932 
   7933   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
   7934     return true;
   7935 
   7936   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
   7937        DTN != HeaderDTN; DTN = DTN->getIDom()) {
   7938 
   7939     assert(DTN && "should reach the loop header before reaching the root!");
   7940 
   7941     BasicBlock *BB = DTN->getBlock();
   7942     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
   7943       return true;
   7944 
   7945     BasicBlock *PBB = BB->getSinglePredecessor();
   7946     if (!PBB)
   7947       continue;
   7948 
   7949     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
   7950     if (!ContinuePredicate || !ContinuePredicate->isConditional())
   7951       continue;
   7952 
   7953     Value *Condition = ContinuePredicate->getCondition();
   7954 
   7955     // If we have an edge `E` within the loop body that dominates the only
   7956     // latch, the condition guarding `E` also guards the backedge.  This
   7957     // reasoning works only for loops with a single latch.
   7958 
   7959     BasicBlockEdge DominatingEdge(PBB, BB);
   7960     if (DominatingEdge.isSingleEdge()) {
   7961       // We're constructively (and conservatively) enumerating edges within the
   7962       // loop body that dominate the latch.  The dominator tree better agree
   7963       // with us on this:
   7964       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
   7965 
   7966       if (isImpliedCond(Pred, LHS, RHS, Condition,
   7967                         BB != ContinuePredicate->getSuccessor(0)))
   7968         return true;
   7969     }
   7970   }
   7971 
   7972   return false;
   7973 }
   7974 
   7975 bool
   7976 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   7977                                           ICmpInst::Predicate Pred,
   7978                                           const SCEV *LHS, const SCEV *RHS) {
   7979   // Interpret a null as meaning no loop, where there is obviously no guard
   7980   // (interprocedural conditions notwithstanding).
   7981   if (!L) return false;
   7982 
   7983   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
   7984     return true;
   7985 
   7986   // Starting at the loop predecessor, climb up the predecessor chain, as long
   7987   // as there are predecessors that can be found that have unique successors
   7988   // leading to the original header.
   7989   for (std::pair<BasicBlock *, BasicBlock *>
   7990          Pair(L->getLoopPredecessor(), L->getHeader());
   7991        Pair.first;
   7992        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   7993 
   7994     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
   7995       return true;
   7996 
   7997     BranchInst *LoopEntryPredicate =
   7998       dyn_cast<BranchInst>(Pair.first->getTerminator());
   7999     if (!LoopEntryPredicate ||
   8000         LoopEntryPredicate->isUnconditional())
   8001       continue;
   8002 
   8003     if (isImpliedCond(Pred, LHS, RHS,
   8004                       LoopEntryPredicate->getCondition(),
   8005                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   8006       return true;
   8007   }
   8008 
   8009   // Check conditions due to any @llvm.assume intrinsics.
   8010   for (auto &AssumeVH : AC.assumptions()) {
   8011     if (!AssumeVH)
   8012       continue;
   8013     auto *CI = cast<CallInst>(AssumeVH);
   8014     if (!DT.dominates(CI, L->getHeader()))
   8015       continue;
   8016 
   8017     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
   8018       return true;
   8019   }
   8020 
   8021   return false;
   8022 }
   8023 
   8024 namespace {
   8025 /// RAII wrapper to prevent recursive application of isImpliedCond.
   8026 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
   8027 /// currently evaluating isImpliedCond.
   8028 struct MarkPendingLoopPredicate {
   8029   Value *Cond;
   8030   DenseSet<Value*> &LoopPreds;
   8031   bool Pending;
   8032 
   8033   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
   8034     : Cond(C), LoopPreds(LP) {
   8035     Pending = !LoopPreds.insert(Cond).second;
   8036   }
   8037   ~MarkPendingLoopPredicate() {
   8038     if (!Pending)
   8039       LoopPreds.erase(Cond);
   8040   }
   8041 };
   8042 } // end anonymous namespace
   8043 
   8044 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   8045                                     const SCEV *LHS, const SCEV *RHS,
   8046                                     Value *FoundCondValue,
   8047                                     bool Inverse) {
   8048   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
   8049   if (Mark.Pending)
   8050     return false;
   8051 
   8052   // Recursively handle And and Or conditions.
   8053   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   8054     if (BO->getOpcode() == Instruction::And) {
   8055       if (!Inverse)
   8056         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   8057                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   8058     } else if (BO->getOpcode() == Instruction::Or) {
   8059       if (Inverse)
   8060         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   8061                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   8062     }
   8063   }
   8064 
   8065   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   8066   if (!ICI) return false;
   8067 
   8068   // Now that we found a conditional branch that dominates the loop or controls
   8069   // the loop latch. Check to see if it is the comparison we are looking for.
   8070   ICmpInst::Predicate FoundPred;
   8071   if (Inverse)
   8072     FoundPred = ICI->getInversePredicate();
   8073   else
   8074     FoundPred = ICI->getPredicate();
   8075 
   8076   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   8077   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   8078 
   8079   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
   8080 }
   8081 
   8082 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
   8083                                     const SCEV *RHS,
   8084                                     ICmpInst::Predicate FoundPred,
   8085                                     const SCEV *FoundLHS,
   8086                                     const SCEV *FoundRHS) {
   8087   // Balance the types.
   8088   if (getTypeSizeInBits(LHS->getType()) <
   8089       getTypeSizeInBits(FoundLHS->getType())) {
   8090     if (CmpInst::isSigned(Pred)) {
   8091       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
   8092       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
   8093     } else {
   8094       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
   8095       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
   8096     }
   8097   } else if (getTypeSizeInBits(LHS->getType()) >
   8098       getTypeSizeInBits(FoundLHS->getType())) {
   8099     if (CmpInst::isSigned(FoundPred)) {
   8100       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   8101       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   8102     } else {
   8103       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   8104       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   8105     }
   8106   }
   8107 
   8108   // Canonicalize the query to match the way instcombine will have
   8109   // canonicalized the comparison.
   8110   if (SimplifyICmpOperands(Pred, LHS, RHS))
   8111     if (LHS == RHS)
   8112       return CmpInst::isTrueWhenEqual(Pred);
   8113   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   8114     if (FoundLHS == FoundRHS)
   8115       return CmpInst::isFalseWhenEqual(FoundPred);
   8116 
   8117   // Check to see if we can make the LHS or RHS match.
   8118   if (LHS == FoundRHS || RHS == FoundLHS) {
   8119     if (isa<SCEVConstant>(RHS)) {
   8120       std::swap(FoundLHS, FoundRHS);
   8121       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   8122     } else {
   8123       std::swap(LHS, RHS);
   8124       Pred = ICmpInst::getSwappedPredicate(Pred);
   8125     }
   8126   }
   8127 
   8128   // Check whether the found predicate is the same as the desired predicate.
   8129   if (FoundPred == Pred)
   8130     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   8131 
   8132   // Check whether swapping the found predicate makes it the same as the
   8133   // desired predicate.
   8134   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   8135     if (isa<SCEVConstant>(RHS))
   8136       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   8137     else
   8138       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   8139                                    RHS, LHS, FoundLHS, FoundRHS);
   8140   }
   8141 
   8142   // Unsigned comparison is the same as signed comparison when both the operands
   8143   // are non-negative.
   8144   if (CmpInst::isUnsigned(FoundPred) &&
   8145       CmpInst::getSignedPredicate(FoundPred) == Pred &&
   8146       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
   8147     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   8148 
   8149   // Check if we can make progress by sharpening ranges.
   8150   if (FoundPred == ICmpInst::ICMP_NE &&
   8151       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
   8152 
   8153     const SCEVConstant *C = nullptr;
   8154     const SCEV *V = nullptr;
   8155 
   8156     if (isa<SCEVConstant>(FoundLHS)) {
   8157       C = cast<SCEVConstant>(FoundLHS);
   8158       V = FoundRHS;
   8159     } else {
   8160       C = cast<SCEVConstant>(FoundRHS);
   8161       V = FoundLHS;
   8162     }
   8163 
   8164     // The guarding predicate tells us that C != V. If the known range
   8165     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
   8166     // range we consider has to correspond to same signedness as the
   8167     // predicate we're interested in folding.
   8168 
   8169     APInt Min = ICmpInst::isSigned(Pred) ?
   8170         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
   8171 
   8172     if (Min == C->getAPInt()) {
   8173       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
   8174       // This is true even if (Min + 1) wraps around -- in case of
   8175       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
   8176 
   8177       APInt SharperMin = Min + 1;
   8178 
   8179       switch (Pred) {
   8180         case ICmpInst::ICMP_SGE:
   8181         case ICmpInst::ICMP_UGE:
   8182           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
   8183           // RHS, we're done.
   8184           if (isImpliedCondOperands(Pred, LHS, RHS, V,
   8185                                     getConstant(SharperMin)))
   8186             return true;
   8187 
   8188         case ICmpInst::ICMP_SGT:
   8189         case ICmpInst::ICMP_UGT:
   8190           // We know from the range information that (V `Pred` Min ||
   8191           // V == Min).  We know from the guarding condition that !(V
   8192           // == Min).  This gives us
   8193           //
   8194           //       V `Pred` Min || V == Min && !(V == Min)
   8195           //   =>  V `Pred` Min
   8196           //
   8197           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
   8198 
   8199           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
   8200             return true;
   8201 
   8202         default:
   8203           // No change
   8204           break;
   8205       }
   8206     }
   8207   }
   8208 
   8209   // Check whether the actual condition is beyond sufficient.
   8210   if (FoundPred == ICmpInst::ICMP_EQ)
   8211     if (ICmpInst::isTrueWhenEqual(Pred))
   8212       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   8213         return true;
   8214   if (Pred == ICmpInst::ICMP_NE)
   8215     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   8216       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   8217         return true;
   8218 
   8219   // Otherwise assume the worst.
   8220   return false;
   8221 }
   8222 
   8223 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
   8224                                      const SCEV *&L, const SCEV *&R,
   8225                                      SCEV::NoWrapFlags &Flags) {
   8226   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
   8227   if (!AE || AE->getNumOperands() != 2)
   8228     return false;
   8229 
   8230   L = AE->getOperand(0);
   8231   R = AE->getOperand(1);
   8232   Flags = AE->getNoWrapFlags();
   8233   return true;
   8234 }
   8235 
   8236 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
   8237                                                 const SCEV *More,
   8238                                                 APInt &C) {
   8239   // We avoid subtracting expressions here because this function is usually
   8240   // fairly deep in the call stack (i.e. is called many times).
   8241 
   8242   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
   8243     const auto *LAR = cast<SCEVAddRecExpr>(Less);
   8244     const auto *MAR = cast<SCEVAddRecExpr>(More);
   8245 
   8246     if (LAR->getLoop() != MAR->getLoop())
   8247       return false;
   8248 
   8249     // We look at affine expressions only; not for correctness but to keep
   8250     // getStepRecurrence cheap.
   8251     if (!LAR->isAffine() || !MAR->isAffine())
   8252       return false;
   8253 
   8254     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
   8255       return false;
   8256 
   8257     Less = LAR->getStart();
   8258     More = MAR->getStart();
   8259 
   8260     // fall through
   8261   }
   8262 
   8263   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
   8264     const auto &M = cast<SCEVConstant>(More)->getAPInt();
   8265     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
   8266     C = M - L;
   8267     return true;
   8268   }
   8269 
   8270   const SCEV *L, *R;
   8271   SCEV::NoWrapFlags Flags;
   8272   if (splitBinaryAdd(Less, L, R, Flags))
   8273     if (const auto *LC = dyn_cast<SCEVConstant>(L))
   8274       if (R == More) {
   8275         C = -(LC->getAPInt());
   8276         return true;
   8277       }
   8278 
   8279   if (splitBinaryAdd(More, L, R, Flags))
   8280     if (const auto *LC = dyn_cast<SCEVConstant>(L))
   8281       if (R == Less) {
   8282         C = LC->getAPInt();
   8283         return true;
   8284       }
   8285 
   8286   return false;
   8287 }
   8288 
   8289 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
   8290     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
   8291     const SCEV *FoundLHS, const SCEV *FoundRHS) {
   8292   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
   8293     return false;
   8294 
   8295   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
   8296   if (!AddRecLHS)
   8297     return false;
   8298 
   8299   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
   8300   if (!AddRecFoundLHS)
   8301     return false;
   8302 
   8303   // We'd like to let SCEV reason about control dependencies, so we constrain
   8304   // both the inequalities to be about add recurrences on the same loop.  This
   8305   // way we can use isLoopEntryGuardedByCond later.
   8306 
   8307   const Loop *L = AddRecFoundLHS->getLoop();
   8308   if (L != AddRecLHS->getLoop())
   8309     return false;
   8310 
   8311   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
   8312   //
   8313   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
   8314   //                                                                  ... (2)
   8315   //
   8316   // Informal proof for (2), assuming (1) [*]:
   8317   //
   8318   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
   8319   //
   8320   // Then
   8321   //
   8322   //       FoundLHS s< FoundRHS s< INT_MIN - C
   8323   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
   8324   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
   8325   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
   8326   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
   8327   // <=>  FoundLHS + C s< FoundRHS + C
   8328   //
   8329   // [*]: (1) can be proved by ruling out overflow.
   8330   //
   8331   // [**]: This can be proved by analyzing all the four possibilities:
   8332   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
   8333   //    (A s>= 0, B s>= 0).
   8334   //
   8335   // Note:
   8336   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
   8337   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
   8338   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
   8339   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
   8340   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
   8341   // C)".
   8342 
   8343   APInt LDiff, RDiff;
   8344   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
   8345       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
   8346       LDiff != RDiff)
   8347     return false;
   8348 
   8349   if (LDiff == 0)
   8350     return true;
   8351 
   8352   APInt FoundRHSLimit;
   8353 
   8354   if (Pred == CmpInst::ICMP_ULT) {
   8355     FoundRHSLimit = -RDiff;
   8356   } else {
   8357     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
   8358     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
   8359   }
   8360 
   8361   // Try to prove (1) or (2), as needed.
   8362   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
   8363                                   getConstant(FoundRHSLimit));
   8364 }
   8365 
   8366 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   8367                                             const SCEV *LHS, const SCEV *RHS,
   8368                                             const SCEV *FoundLHS,
   8369                                             const SCEV *FoundRHS) {
   8370   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
   8371     return true;
   8372 
   8373   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
   8374     return true;
   8375 
   8376   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   8377                                      FoundLHS, FoundRHS) ||
   8378          // ~x < ~y --> x > y
   8379          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   8380                                      getNotSCEV(FoundRHS),
   8381                                      getNotSCEV(FoundLHS));
   8382 }
   8383 
   8384 
   8385 /// If Expr computes ~A, return A else return nullptr
   8386 static const SCEV *MatchNotExpr(const SCEV *Expr) {
   8387   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
   8388   if (!Add || Add->getNumOperands() != 2 ||
   8389       !Add->getOperand(0)->isAllOnesValue())
   8390     return nullptr;
   8391 
   8392   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
   8393   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
   8394       !AddRHS->getOperand(0)->isAllOnesValue())
   8395     return nullptr;
   8396 
   8397   return AddRHS->getOperand(1);
   8398 }
   8399 
   8400 
   8401 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
   8402 template<typename MaxExprType>
   8403 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
   8404                               const SCEV *Candidate) {
   8405   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
   8406   if (!MaxExpr) return false;
   8407 
   8408   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
   8409 }
   8410 
   8411 
   8412 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
   8413 template<typename MaxExprType>
   8414 static bool IsMinConsistingOf(ScalarEvolution &SE,
   8415                               const SCEV *MaybeMinExpr,
   8416                               const SCEV *Candidate) {
   8417   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
   8418   if (!MaybeMaxExpr)
   8419     return false;
   8420 
   8421   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
   8422 }
   8423 
   8424 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
   8425                                            ICmpInst::Predicate Pred,
   8426                                            const SCEV *LHS, const SCEV *RHS) {
   8427 
   8428   // If both sides are affine addrecs for the same loop, with equal
   8429   // steps, and we know the recurrences don't wrap, then we only
   8430   // need to check the predicate on the starting values.
   8431 
   8432   if (!ICmpInst::isRelational(Pred))
   8433     return false;
   8434 
   8435   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
   8436   if (!LAR)
   8437     return false;
   8438   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
   8439   if (!RAR)
   8440     return false;
   8441   if (LAR->getLoop() != RAR->getLoop())
   8442     return false;
   8443   if (!LAR->isAffine() || !RAR->isAffine())
   8444     return false;
   8445 
   8446   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
   8447     return false;
   8448 
   8449   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
   8450                          SCEV::FlagNSW : SCEV::FlagNUW;
   8451   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
   8452     return false;
   8453 
   8454   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
   8455 }
   8456 
   8457 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
   8458 /// expression?
   8459 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
   8460                                         ICmpInst::Predicate Pred,
   8461                                         const SCEV *LHS, const SCEV *RHS) {
   8462   switch (Pred) {
   8463   default:
   8464     return false;
   8465 
   8466   case ICmpInst::ICMP_SGE:
   8467     std::swap(LHS, RHS);
   8468     // fall through
   8469   case ICmpInst::ICMP_SLE:
   8470     return
   8471       // min(A, ...) <= A
   8472       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
   8473       // A <= max(A, ...)
   8474       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
   8475 
   8476   case ICmpInst::ICMP_UGE:
   8477     std::swap(LHS, RHS);
   8478     // fall through
   8479   case ICmpInst::ICMP_ULE:
   8480     return
   8481       // min(A, ...) <= A
   8482       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
   8483       // A <= max(A, ...)
   8484       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
   8485   }
   8486 
   8487   llvm_unreachable("covered switch fell through?!");
   8488 }
   8489 
   8490 bool
   8491 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   8492                                              const SCEV *LHS, const SCEV *RHS,
   8493                                              const SCEV *FoundLHS,
   8494                                              const SCEV *FoundRHS) {
   8495   auto IsKnownPredicateFull =
   8496       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
   8497     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
   8498            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
   8499            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
   8500            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
   8501   };
   8502 
   8503   switch (Pred) {
   8504   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   8505   case ICmpInst::ICMP_EQ:
   8506   case ICmpInst::ICMP_NE:
   8507     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   8508       return true;
   8509     break;
   8510   case ICmpInst::ICMP_SLT:
   8511   case ICmpInst::ICMP_SLE:
   8512     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   8513         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   8514       return true;
   8515     break;
   8516   case ICmpInst::ICMP_SGT:
   8517   case ICmpInst::ICMP_SGE:
   8518     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   8519         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   8520       return true;
   8521     break;
   8522   case ICmpInst::ICMP_ULT:
   8523   case ICmpInst::ICMP_ULE:
   8524     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   8525         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   8526       return true;
   8527     break;
   8528   case ICmpInst::ICMP_UGT:
   8529   case ICmpInst::ICMP_UGE:
   8530     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   8531         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   8532       return true;
   8533     break;
   8534   }
   8535 
   8536   return false;
   8537 }
   8538 
   8539 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
   8540                                                      const SCEV *LHS,
   8541                                                      const SCEV *RHS,
   8542                                                      const SCEV *FoundLHS,
   8543                                                      const SCEV *FoundRHS) {
   8544   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
   8545     // The restriction on `FoundRHS` be lifted easily -- it exists only to
   8546     // reduce the compile time impact of this optimization.
   8547     return false;
   8548 
   8549   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
   8550   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
   8551       !isa<SCEVConstant>(AddLHS->getOperand(0)))
   8552     return false;
   8553 
   8554   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
   8555 
   8556   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
   8557   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
   8558   ConstantRange FoundLHSRange =
   8559       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
   8560 
   8561   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
   8562   // for `LHS`:
   8563   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
   8564   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
   8565 
   8566   // We can also compute the range of values for `LHS` that satisfy the
   8567   // consequent, "`LHS` `Pred` `RHS`":
   8568   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
   8569   ConstantRange SatisfyingLHSRange =
   8570       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
   8571 
   8572   // The antecedent implies the consequent if every value of `LHS` that
   8573   // satisfies the antecedent also satisfies the consequent.
   8574   return SatisfyingLHSRange.contains(LHSRange);
   8575 }
   8576 
   8577 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
   8578                                          bool IsSigned, bool NoWrap) {
   8579   if (NoWrap) return false;
   8580 
   8581   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   8582   const SCEV *One = getOne(Stride->getType());
   8583 
   8584   if (IsSigned) {
   8585     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
   8586     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
   8587     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   8588                                 .getSignedMax();
   8589 
   8590     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
   8591     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
   8592   }
   8593 
   8594   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
   8595   APInt MaxValue = APInt::getMaxValue(BitWidth);
   8596   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   8597                               .getUnsignedMax();
   8598 
   8599   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
   8600   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
   8601 }
   8602 
   8603 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
   8604                                          bool IsSigned, bool NoWrap) {
   8605   if (NoWrap) return false;
   8606 
   8607   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
   8608   const SCEV *One = getOne(Stride->getType());
   8609 
   8610   if (IsSigned) {
   8611     APInt MinRHS = getSignedRange(RHS).getSignedMin();
   8612     APInt MinValue = APInt::getSignedMinValue(BitWidth);
   8613     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
   8614                                .getSignedMax();
   8615 
   8616     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
   8617     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
   8618   }
   8619 
   8620   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
   8621   APInt MinValue = APInt::getMinValue(BitWidth);
   8622   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
   8623                             .getUnsignedMax();
   8624 
   8625   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
   8626   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
   8627 }
   8628 
   8629 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
   8630                                             bool Equality) {
   8631   const SCEV *One = getOne(Step->getType());
   8632   Delta = Equality ? getAddExpr(Delta, Step)
   8633                    : getAddExpr(Delta, getMinusSCEV(Step, One));
   8634   return getUDivExpr(Delta, Step);
   8635 }
   8636 
   8637 ScalarEvolution::ExitLimit
   8638 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
   8639                                   const Loop *L, bool IsSigned,
   8640                                   bool ControlsExit, bool AllowPredicates) {
   8641   SCEVUnionPredicate P;
   8642   // We handle only IV < Invariant
   8643   if (!isLoopInvariant(RHS, L))
   8644     return getCouldNotCompute();
   8645 
   8646   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   8647   if (!IV && AllowPredicates)
   8648     // Try to make this an AddRec using runtime tests, in the first X
   8649     // iterations of this loop, where X is the SCEV expression found by the
   8650     // algorithm below.
   8651     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
   8652 
   8653   // Avoid weird loops
   8654   if (!IV || IV->getLoop() != L || !IV->isAffine())
   8655     return getCouldNotCompute();
   8656 
   8657   bool NoWrap = ControlsExit &&
   8658                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   8659 
   8660   const SCEV *Stride = IV->getStepRecurrence(*this);
   8661 
   8662   // Avoid negative or zero stride values
   8663   if (!isKnownPositive(Stride))
   8664     return getCouldNotCompute();
   8665 
   8666   // Avoid proven overflow cases: this will ensure that the backedge taken count
   8667   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   8668   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   8669   // behaviors like the case of C language.
   8670   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
   8671     return getCouldNotCompute();
   8672 
   8673   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
   8674                                       : ICmpInst::ICMP_ULT;
   8675   const SCEV *Start = IV->getStart();
   8676   const SCEV *End = RHS;
   8677   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
   8678     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
   8679 
   8680   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
   8681 
   8682   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
   8683                             : getUnsignedRange(Start).getUnsignedMin();
   8684 
   8685   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   8686                              : getUnsignedRange(Stride).getUnsignedMin();
   8687 
   8688   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   8689   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
   8690                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
   8691 
   8692   // Although End can be a MAX expression we estimate MaxEnd considering only
   8693   // the case End = RHS. This is safe because in the other case (End - Start)
   8694   // is zero, leading to a zero maximum backedge taken count.
   8695   APInt MaxEnd =
   8696     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
   8697              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
   8698 
   8699   const SCEV *MaxBECount;
   8700   if (isa<SCEVConstant>(BECount))
   8701     MaxBECount = BECount;
   8702   else
   8703     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
   8704                                 getConstant(MinStride), false);
   8705 
   8706   if (isa<SCEVCouldNotCompute>(MaxBECount))
   8707     MaxBECount = BECount;
   8708 
   8709   return ExitLimit(BECount, MaxBECount, P);
   8710 }
   8711 
   8712 ScalarEvolution::ExitLimit
   8713 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
   8714                                      const Loop *L, bool IsSigned,
   8715                                      bool ControlsExit, bool AllowPredicates) {
   8716   SCEVUnionPredicate P;
   8717   // We handle only IV > Invariant
   8718   if (!isLoopInvariant(RHS, L))
   8719     return getCouldNotCompute();
   8720 
   8721   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
   8722   if (!IV && AllowPredicates)
   8723     // Try to make this an AddRec using runtime tests, in the first X
   8724     // iterations of this loop, where X is the SCEV expression found by the
   8725     // algorithm below.
   8726     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
   8727 
   8728   // Avoid weird loops
   8729   if (!IV || IV->getLoop() != L || !IV->isAffine())
   8730     return getCouldNotCompute();
   8731 
   8732   bool NoWrap = ControlsExit &&
   8733                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
   8734 
   8735   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
   8736 
   8737   // Avoid negative or zero stride values
   8738   if (!isKnownPositive(Stride))
   8739     return getCouldNotCompute();
   8740 
   8741   // Avoid proven overflow cases: this will ensure that the backedge taken count
   8742   // will not generate any unsigned overflow. Relaxed no-overflow conditions
   8743   // exploit NoWrapFlags, allowing to optimize in presence of undefined
   8744   // behaviors like the case of C language.
   8745   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
   8746     return getCouldNotCompute();
   8747 
   8748   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
   8749                                       : ICmpInst::ICMP_UGT;
   8750 
   8751   const SCEV *Start = IV->getStart();
   8752   const SCEV *End = RHS;
   8753   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
   8754     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
   8755 
   8756   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
   8757 
   8758   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
   8759                             : getUnsignedRange(Start).getUnsignedMax();
   8760 
   8761   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
   8762                              : getUnsignedRange(Stride).getUnsignedMin();
   8763 
   8764   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
   8765   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
   8766                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
   8767 
   8768   // Although End can be a MIN expression we estimate MinEnd considering only
   8769   // the case End = RHS. This is safe because in the other case (Start - End)
   8770   // is zero, leading to a zero maximum backedge taken count.
   8771   APInt MinEnd =
   8772     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
   8773              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
   8774 
   8775 
   8776   const SCEV *MaxBECount = getCouldNotCompute();
   8777   if (isa<SCEVConstant>(BECount))
   8778     MaxBECount = BECount;
   8779   else
   8780     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
   8781                                 getConstant(MinStride), false);
   8782 
   8783   if (isa<SCEVCouldNotCompute>(MaxBECount))
   8784     MaxBECount = BECount;
   8785 
   8786   return ExitLimit(BECount, MaxBECount, P);
   8787 }
   8788 
   8789 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
   8790                                                     ScalarEvolution &SE) const {
   8791   if (Range.isFullSet())  // Infinite loop.
   8792     return SE.getCouldNotCompute();
   8793 
   8794   // If the start is a non-zero constant, shift the range to simplify things.
   8795   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   8796     if (!SC->getValue()->isZero()) {
   8797       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   8798       Operands[0] = SE.getZero(SC->getType());
   8799       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   8800                                              getNoWrapFlags(FlagNW));
   8801       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
   8802         return ShiftedAddRec->getNumIterationsInRange(
   8803             Range.subtract(SC->getAPInt()), SE);
   8804       // This is strange and shouldn't happen.
   8805       return SE.getCouldNotCompute();
   8806     }
   8807 
   8808   // The only time we can solve this is when we have all constant indices.
   8809   // Otherwise, we cannot determine the overflow conditions.
   8810   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
   8811     return SE.getCouldNotCompute();
   8812 
   8813   // Okay at this point we know that all elements of the chrec are constants and
   8814   // that the start element is zero.
   8815 
   8816   // First check to see if the range contains zero.  If not, the first
   8817   // iteration exits.
   8818   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   8819   if (!Range.contains(APInt(BitWidth, 0)))
   8820     return SE.getZero(getType());
   8821 
   8822   if (isAffine()) {
   8823     // If this is an affine expression then we have this situation:
   8824     //   Solve {0,+,A} in Range  ===  Ax in Range
   8825 
   8826     // We know that zero is in the range.  If A is positive then we know that
   8827     // the upper value of the range must be the first possible exit value.
   8828     // If A is negative then the lower of the range is the last possible loop
   8829     // value.  Also note that we already checked for a full range.
   8830     APInt One(BitWidth,1);
   8831     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
   8832     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   8833 
   8834     // The exit value should be (End+A)/A.
   8835     APInt ExitVal = (End + A).udiv(A);
   8836     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   8837 
   8838     // Evaluate at the exit value.  If we really did fall out of the valid
   8839     // range, then we computed our trip count, otherwise wrap around or other
   8840     // things must have happened.
   8841     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   8842     if (Range.contains(Val->getValue()))
   8843       return SE.getCouldNotCompute();  // Something strange happened
   8844 
   8845     // Ensure that the previous value is in the range.  This is a sanity check.
   8846     assert(Range.contains(
   8847            EvaluateConstantChrecAtConstant(this,
   8848            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   8849            "Linear scev computation is off in a bad way!");
   8850     return SE.getConstant(ExitValue);
   8851   } else if (isQuadratic()) {
   8852     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   8853     // quadratic equation to solve it.  To do this, we must frame our problem in
   8854     // terms of figuring out when zero is crossed, instead of when
   8855     // Range.getUpper() is crossed.
   8856     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   8857     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   8858     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   8859                                              // getNoWrapFlags(FlagNW)
   8860                                              FlagAnyWrap);
   8861 
   8862     // Next, solve the constructed addrec
   8863     if (auto Roots =
   8864             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
   8865       const SCEVConstant *R1 = Roots->first;
   8866       const SCEVConstant *R2 = Roots->second;
   8867       // Pick the smallest positive root value.
   8868       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
   8869               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
   8870         if (!CB->getZExtValue())
   8871           std::swap(R1, R2); // R1 is the minimum root now.
   8872 
   8873         // Make sure the root is not off by one.  The returned iteration should
   8874         // not be in the range, but the previous one should be.  When solving
   8875         // for "X*X < 5", for example, we should not return a root of 2.
   8876         ConstantInt *R1Val =
   8877             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
   8878         if (Range.contains(R1Val->getValue())) {
   8879           // The next iteration must be out of the range...
   8880           ConstantInt *NextVal =
   8881               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
   8882 
   8883           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   8884           if (!Range.contains(R1Val->getValue()))
   8885             return SE.getConstant(NextVal);
   8886           return SE.getCouldNotCompute(); // Something strange happened
   8887         }
   8888 
   8889         // If R1 was not in the range, then it is a good return value.  Make
   8890         // sure that R1-1 WAS in the range though, just in case.
   8891         ConstantInt *NextVal =
   8892             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
   8893         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   8894         if (Range.contains(R1Val->getValue()))
   8895           return R1;
   8896         return SE.getCouldNotCompute(); // Something strange happened
   8897       }
   8898     }
   8899   }
   8900 
   8901   return SE.getCouldNotCompute();
   8902 }
   8903 
   8904 namespace {
   8905 struct FindUndefs {
   8906   bool Found;
   8907   FindUndefs() : Found(false) {}
   8908 
   8909   bool follow(const SCEV *S) {
   8910     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
   8911       if (isa<UndefValue>(C->getValue()))
   8912         Found = true;
   8913     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
   8914       if (isa<UndefValue>(C->getValue()))
   8915         Found = true;
   8916     }
   8917 
   8918     // Keep looking if we haven't found it yet.
   8919     return !Found;
   8920   }
   8921   bool isDone() const {
   8922     // Stop recursion if we have found an undef.
   8923     return Found;
   8924   }
   8925 };
   8926 }
   8927 
   8928 // Return true when S contains at least an undef value.
   8929 static inline bool
   8930 containsUndefs(const SCEV *S) {
   8931   FindUndefs F;
   8932   SCEVTraversal<FindUndefs> ST(F);
   8933   ST.visitAll(S);
   8934 
   8935   return F.Found;
   8936 }
   8937 
   8938 namespace {
   8939 // Collect all steps of SCEV expressions.
   8940 struct SCEVCollectStrides {
   8941   ScalarEvolution &SE;
   8942   SmallVectorImpl<const SCEV *> &Strides;
   8943 
   8944   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
   8945       : SE(SE), Strides(S) {}
   8946 
   8947   bool follow(const SCEV *S) {
   8948     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
   8949       Strides.push_back(AR->getStepRecurrence(SE));
   8950     return true;
   8951   }
   8952   bool isDone() const { return false; }
   8953 };
   8954 
   8955 // Collect all SCEVUnknown and SCEVMulExpr expressions.
   8956 struct SCEVCollectTerms {
   8957   SmallVectorImpl<const SCEV *> &Terms;
   8958 
   8959   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
   8960       : Terms(T) {}
   8961 
   8962   bool follow(const SCEV *S) {
   8963     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
   8964       if (!containsUndefs(S))
   8965         Terms.push_back(S);
   8966 
   8967       // Stop recursion: once we collected a term, do not walk its operands.
   8968       return false;
   8969     }
   8970 
   8971     // Keep looking.
   8972     return true;
   8973   }
   8974   bool isDone() const { return false; }
   8975 };
   8976 
   8977 // Check if a SCEV contains an AddRecExpr.
   8978 struct SCEVHasAddRec {
   8979   bool &ContainsAddRec;
   8980 
   8981   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
   8982    ContainsAddRec = false;
   8983   }
   8984 
   8985   bool follow(const SCEV *S) {
   8986     if (isa<SCEVAddRecExpr>(S)) {
   8987       ContainsAddRec = true;
   8988 
   8989       // Stop recursion: once we collected a term, do not walk its operands.
   8990       return false;
   8991     }
   8992 
   8993     // Keep looking.
   8994     return true;
   8995   }
   8996   bool isDone() const { return false; }
   8997 };
   8998 
   8999 // Find factors that are multiplied with an expression that (possibly as a
   9000 // subexpression) contains an AddRecExpr. In the expression:
   9001 //
   9002 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
   9003 //
   9004 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
   9005 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
   9006 // parameters as they form a product with an induction variable.
   9007 //
   9008 // This collector expects all array size parameters to be in the same MulExpr.
   9009 // It might be necessary to later add support for collecting parameters that are
   9010 // spread over different nested MulExpr.
   9011 struct SCEVCollectAddRecMultiplies {
   9012   SmallVectorImpl<const SCEV *> &Terms;
   9013   ScalarEvolution &SE;
   9014 
   9015   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
   9016       : Terms(T), SE(SE) {}
   9017 
   9018   bool follow(const SCEV *S) {
   9019     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
   9020       bool HasAddRec = false;
   9021       SmallVector<const SCEV *, 0> Operands;
   9022       for (auto Op : Mul->operands()) {
   9023         if (isa<SCEVUnknown>(Op)) {
   9024           Operands.push_back(Op);
   9025         } else {
   9026           bool ContainsAddRec;
   9027           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
   9028           visitAll(Op, ContiansAddRec);
   9029           HasAddRec |= ContainsAddRec;
   9030         }
   9031       }
   9032       if (Operands.size() == 0)
   9033         return true;
   9034 
   9035       if (!HasAddRec)
   9036         return false;
   9037 
   9038       Terms.push_back(SE.getMulExpr(Operands));
   9039       // Stop recursion: once we collected a term, do not walk its operands.
   9040       return false;
   9041     }
   9042 
   9043     // Keep looking.
   9044     return true;
   9045   }
   9046   bool isDone() const { return false; }
   9047 };
   9048 }
   9049 
   9050 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
   9051 /// two places:
   9052 ///   1) The strides of AddRec expressions.
   9053 ///   2) Unknowns that are multiplied with AddRec expressions.
   9054 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
   9055     SmallVectorImpl<const SCEV *> &Terms) {
   9056   SmallVector<const SCEV *, 4> Strides;
   9057   SCEVCollectStrides StrideCollector(*this, Strides);
   9058   visitAll(Expr, StrideCollector);
   9059 
   9060   DEBUG({
   9061       dbgs() << "Strides:\n";
   9062       for (const SCEV *S : Strides)
   9063         dbgs() << *S << "\n";
   9064     });
   9065 
   9066   for (const SCEV *S : Strides) {
   9067     SCEVCollectTerms TermCollector(Terms);
   9068     visitAll(S, TermCollector);
   9069   }
   9070 
   9071   DEBUG({
   9072       dbgs() << "Terms:\n";
   9073       for (const SCEV *T : Terms)
   9074         dbgs() << *T << "\n";
   9075     });
   9076 
   9077   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
   9078   visitAll(Expr, MulCollector);
   9079 }
   9080 
   9081 static bool findArrayDimensionsRec(ScalarEvolution &SE,
   9082                                    SmallVectorImpl<const SCEV *> &Terms,
   9083                                    SmallVectorImpl<const SCEV *> &Sizes) {
   9084   int Last = Terms.size() - 1;
   9085   const SCEV *Step = Terms[Last];
   9086 
   9087   // End of recursion.
   9088   if (Last == 0) {
   9089     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
   9090       SmallVector<const SCEV *, 2> Qs;
   9091       for (const SCEV *Op : M->operands())
   9092         if (!isa<SCEVConstant>(Op))
   9093           Qs.push_back(Op);
   9094 
   9095       Step = SE.getMulExpr(Qs);
   9096     }
   9097 
   9098     Sizes.push_back(Step);
   9099     return true;
   9100   }
   9101 
   9102   for (const SCEV *&Term : Terms) {
   9103     // Normalize the terms before the next call to findArrayDimensionsRec.
   9104     const SCEV *Q, *R;
   9105     SCEVDivision::divide(SE, Term, Step, &Q, &R);
   9106 
   9107     // Bail out when GCD does not evenly divide one of the terms.
   9108     if (!R->isZero())
   9109       return false;
   9110 
   9111     Term = Q;
   9112   }
   9113 
   9114   // Remove all SCEVConstants.
   9115   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
   9116                 return isa<SCEVConstant>(E);
   9117               }),
   9118               Terms.end());
   9119 
   9120   if (Terms.size() > 0)
   9121     if (!findArrayDimensionsRec(SE, Terms, Sizes))
   9122       return false;
   9123 
   9124   Sizes.push_back(Step);
   9125   return true;
   9126 }
   9127 
   9128 // Returns true when S contains at least a SCEVUnknown parameter.
   9129 static inline bool
   9130 containsParameters(const SCEV *S) {
   9131   struct FindParameter {
   9132     bool FoundParameter;
   9133     FindParameter() : FoundParameter(false) {}
   9134 
   9135     bool follow(const SCEV *S) {
   9136       if (isa<SCEVUnknown>(S)) {
   9137         FoundParameter = true;
   9138         // Stop recursion: we found a parameter.
   9139         return false;
   9140       }
   9141       // Keep looking.
   9142       return true;
   9143     }
   9144     bool isDone() const {
   9145       // Stop recursion if we have found a parameter.
   9146       return FoundParameter;
   9147     }
   9148   };
   9149 
   9150   FindParameter F;
   9151   SCEVTraversal<FindParameter> ST(F);
   9152   ST.visitAll(S);
   9153 
   9154   return F.FoundParameter;
   9155 }
   9156 
   9157 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
   9158 static inline bool
   9159 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
   9160   for (const SCEV *T : Terms)
   9161     if (containsParameters(T))
   9162       return true;
   9163   return false;
   9164 }
   9165 
   9166 // Return the number of product terms in S.
   9167 static inline int numberOfTerms(const SCEV *S) {
   9168   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
   9169     return Expr->getNumOperands();
   9170   return 1;
   9171 }
   9172 
   9173 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
   9174   if (isa<SCEVConstant>(T))
   9175     return nullptr;
   9176 
   9177   if (isa<SCEVUnknown>(T))
   9178     return T;
   9179 
   9180   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
   9181     SmallVector<const SCEV *, 2> Factors;
   9182     for (const SCEV *Op : M->operands())
   9183       if (!isa<SCEVConstant>(Op))
   9184         Factors.push_back(Op);
   9185 
   9186     return SE.getMulExpr(Factors);
   9187   }
   9188 
   9189   return T;
   9190 }
   9191 
   9192 /// Return the size of an element read or written by Inst.
   9193 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
   9194   Type *Ty;
   9195   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
   9196     Ty = Store->getValueOperand()->getType();
   9197   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
   9198     Ty = Load->getType();
   9199   else
   9200     return nullptr;
   9201 
   9202   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
   9203   return getSizeOfExpr(ETy, Ty);
   9204 }
   9205 
   9206 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   9207                                           SmallVectorImpl<const SCEV *> &Sizes,
   9208                                           const SCEV *ElementSize) const {
   9209   if (Terms.size() < 1 || !ElementSize)
   9210     return;
   9211 
   9212   // Early return when Terms do not contain parameters: we do not delinearize
   9213   // non parametric SCEVs.
   9214   if (!containsParameters(Terms))
   9215     return;
   9216 
   9217   DEBUG({
   9218       dbgs() << "Terms:\n";
   9219       for (const SCEV *T : Terms)
   9220         dbgs() << *T << "\n";
   9221     });
   9222 
   9223   // Remove duplicates.
   9224   std::sort(Terms.begin(), Terms.end());
   9225   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
   9226 
   9227   // Put larger terms first.
   9228   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
   9229     return numberOfTerms(LHS) > numberOfTerms(RHS);
   9230   });
   9231 
   9232   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   9233 
   9234   // Try to divide all terms by the element size. If term is not divisible by
   9235   // element size, proceed with the original term.
   9236   for (const SCEV *&Term : Terms) {
   9237     const SCEV *Q, *R;
   9238     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
   9239     if (!Q->isZero())
   9240       Term = Q;
   9241   }
   9242 
   9243   SmallVector<const SCEV *, 4> NewTerms;
   9244 
   9245   // Remove constant factors.
   9246   for (const SCEV *T : Terms)
   9247     if (const SCEV *NewT = removeConstantFactors(SE, T))
   9248       NewTerms.push_back(NewT);
   9249 
   9250   DEBUG({
   9251       dbgs() << "Terms after sorting:\n";
   9252       for (const SCEV *T : NewTerms)
   9253         dbgs() << *T << "\n";
   9254     });
   9255 
   9256   if (NewTerms.empty() ||
   9257       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
   9258     Sizes.clear();
   9259     return;
   9260   }
   9261 
   9262   // The last element to be pushed into Sizes is the size of an element.
   9263   Sizes.push_back(ElementSize);
   9264 
   9265   DEBUG({
   9266       dbgs() << "Sizes:\n";
   9267       for (const SCEV *S : Sizes)
   9268         dbgs() << *S << "\n";
   9269     });
   9270 }
   9271 
   9272 void ScalarEvolution::computeAccessFunctions(
   9273     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
   9274     SmallVectorImpl<const SCEV *> &Sizes) {
   9275 
   9276   // Early exit in case this SCEV is not an affine multivariate function.
   9277   if (Sizes.empty())
   9278     return;
   9279 
   9280   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
   9281     if (!AR->isAffine())
   9282       return;
   9283 
   9284   const SCEV *Res = Expr;
   9285   int Last = Sizes.size() - 1;
   9286   for (int i = Last; i >= 0; i--) {
   9287     const SCEV *Q, *R;
   9288     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
   9289 
   9290     DEBUG({
   9291         dbgs() << "Res: " << *Res << "\n";
   9292         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
   9293         dbgs() << "Res divided by Sizes[i]:\n";
   9294         dbgs() << "Quotient: " << *Q << "\n";
   9295         dbgs() << "Remainder: " << *R << "\n";
   9296       });
   9297 
   9298     Res = Q;
   9299 
   9300     // Do not record the last subscript corresponding to the size of elements in
   9301     // the array.
   9302     if (i == Last) {
   9303 
   9304       // Bail out if the remainder is too complex.
   9305       if (isa<SCEVAddRecExpr>(R)) {
   9306         Subscripts.clear();
   9307         Sizes.clear();
   9308         return;
   9309       }
   9310 
   9311       continue;
   9312     }
   9313 
   9314     // Record the access function for the current subscript.
   9315     Subscripts.push_back(R);
   9316   }
   9317 
   9318   // Also push in last position the remainder of the last division: it will be
   9319   // the access function of the innermost dimension.
   9320   Subscripts.push_back(Res);
   9321 
   9322   std::reverse(Subscripts.begin(), Subscripts.end());
   9323 
   9324   DEBUG({
   9325       dbgs() << "Subscripts:\n";
   9326       for (const SCEV *S : Subscripts)
   9327         dbgs() << *S << "\n";
   9328     });
   9329 }
   9330 
   9331 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
   9332 /// sizes of an array access. Returns the remainder of the delinearization that
   9333 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
   9334 /// the multiples of SCEV coefficients: that is a pattern matching of sub
   9335 /// expressions in the stride and base of a SCEV corresponding to the
   9336 /// computation of a GCD (greatest common divisor) of base and stride.  When
   9337 /// SCEV->delinearize fails, it returns the SCEV unchanged.
   9338 ///
   9339 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
   9340 ///
   9341 ///  void foo(long n, long m, long o, double A[n][m][o]) {
   9342 ///
   9343 ///    for (long i = 0; i < n; i++)
   9344 ///      for (long j = 0; j < m; j++)
   9345 ///        for (long k = 0; k < o; k++)
   9346 ///          A[i][j][k] = 1.0;
   9347 ///  }
   9348 ///
   9349 /// the delinearization input is the following AddRec SCEV:
   9350 ///
   9351 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
   9352 ///
   9353 /// From this SCEV, we are able to say that the base offset of the access is %A
   9354 /// because it appears as an offset that does not divide any of the strides in
   9355 /// the loops:
   9356 ///
   9357 ///  CHECK: Base offset: %A
   9358 ///
   9359 /// and then SCEV->delinearize determines the size of some of the dimensions of
   9360 /// the array as these are the multiples by which the strides are happening:
   9361 ///
   9362 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
   9363 ///
   9364 /// Note that the outermost dimension remains of UnknownSize because there are
   9365 /// no strides that would help identifying the size of the last dimension: when
   9366 /// the array has been statically allocated, one could compute the size of that
   9367 /// dimension by dividing the overall size of the array by the size of the known
   9368 /// dimensions: %m * %o * 8.
   9369 ///
   9370 /// Finally delinearize provides the access functions for the array reference
   9371 /// that does correspond to A[i][j][k] of the above C testcase:
   9372 ///
   9373 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
   9374 ///
   9375 /// The testcases are checking the output of a function pass:
   9376 /// DelinearizationPass that walks through all loads and stores of a function
   9377 /// asking for the SCEV of the memory access with respect to all enclosing
   9378 /// loops, calling SCEV->delinearize on that and printing the results.
   9379 
   9380 void ScalarEvolution::delinearize(const SCEV *Expr,
   9381                                  SmallVectorImpl<const SCEV *> &Subscripts,
   9382                                  SmallVectorImpl<const SCEV *> &Sizes,
   9383                                  const SCEV *ElementSize) {
   9384   // First step: collect parametric terms.
   9385   SmallVector<const SCEV *, 4> Terms;
   9386   collectParametricTerms(Expr, Terms);
   9387 
   9388   if (Terms.empty())
   9389     return;
   9390 
   9391   // Second step: find subscript sizes.
   9392   findArrayDimensions(Terms, Sizes, ElementSize);
   9393 
   9394   if (Sizes.empty())
   9395     return;
   9396 
   9397   // Third step: compute the access functions for each subscript.
   9398   computeAccessFunctions(Expr, Subscripts, Sizes);
   9399 
   9400   if (Subscripts.empty())
   9401     return;
   9402 
   9403   DEBUG({
   9404       dbgs() << "succeeded to delinearize " << *Expr << "\n";
   9405       dbgs() << "ArrayDecl[UnknownSize]";
   9406       for (const SCEV *S : Sizes)
   9407         dbgs() << "[" << *S << "]";
   9408 
   9409       dbgs() << "\nArrayRef";
   9410       for (const SCEV *S : Subscripts)
   9411         dbgs() << "[" << *S << "]";
   9412       dbgs() << "\n";
   9413     });
   9414 }
   9415 
   9416 //===----------------------------------------------------------------------===//
   9417 //                   SCEVCallbackVH Class Implementation
   9418 //===----------------------------------------------------------------------===//
   9419 
   9420 void ScalarEvolution::SCEVCallbackVH::deleted() {
   9421   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   9422   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   9423     SE->ConstantEvolutionLoopExitValue.erase(PN);
   9424   SE->eraseValueFromMap(getValPtr());
   9425   // this now dangles!
   9426 }
   9427 
   9428 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   9429   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   9430 
   9431   // Forget all the expressions associated with users of the old value,
   9432   // so that future queries will recompute the expressions using the new
   9433   // value.
   9434   Value *Old = getValPtr();
   9435   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
   9436   SmallPtrSet<User *, 8> Visited;
   9437   while (!Worklist.empty()) {
   9438     User *U = Worklist.pop_back_val();
   9439     // Deleting the Old value will cause this to dangle. Postpone
   9440     // that until everything else is done.
   9441     if (U == Old)
   9442       continue;
   9443     if (!Visited.insert(U).second)
   9444       continue;
   9445     if (PHINode *PN = dyn_cast<PHINode>(U))
   9446       SE->ConstantEvolutionLoopExitValue.erase(PN);
   9447     SE->eraseValueFromMap(U);
   9448     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
   9449   }
   9450   // Delete the Old value.
   9451   if (PHINode *PN = dyn_cast<PHINode>(Old))
   9452     SE->ConstantEvolutionLoopExitValue.erase(PN);
   9453   SE->eraseValueFromMap(Old);
   9454   // this now dangles!
   9455 }
   9456 
   9457 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   9458   : CallbackVH(V), SE(se) {}
   9459 
   9460 //===----------------------------------------------------------------------===//
   9461 //                   ScalarEvolution Class Implementation
   9462 //===----------------------------------------------------------------------===//
   9463 
   9464 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
   9465                                  AssumptionCache &AC, DominatorTree &DT,
   9466                                  LoopInfo &LI)
   9467     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
   9468       CouldNotCompute(new SCEVCouldNotCompute()),
   9469       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
   9470       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
   9471       FirstUnknown(nullptr) {
   9472 
   9473   // To use guards for proving predicates, we need to scan every instruction in
   9474   // relevant basic blocks, and not just terminators.  Doing this is a waste of
   9475   // time if the IR does not actually contain any calls to
   9476   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
   9477   //
   9478   // This pessimizes the case where a pass that preserves ScalarEvolution wants
   9479   // to _add_ guards to the module when there weren't any before, and wants
   9480   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
   9481   // efficient in lieu of being smart in that rather obscure case.
   9482 
   9483   auto *GuardDecl = F.getParent()->getFunction(
   9484       Intrinsic::getName(Intrinsic::experimental_guard));
   9485   HasGuards = GuardDecl && !GuardDecl->use_empty();
   9486 }
   9487 
   9488 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
   9489     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
   9490       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
   9491       ValueExprMap(std::move(Arg.ValueExprMap)),
   9492       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
   9493       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
   9494       PredicatedBackedgeTakenCounts(
   9495           std::move(Arg.PredicatedBackedgeTakenCounts)),
   9496       ConstantEvolutionLoopExitValue(
   9497           std::move(Arg.ConstantEvolutionLoopExitValue)),
   9498       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
   9499       LoopDispositions(std::move(Arg.LoopDispositions)),
   9500       BlockDispositions(std::move(Arg.BlockDispositions)),
   9501       UnsignedRanges(std::move(Arg.UnsignedRanges)),
   9502       SignedRanges(std::move(Arg.SignedRanges)),
   9503       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
   9504       UniquePreds(std::move(Arg.UniquePreds)),
   9505       SCEVAllocator(std::move(Arg.SCEVAllocator)),
   9506       FirstUnknown(Arg.FirstUnknown) {
   9507   Arg.FirstUnknown = nullptr;
   9508 }
   9509 
   9510 ScalarEvolution::~ScalarEvolution() {
   9511   // Iterate through all the SCEVUnknown instances and call their
   9512   // destructors, so that they release their references to their values.
   9513   for (SCEVUnknown *U = FirstUnknown; U;) {
   9514     SCEVUnknown *Tmp = U;
   9515     U = U->Next;
   9516     Tmp->~SCEVUnknown();
   9517   }
   9518   FirstUnknown = nullptr;
   9519 
   9520   ExprValueMap.clear();
   9521   ValueExprMap.clear();
   9522   HasRecMap.clear();
   9523 
   9524   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   9525   // that a loop had multiple computable exits.
   9526   for (auto &BTCI : BackedgeTakenCounts)
   9527     BTCI.second.clear();
   9528   for (auto &BTCI : PredicatedBackedgeTakenCounts)
   9529     BTCI.second.clear();
   9530 
   9531   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
   9532   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
   9533   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
   9534 }
   9535 
   9536 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   9537   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   9538 }
   9539 
   9540 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   9541                           const Loop *L) {
   9542   // Print all inner loops first
   9543   for (Loop *I : *L)
   9544     PrintLoopInfo(OS, SE, I);
   9545 
   9546   OS << "Loop ";
   9547   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9548   OS << ": ";
   9549 
   9550   SmallVector<BasicBlock *, 8> ExitBlocks;
   9551   L->getExitBlocks(ExitBlocks);
   9552   if (ExitBlocks.size() != 1)
   9553     OS << "<multiple exits> ";
   9554 
   9555   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   9556     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   9557   } else {
   9558     OS << "Unpredictable backedge-taken count. ";
   9559   }
   9560 
   9561   OS << "\n"
   9562         "Loop ";
   9563   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9564   OS << ": ";
   9565 
   9566   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   9567     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   9568   } else {
   9569     OS << "Unpredictable max backedge-taken count. ";
   9570   }
   9571 
   9572   OS << "\n"
   9573         "Loop ";
   9574   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9575   OS << ": ";
   9576 
   9577   SCEVUnionPredicate Pred;
   9578   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
   9579   if (!isa<SCEVCouldNotCompute>(PBT)) {
   9580     OS << "Predicated backedge-taken count is " << *PBT << "\n";
   9581     OS << " Predicates:\n";
   9582     Pred.print(OS, 4);
   9583   } else {
   9584     OS << "Unpredictable predicated backedge-taken count. ";
   9585   }
   9586   OS << "\n";
   9587 }
   9588 
   9589 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
   9590   switch (LD) {
   9591   case ScalarEvolution::LoopVariant:
   9592     return "Variant";
   9593   case ScalarEvolution::LoopInvariant:
   9594     return "Invariant";
   9595   case ScalarEvolution::LoopComputable:
   9596     return "Computable";
   9597   }
   9598   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
   9599 }
   9600 
   9601 void ScalarEvolution::print(raw_ostream &OS) const {
   9602   // ScalarEvolution's implementation of the print method is to print
   9603   // out SCEV values of all instructions that are interesting. Doing
   9604   // this potentially causes it to create new SCEV objects though,
   9605   // which technically conflicts with the const qualifier. This isn't
   9606   // observable from outside the class though, so casting away the
   9607   // const isn't dangerous.
   9608   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   9609 
   9610   OS << "Classifying expressions for: ";
   9611   F.printAsOperand(OS, /*PrintType=*/false);
   9612   OS << "\n";
   9613   for (Instruction &I : instructions(F))
   9614     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
   9615       OS << I << '\n';
   9616       OS << "  -->  ";
   9617       const SCEV *SV = SE.getSCEV(&I);
   9618       SV->print(OS);
   9619       if (!isa<SCEVCouldNotCompute>(SV)) {
   9620         OS << " U: ";
   9621         SE.getUnsignedRange(SV).print(OS);
   9622         OS << " S: ";
   9623         SE.getSignedRange(SV).print(OS);
   9624       }
   9625 
   9626       const Loop *L = LI.getLoopFor(I.getParent());
   9627 
   9628       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   9629       if (AtUse != SV) {
   9630         OS << "  -->  ";
   9631         AtUse->print(OS);
   9632         if (!isa<SCEVCouldNotCompute>(AtUse)) {
   9633           OS << " U: ";
   9634           SE.getUnsignedRange(AtUse).print(OS);
   9635           OS << " S: ";
   9636           SE.getSignedRange(AtUse).print(OS);
   9637         }
   9638       }
   9639 
   9640       if (L) {
   9641         OS << "\t\t" "Exits: ";
   9642         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   9643         if (!SE.isLoopInvariant(ExitValue, L)) {
   9644           OS << "<<Unknown>>";
   9645         } else {
   9646           OS << *ExitValue;
   9647         }
   9648 
   9649         bool First = true;
   9650         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
   9651           if (First) {
   9652             OS << "\t\t" "LoopDispositions: { ";
   9653             First = false;
   9654           } else {
   9655             OS << ", ";
   9656           }
   9657 
   9658           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9659           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
   9660         }
   9661 
   9662         for (auto *InnerL : depth_first(L)) {
   9663           if (InnerL == L)
   9664             continue;
   9665           if (First) {
   9666             OS << "\t\t" "LoopDispositions: { ";
   9667             First = false;
   9668           } else {
   9669             OS << ", ";
   9670           }
   9671 
   9672           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   9673           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
   9674         }
   9675 
   9676         OS << " }";
   9677       }
   9678 
   9679       OS << "\n";
   9680     }
   9681 
   9682   OS << "Determining loop execution counts for: ";
   9683   F.printAsOperand(OS, /*PrintType=*/false);
   9684   OS << "\n";
   9685   for (Loop *I : LI)
   9686     PrintLoopInfo(OS, &SE, I);
   9687 }
   9688 
   9689 ScalarEvolution::LoopDisposition
   9690 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   9691   auto &Values = LoopDispositions[S];
   9692   for (auto &V : Values) {
   9693     if (V.getPointer() == L)
   9694       return V.getInt();
   9695   }
   9696   Values.emplace_back(L, LoopVariant);
   9697   LoopDisposition D = computeLoopDisposition(S, L);
   9698   auto &Values2 = LoopDispositions[S];
   9699   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   9700     if (V.getPointer() == L) {
   9701       V.setInt(D);
   9702       break;
   9703     }
   9704   }
   9705   return D;
   9706 }
   9707 
   9708 ScalarEvolution::LoopDisposition
   9709 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   9710   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   9711   case scConstant:
   9712     return LoopInvariant;
   9713   case scTruncate:
   9714   case scZeroExtend:
   9715   case scSignExtend:
   9716     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   9717   case scAddRecExpr: {
   9718     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   9719 
   9720     // If L is the addrec's loop, it's computable.
   9721     if (AR->getLoop() == L)
   9722       return LoopComputable;
   9723 
   9724     // Add recurrences are never invariant in the function-body (null loop).
   9725     if (!L)
   9726       return LoopVariant;
   9727 
   9728     // This recurrence is variant w.r.t. L if L contains AR's loop.
   9729     if (L->contains(AR->getLoop()))
   9730       return LoopVariant;
   9731 
   9732     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   9733     if (AR->getLoop()->contains(L))
   9734       return LoopInvariant;
   9735 
   9736     // This recurrence is variant w.r.t. L if any of its operands
   9737     // are variant.
   9738     for (auto *Op : AR->operands())
   9739       if (!isLoopInvariant(Op, L))
   9740         return LoopVariant;
   9741 
   9742     // Otherwise it's loop-invariant.
   9743     return LoopInvariant;
   9744   }
   9745   case scAddExpr:
   9746   case scMulExpr:
   9747   case scUMaxExpr:
   9748   case scSMaxExpr: {
   9749     bool HasVarying = false;
   9750     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
   9751       LoopDisposition D = getLoopDisposition(Op, L);
   9752       if (D == LoopVariant)
   9753         return LoopVariant;
   9754       if (D == LoopComputable)
   9755         HasVarying = true;
   9756     }
   9757     return HasVarying ? LoopComputable : LoopInvariant;
   9758   }
   9759   case scUDivExpr: {
   9760     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   9761     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   9762     if (LD == LoopVariant)
   9763       return LoopVariant;
   9764     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   9765     if (RD == LoopVariant)
   9766       return LoopVariant;
   9767     return (LD == LoopInvariant && RD == LoopInvariant) ?
   9768            LoopInvariant : LoopComputable;
   9769   }
   9770   case scUnknown:
   9771     // All non-instruction values are loop invariant.  All instructions are loop
   9772     // invariant if they are not contained in the specified loop.
   9773     // Instructions are never considered invariant in the function body
   9774     // (null loop) because they are defined within the "loop".
   9775     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   9776       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   9777     return LoopInvariant;
   9778   case scCouldNotCompute:
   9779     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   9780   }
   9781   llvm_unreachable("Unknown SCEV kind!");
   9782 }
   9783 
   9784 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   9785   return getLoopDisposition(S, L) == LoopInvariant;
   9786 }
   9787 
   9788 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   9789   return getLoopDisposition(S, L) == LoopComputable;
   9790 }
   9791 
   9792 ScalarEvolution::BlockDisposition
   9793 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   9794   auto &Values = BlockDispositions[S];
   9795   for (auto &V : Values) {
   9796     if (V.getPointer() == BB)
   9797       return V.getInt();
   9798   }
   9799   Values.emplace_back(BB, DoesNotDominateBlock);
   9800   BlockDisposition D = computeBlockDisposition(S, BB);
   9801   auto &Values2 = BlockDispositions[S];
   9802   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
   9803     if (V.getPointer() == BB) {
   9804       V.setInt(D);
   9805       break;
   9806     }
   9807   }
   9808   return D;
   9809 }
   9810 
   9811 ScalarEvolution::BlockDisposition
   9812 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   9813   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
   9814   case scConstant:
   9815     return ProperlyDominatesBlock;
   9816   case scTruncate:
   9817   case scZeroExtend:
   9818   case scSignExtend:
   9819     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   9820   case scAddRecExpr: {
   9821     // This uses a "dominates" query instead of "properly dominates" query
   9822     // to test for proper dominance too, because the instruction which
   9823     // produces the addrec's value is a PHI, and a PHI effectively properly
   9824     // dominates its entire containing block.
   9825     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   9826     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
   9827       return DoesNotDominateBlock;
   9828   }
   9829   // FALL THROUGH into SCEVNAryExpr handling.
   9830   case scAddExpr:
   9831   case scMulExpr:
   9832   case scUMaxExpr:
   9833   case scSMaxExpr: {
   9834     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   9835     bool Proper = true;
   9836     for (const SCEV *NAryOp : NAry->operands()) {
   9837       BlockDisposition D = getBlockDisposition(NAryOp, BB);
   9838       if (D == DoesNotDominateBlock)
   9839         return DoesNotDominateBlock;
   9840       if (D == DominatesBlock)
   9841         Proper = false;
   9842     }
   9843     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   9844   }
   9845   case scUDivExpr: {
   9846     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   9847     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   9848     BlockDisposition LD = getBlockDisposition(LHS, BB);
   9849     if (LD == DoesNotDominateBlock)
   9850       return DoesNotDominateBlock;
   9851     BlockDisposition RD = getBlockDisposition(RHS, BB);
   9852     if (RD == DoesNotDominateBlock)
   9853       return DoesNotDominateBlock;
   9854     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   9855       ProperlyDominatesBlock : DominatesBlock;
   9856   }
   9857   case scUnknown:
   9858     if (Instruction *I =
   9859           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   9860       if (I->getParent() == BB)
   9861         return DominatesBlock;
   9862       if (DT.properlyDominates(I->getParent(), BB))
   9863         return ProperlyDominatesBlock;
   9864       return DoesNotDominateBlock;
   9865     }
   9866     return ProperlyDominatesBlock;
   9867   case scCouldNotCompute:
   9868     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   9869   }
   9870   llvm_unreachable("Unknown SCEV kind!");
   9871 }
   9872 
   9873 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   9874   return getBlockDisposition(S, BB) >= DominatesBlock;
   9875 }
   9876 
   9877 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   9878   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   9879 }
   9880 
   9881 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   9882   // Search for a SCEV expression node within an expression tree.
   9883   // Implements SCEVTraversal::Visitor.
   9884   struct SCEVSearch {
   9885     const SCEV *Node;
   9886     bool IsFound;
   9887 
   9888     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
   9889 
   9890     bool follow(const SCEV *S) {
   9891       IsFound |= (S == Node);
   9892       return !IsFound;
   9893     }
   9894     bool isDone() const { return IsFound; }
   9895   };
   9896 
   9897   SCEVSearch Search(Op);
   9898   visitAll(S, Search);
   9899   return Search.IsFound;
   9900 }
   9901 
   9902 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   9903   ValuesAtScopes.erase(S);
   9904   LoopDispositions.erase(S);
   9905   BlockDispositions.erase(S);
   9906   UnsignedRanges.erase(S);
   9907   SignedRanges.erase(S);
   9908   ExprValueMap.erase(S);
   9909   HasRecMap.erase(S);
   9910 
   9911   auto RemoveSCEVFromBackedgeMap =
   9912       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
   9913         for (auto I = Map.begin(), E = Map.end(); I != E;) {
   9914           BackedgeTakenInfo &BEInfo = I->second;
   9915           if (BEInfo.hasOperand(S, this)) {
   9916             BEInfo.clear();
   9917             Map.erase(I++);
   9918           } else
   9919             ++I;
   9920         }
   9921       };
   9922 
   9923   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
   9924   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
   9925 }
   9926 
   9927 typedef DenseMap<const Loop *, std::string> VerifyMap;
   9928 
   9929 /// replaceSubString - Replaces all occurrences of From in Str with To.
   9930 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
   9931   size_t Pos = 0;
   9932   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
   9933     Str.replace(Pos, From.size(), To.data(), To.size());
   9934     Pos += To.size();
   9935   }
   9936 }
   9937 
   9938 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
   9939 static void
   9940 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
   9941   std::string &S = Map[L];
   9942   if (S.empty()) {
   9943     raw_string_ostream OS(S);
   9944     SE.getBackedgeTakenCount(L)->print(OS);
   9945 
   9946     // false and 0 are semantically equivalent. This can happen in dead loops.
   9947     replaceSubString(OS.str(), "false", "0");
   9948     // Remove wrap flags, their use in SCEV is highly fragile.
   9949     // FIXME: Remove this when SCEV gets smarter about them.
   9950     replaceSubString(OS.str(), "<nw>", "");
   9951     replaceSubString(OS.str(), "<nsw>", "");
   9952     replaceSubString(OS.str(), "<nuw>", "");
   9953   }
   9954 
   9955   for (auto *R : reverse(*L))
   9956     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
   9957 }
   9958 
   9959 void ScalarEvolution::verify() const {
   9960   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   9961 
   9962   // Gather stringified backedge taken counts for all loops using SCEV's caches.
   9963   // FIXME: It would be much better to store actual values instead of strings,
   9964   //        but SCEV pointers will change if we drop the caches.
   9965   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
   9966   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
   9967     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
   9968 
   9969   // Gather stringified backedge taken counts for all loops using a fresh
   9970   // ScalarEvolution object.
   9971   ScalarEvolution SE2(F, TLI, AC, DT, LI);
   9972   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
   9973     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
   9974 
   9975   // Now compare whether they're the same with and without caches. This allows
   9976   // verifying that no pass changed the cache.
   9977   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
   9978          "New loops suddenly appeared!");
   9979 
   9980   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
   9981                            OldE = BackedgeDumpsOld.end(),
   9982                            NewI = BackedgeDumpsNew.begin();
   9983        OldI != OldE; ++OldI, ++NewI) {
   9984     assert(OldI->first == NewI->first && "Loop order changed!");
   9985 
   9986     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
   9987     // changes.
   9988     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
   9989     // means that a pass is buggy or SCEV has to learn a new pattern but is
   9990     // usually not harmful.
   9991     if (OldI->second != NewI->second &&
   9992         OldI->second.find("undef") == std::string::npos &&
   9993         NewI->second.find("undef") == std::string::npos &&
   9994         OldI->second != "***COULDNOTCOMPUTE***" &&
   9995         NewI->second != "***COULDNOTCOMPUTE***") {
   9996       dbgs() << "SCEVValidator: SCEV for loop '"
   9997              << OldI->first->getHeader()->getName()
   9998              << "' changed from '" << OldI->second
   9999              << "' to '" << NewI->second << "'!\n";
   10000       std::abort();
   10001     }
   10002   }
   10003 
   10004   // TODO: Verify more things.
   10005 }
   10006 
   10007 char ScalarEvolutionAnalysis::PassID;
   10008 
   10009 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
   10010                                              AnalysisManager<Function> &AM) {
   10011   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
   10012                          AM.getResult<AssumptionAnalysis>(F),
   10013                          AM.getResult<DominatorTreeAnalysis>(F),
   10014                          AM.getResult<LoopAnalysis>(F));
   10015 }
   10016 
   10017 PreservedAnalyses
   10018 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
   10019   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
   10020   return PreservedAnalyses::all();
   10021 }
   10022 
   10023 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
   10024                       "Scalar Evolution Analysis", false, true)
   10025 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   10026 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   10027 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   10028 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   10029 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
   10030                     "Scalar Evolution Analysis", false, true)
   10031 char ScalarEvolutionWrapperPass::ID = 0;
   10032 
   10033 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
   10034   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
   10035 }
   10036 
   10037 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
   10038   SE.reset(new ScalarEvolution(
   10039       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   10040       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
   10041       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
   10042       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
   10043   return false;
   10044 }
   10045 
   10046 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
   10047 
   10048 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
   10049   SE->print(OS);
   10050 }
   10051 
   10052 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
   10053   if (!VerifySCEV)
   10054     return;
   10055 
   10056   SE->verify();
   10057 }
   10058 
   10059 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   10060   AU.setPreservesAll();
   10061   AU.addRequiredTransitive<AssumptionCacheTracker>();
   10062   AU.addRequiredTransitive<LoopInfoWrapperPass>();
   10063   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
   10064   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
   10065 }
   10066 
   10067 const SCEVPredicate *
   10068 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
   10069                                    const SCEVConstant *RHS) {
   10070   FoldingSetNodeID ID;
   10071   // Unique this node based on the arguments
   10072   ID.AddInteger(SCEVPredicate::P_Equal);
   10073   ID.AddPointer(LHS);
   10074   ID.AddPointer(RHS);
   10075   void *IP = nullptr;
   10076   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
   10077     return S;
   10078   SCEVEqualPredicate *Eq = new (SCEVAllocator)
   10079       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
   10080   UniquePreds.InsertNode(Eq, IP);
   10081   return Eq;
   10082 }
   10083 
   10084 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
   10085     const SCEVAddRecExpr *AR,
   10086     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
   10087   FoldingSetNodeID ID;
   10088   // Unique this node based on the arguments
   10089   ID.AddInteger(SCEVPredicate::P_Wrap);
   10090   ID.AddPointer(AR);
   10091   ID.AddInteger(AddedFlags);
   10092   void *IP = nullptr;
   10093   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
   10094     return S;
   10095   auto *OF = new (SCEVAllocator)
   10096       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
   10097   UniquePreds.InsertNode(OF, IP);
   10098   return OF;
   10099 }
   10100 
   10101 namespace {
   10102 
   10103 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
   10104 public:
   10105   // Rewrites \p S in the context of a loop L and the predicate A.
   10106   // If Assume is true, rewrite is free to add further predicates to A
   10107   // such that the result will be an AddRecExpr.
   10108   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
   10109                              SCEVUnionPredicate &A, bool Assume) {
   10110     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
   10111     return Rewriter.visit(S);
   10112   }
   10113 
   10114   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
   10115                         SCEVUnionPredicate &P, bool Assume)
   10116       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
   10117 
   10118   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
   10119     auto ExprPreds = P.getPredicatesForExpr(Expr);
   10120     for (auto *Pred : ExprPreds)
   10121       if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
   10122         if (IPred->getLHS() == Expr)
   10123           return IPred->getRHS();
   10124 
   10125     return Expr;
   10126   }
   10127 
   10128   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
   10129     const SCEV *Operand = visit(Expr->getOperand());
   10130     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
   10131     if (AR && AR->getLoop() == L && AR->isAffine()) {
   10132       // This couldn't be folded because the operand didn't have the nuw
   10133       // flag. Add the nusw flag as an assumption that we could make.
   10134       const SCEV *Step = AR->getStepRecurrence(SE);
   10135       Type *Ty = Expr->getType();
   10136       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
   10137         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
   10138                                 SE.getSignExtendExpr(Step, Ty), L,
   10139                                 AR->getNoWrapFlags());
   10140     }
   10141     return SE.getZeroExtendExpr(Operand, Expr->getType());
   10142   }
   10143 
   10144   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
   10145     const SCEV *Operand = visit(Expr->getOperand());
   10146     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
   10147     if (AR && AR->getLoop() == L && AR->isAffine()) {
   10148       // This couldn't be folded because the operand didn't have the nsw
   10149       // flag. Add the nssw flag as an assumption that we could make.
   10150       const SCEV *Step = AR->getStepRecurrence(SE);
   10151       Type *Ty = Expr->getType();
   10152       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
   10153         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
   10154                                 SE.getSignExtendExpr(Step, Ty), L,
   10155                                 AR->getNoWrapFlags());
   10156     }
   10157     return SE.getSignExtendExpr(Operand, Expr->getType());
   10158   }
   10159 
   10160 private:
   10161   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
   10162                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
   10163     auto *A = SE.getWrapPredicate(AR, AddedFlags);
   10164     if (!Assume) {
   10165       // Check if we've already made this assumption.
   10166       if (P.implies(A))
   10167         return true;
   10168       return false;
   10169     }
   10170     P.add(A);
   10171     return true;
   10172   }
   10173 
   10174   SCEVUnionPredicate &P;
   10175   const Loop *L;
   10176   bool Assume;
   10177 };
   10178 } // end anonymous namespace
   10179 
   10180 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
   10181                                                    SCEVUnionPredicate &Preds) {
   10182   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
   10183 }
   10184 
   10185 const SCEVAddRecExpr *
   10186 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
   10187                                                    SCEVUnionPredicate &Preds) {
   10188   SCEVUnionPredicate TransformPreds;
   10189   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
   10190   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
   10191 
   10192   if (!AddRec)
   10193     return nullptr;
   10194 
   10195   // Since the transformation was successful, we can now transfer the SCEV
   10196   // predicates.
   10197   Preds.add(&TransformPreds);
   10198   return AddRec;
   10199 }
   10200 
   10201 /// SCEV predicates
   10202 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
   10203                              SCEVPredicateKind Kind)
   10204     : FastID(ID), Kind(Kind) {}
   10205 
   10206 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
   10207                                        const SCEVUnknown *LHS,
   10208                                        const SCEVConstant *RHS)
   10209     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
   10210 
   10211 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
   10212   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
   10213 
   10214   if (!Op)
   10215     return false;
   10216 
   10217   return Op->LHS == LHS && Op->RHS == RHS;
   10218 }
   10219 
   10220 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
   10221 
   10222 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
   10223 
   10224 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
   10225   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
   10226 }
   10227 
   10228 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
   10229                                      const SCEVAddRecExpr *AR,
   10230                                      IncrementWrapFlags Flags)
   10231     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
   10232 
   10233 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
   10234 
   10235 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
   10236   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
   10237 
   10238   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
   10239 }
   10240 
   10241 bool SCEVWrapPredicate::isAlwaysTrue() const {
   10242   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
   10243   IncrementWrapFlags IFlags = Flags;
   10244 
   10245   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
   10246     IFlags = clearFlags(IFlags, IncrementNSSW);
   10247 
   10248   return IFlags == IncrementAnyWrap;
   10249 }
   10250 
   10251 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
   10252   OS.indent(Depth) << *getExpr() << " Added Flags: ";
   10253   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
   10254     OS << "<nusw>";
   10255   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
   10256     OS << "<nssw>";
   10257   OS << "\n";
   10258 }
   10259 
   10260 SCEVWrapPredicate::IncrementWrapFlags
   10261 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
   10262                                    ScalarEvolution &SE) {
   10263   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
   10264   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
   10265 
   10266   // We can safely transfer the NSW flag as NSSW.
   10267   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
   10268     ImpliedFlags = IncrementNSSW;
   10269 
   10270   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
   10271     // If the increment is positive, the SCEV NUW flag will also imply the
   10272     // WrapPredicate NUSW flag.
   10273     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
   10274       if (Step->getValue()->getValue().isNonNegative())
   10275         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
   10276   }
   10277 
   10278   return ImpliedFlags;
   10279 }
   10280 
   10281 /// Union predicates don't get cached so create a dummy set ID for it.
   10282 SCEVUnionPredicate::SCEVUnionPredicate()
   10283     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
   10284 
   10285 bool SCEVUnionPredicate::isAlwaysTrue() const {
   10286   return all_of(Preds,
   10287                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
   10288 }
   10289 
   10290 ArrayRef<const SCEVPredicate *>
   10291 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
   10292   auto I = SCEVToPreds.find(Expr);
   10293   if (I == SCEVToPreds.end())
   10294     return ArrayRef<const SCEVPredicate *>();
   10295   return I->second;
   10296 }
   10297 
   10298 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
   10299   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
   10300     return all_of(Set->Preds,
   10301                   [this](const SCEVPredicate *I) { return this->implies(I); });
   10302 
   10303   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
   10304   if (ScevPredsIt == SCEVToPreds.end())
   10305     return false;
   10306   auto &SCEVPreds = ScevPredsIt->second;
   10307 
   10308   return any_of(SCEVPreds,
   10309                 [N](const SCEVPredicate *I) { return I->implies(N); });
   10310 }
   10311 
   10312 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
   10313 
   10314 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
   10315   for (auto Pred : Preds)
   10316     Pred->print(OS, Depth);
   10317 }
   10318 
   10319 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
   10320   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
   10321     for (auto Pred : Set->Preds)
   10322       add(Pred);
   10323     return;
   10324   }
   10325 
   10326   if (implies(N))
   10327     return;
   10328 
   10329   const SCEV *Key = N->getExpr();
   10330   assert(Key && "Only SCEVUnionPredicate doesn't have an "
   10331                 " associated expression!");
   10332 
   10333   SCEVToPreds[Key].push_back(N);
   10334   Preds.push_back(N);
   10335 }
   10336 
   10337 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
   10338                                                      Loop &L)
   10339     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
   10340 
   10341 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
   10342   const SCEV *Expr = SE.getSCEV(V);
   10343   RewriteEntry &Entry = RewriteMap[Expr];
   10344 
   10345   // If we already have an entry and the version matches, return it.
   10346   if (Entry.second && Generation == Entry.first)
   10347     return Entry.second;
   10348 
   10349   // We found an entry but it's stale. Rewrite the stale entry
   10350   // acording to the current predicate.
   10351   if (Entry.second)
   10352     Expr = Entry.second;
   10353 
   10354   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
   10355   Entry = {Generation, NewSCEV};
   10356 
   10357   return NewSCEV;
   10358 }
   10359 
   10360 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
   10361   if (!BackedgeCount) {
   10362     SCEVUnionPredicate BackedgePred;
   10363     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
   10364     addPredicate(BackedgePred);
   10365   }
   10366   return BackedgeCount;
   10367 }
   10368 
   10369 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
   10370   if (Preds.implies(&Pred))
   10371     return;
   10372   Preds.add(&Pred);
   10373   updateGeneration();
   10374 }
   10375 
   10376 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
   10377   return Preds;
   10378 }
   10379 
   10380 void PredicatedScalarEvolution::updateGeneration() {
   10381   // If the generation number wrapped recompute everything.
   10382   if (++Generation == 0) {
   10383     for (auto &II : RewriteMap) {
   10384       const SCEV *Rewritten = II.second.second;
   10385       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
   10386     }
   10387   }
   10388 }
   10389 
   10390 void PredicatedScalarEvolution::setNoOverflow(
   10391     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
   10392   const SCEV *Expr = getSCEV(V);
   10393   const auto *AR = cast<SCEVAddRecExpr>(Expr);
   10394 
   10395   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
   10396 
   10397   // Clear the statically implied flags.
   10398   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
   10399   addPredicate(*SE.getWrapPredicate(AR, Flags));
   10400 
   10401   auto II = FlagsMap.insert({V, Flags});
   10402   if (!II.second)
   10403     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
   10404 }
   10405 
   10406 bool PredicatedScalarEvolution::hasNoOverflow(
   10407     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
   10408   const SCEV *Expr = getSCEV(V);
   10409   const auto *AR = cast<SCEVAddRecExpr>(Expr);
   10410 
   10411   Flags = SCEVWrapPredicate::clearFlags(
   10412       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
   10413 
   10414   auto II = FlagsMap.find(V);
   10415 
   10416   if (II != FlagsMap.end())
   10417     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
   10418 
   10419   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
   10420 }
   10421 
   10422 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
   10423   const SCEV *Expr = this->getSCEV(V);
   10424   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
   10425 
   10426   if (!New)
   10427     return nullptr;
   10428 
   10429   updateGeneration();
   10430   RewriteMap[SE.getSCEV(V)] = {Generation, New};
   10431   return New;
   10432 }
   10433 
   10434 PredicatedScalarEvolution::PredicatedScalarEvolution(
   10435     const PredicatedScalarEvolution &Init)
   10436     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
   10437       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
   10438   for (const auto &I : Init.FlagsMap)
   10439     FlagsMap.insert(I);
   10440 }
   10441 
   10442 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
   10443   // For each block.
   10444   for (auto *BB : L.getBlocks())
   10445     for (auto &I : *BB) {
   10446       if (!SE.isSCEVable(I.getType()))
   10447         continue;
   10448 
   10449       auto *Expr = SE.getSCEV(&I);
   10450       auto II = RewriteMap.find(Expr);
   10451 
   10452       if (II == RewriteMap.end())
   10453         continue;
   10454 
   10455       // Don't print things that are not interesting.
   10456       if (II->second.second == Expr)
   10457         continue;
   10458 
   10459       OS.indent(Depth) << "[PSE]" << I << ":\n";
   10460       OS.indent(Depth + 2) << *Expr << "\n";
   10461       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
   10462     }
   10463 }
   10464