Home | History | Annotate | Download | only in IR
      1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the BasicBlock class for the IR library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/BasicBlock.h"
     15 #include "SymbolTableListTraitsImpl.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/IR/CFG.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Instructions.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/IR/LLVMContext.h"
     22 #include "llvm/IR/Type.h"
     23 #include <algorithm>
     24 
     25 using namespace llvm;
     26 
     27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
     28   if (Function *F = getParent())
     29     return &F->getValueSymbolTable();
     30   return nullptr;
     31 }
     32 
     33 LLVMContext &BasicBlock::getContext() const {
     34   return getType()->getContext();
     35 }
     36 
     37 // Explicit instantiation of SymbolTableListTraits since some of the methods
     38 // are not in the public header file...
     39 template class llvm::SymbolTableListTraits<Instruction>;
     40 
     41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
     42                        BasicBlock *InsertBefore)
     43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
     44 
     45   if (NewParent)
     46     insertInto(NewParent, InsertBefore);
     47   else
     48     assert(!InsertBefore &&
     49            "Cannot insert block before another block with no function!");
     50 
     51   setName(Name);
     52 }
     53 
     54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
     55   assert(NewParent && "Expected a parent");
     56   assert(!Parent && "Already has a parent");
     57 
     58   if (InsertBefore)
     59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
     60   else
     61     NewParent->getBasicBlockList().push_back(this);
     62 }
     63 
     64 BasicBlock::~BasicBlock() {
     65   // If the address of the block is taken and it is being deleted (e.g. because
     66   // it is dead), this means that there is either a dangling constant expr
     67   // hanging off the block, or an undefined use of the block (source code
     68   // expecting the address of a label to keep the block alive even though there
     69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
     70   // nodes.  There are no other possible uses at this point.
     71   if (hasAddressTaken()) {
     72     assert(!use_empty() && "There should be at least one blockaddress!");
     73     Constant *Replacement =
     74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
     75     while (!use_empty()) {
     76       BlockAddress *BA = cast<BlockAddress>(user_back());
     77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
     78                                                        BA->getType()));
     79       BA->destroyConstant();
     80     }
     81   }
     82 
     83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
     84   dropAllReferences();
     85   InstList.clear();
     86 }
     87 
     88 void BasicBlock::setParent(Function *parent) {
     89   // Set Parent=parent, updating instruction symtab entries as appropriate.
     90   InstList.setSymTabObject(&Parent, parent);
     91 }
     92 
     93 void BasicBlock::removeFromParent() {
     94   getParent()->getBasicBlockList().remove(getIterator());
     95 }
     96 
     97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
     98   return getParent()->getBasicBlockList().erase(getIterator());
     99 }
    100 
    101 /// Unlink this basic block from its current function and
    102 /// insert it into the function that MovePos lives in, right before MovePos.
    103 void BasicBlock::moveBefore(BasicBlock *MovePos) {
    104   MovePos->getParent()->getBasicBlockList().splice(
    105       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
    106 }
    107 
    108 /// Unlink this basic block from its current function and
    109 /// insert it into the function that MovePos lives in, right after MovePos.
    110 void BasicBlock::moveAfter(BasicBlock *MovePos) {
    111   MovePos->getParent()->getBasicBlockList().splice(
    112       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
    113       getIterator());
    114 }
    115 
    116 const Module *BasicBlock::getModule() const {
    117   return getParent()->getParent();
    118 }
    119 
    120 Module *BasicBlock::getModule() {
    121   return getParent()->getParent();
    122 }
    123 
    124 TerminatorInst *BasicBlock::getTerminator() {
    125   if (InstList.empty()) return nullptr;
    126   return dyn_cast<TerminatorInst>(&InstList.back());
    127 }
    128 
    129 const TerminatorInst *BasicBlock::getTerminator() const {
    130   if (InstList.empty()) return nullptr;
    131   return dyn_cast<TerminatorInst>(&InstList.back());
    132 }
    133 
    134 CallInst *BasicBlock::getTerminatingMustTailCall() {
    135   if (InstList.empty())
    136     return nullptr;
    137   ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
    138   if (!RI || RI == &InstList.front())
    139     return nullptr;
    140 
    141   Instruction *Prev = RI->getPrevNode();
    142   if (!Prev)
    143     return nullptr;
    144 
    145   if (Value *RV = RI->getReturnValue()) {
    146     if (RV != Prev)
    147       return nullptr;
    148 
    149     // Look through the optional bitcast.
    150     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
    151       RV = BI->getOperand(0);
    152       Prev = BI->getPrevNode();
    153       if (!Prev || RV != Prev)
    154         return nullptr;
    155     }
    156   }
    157 
    158   if (auto *CI = dyn_cast<CallInst>(Prev)) {
    159     if (CI->isMustTailCall())
    160       return CI;
    161   }
    162   return nullptr;
    163 }
    164 
    165 CallInst *BasicBlock::getTerminatingDeoptimizeCall() {
    166   if (InstList.empty())
    167     return nullptr;
    168   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
    169   if (!RI || RI == &InstList.front())
    170     return nullptr;
    171 
    172   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
    173     if (Function *F = CI->getCalledFunction())
    174       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
    175         return CI;
    176 
    177   return nullptr;
    178 }
    179 
    180 Instruction* BasicBlock::getFirstNonPHI() {
    181   for (Instruction &I : *this)
    182     if (!isa<PHINode>(I))
    183       return &I;
    184   return nullptr;
    185 }
    186 
    187 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
    188   for (Instruction &I : *this)
    189     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
    190       return &I;
    191   return nullptr;
    192 }
    193 
    194 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
    195   for (Instruction &I : *this) {
    196     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
    197       continue;
    198 
    199     if (auto *II = dyn_cast<IntrinsicInst>(&I))
    200       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    201           II->getIntrinsicID() == Intrinsic::lifetime_end)
    202         continue;
    203 
    204     return &I;
    205   }
    206   return nullptr;
    207 }
    208 
    209 BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
    210   Instruction *FirstNonPHI = getFirstNonPHI();
    211   if (!FirstNonPHI)
    212     return end();
    213 
    214   iterator InsertPt = FirstNonPHI->getIterator();
    215   if (InsertPt->isEHPad()) ++InsertPt;
    216   return InsertPt;
    217 }
    218 
    219 void BasicBlock::dropAllReferences() {
    220   for (Instruction &I : *this)
    221     I.dropAllReferences();
    222 }
    223 
    224 /// If this basic block has a single predecessor block,
    225 /// return the block, otherwise return a null pointer.
    226 BasicBlock *BasicBlock::getSinglePredecessor() {
    227   pred_iterator PI = pred_begin(this), E = pred_end(this);
    228   if (PI == E) return nullptr;         // No preds.
    229   BasicBlock *ThePred = *PI;
    230   ++PI;
    231   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
    232 }
    233 
    234 /// If this basic block has a unique predecessor block,
    235 /// return the block, otherwise return a null pointer.
    236 /// Note that unique predecessor doesn't mean single edge, there can be
    237 /// multiple edges from the unique predecessor to this block (for example
    238 /// a switch statement with multiple cases having the same destination).
    239 BasicBlock *BasicBlock::getUniquePredecessor() {
    240   pred_iterator PI = pred_begin(this), E = pred_end(this);
    241   if (PI == E) return nullptr; // No preds.
    242   BasicBlock *PredBB = *PI;
    243   ++PI;
    244   for (;PI != E; ++PI) {
    245     if (*PI != PredBB)
    246       return nullptr;
    247     // The same predecessor appears multiple times in the predecessor list.
    248     // This is OK.
    249   }
    250   return PredBB;
    251 }
    252 
    253 BasicBlock *BasicBlock::getSingleSuccessor() {
    254   succ_iterator SI = succ_begin(this), E = succ_end(this);
    255   if (SI == E) return nullptr; // no successors
    256   BasicBlock *TheSucc = *SI;
    257   ++SI;
    258   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
    259 }
    260 
    261 BasicBlock *BasicBlock::getUniqueSuccessor() {
    262   succ_iterator SI = succ_begin(this), E = succ_end(this);
    263   if (SI == E) return nullptr; // No successors
    264   BasicBlock *SuccBB = *SI;
    265   ++SI;
    266   for (;SI != E; ++SI) {
    267     if (*SI != SuccBB)
    268       return nullptr;
    269     // The same successor appears multiple times in the successor list.
    270     // This is OK.
    271   }
    272   return SuccBB;
    273 }
    274 
    275 /// This method is used to notify a BasicBlock that the
    276 /// specified Predecessor of the block is no longer able to reach it.  This is
    277 /// actually not used to update the Predecessor list, but is actually used to
    278 /// update the PHI nodes that reside in the block.  Note that this should be
    279 /// called while the predecessor still refers to this block.
    280 ///
    281 void BasicBlock::removePredecessor(BasicBlock *Pred,
    282                                    bool DontDeleteUselessPHIs) {
    283   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
    284           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
    285          "removePredecessor: BB is not a predecessor!");
    286 
    287   if (InstList.empty()) return;
    288   PHINode *APN = dyn_cast<PHINode>(&front());
    289   if (!APN) return;   // Quick exit.
    290 
    291   // If there are exactly two predecessors, then we want to nuke the PHI nodes
    292   // altogether.  However, we cannot do this, if this in this case:
    293   //
    294   //  Loop:
    295   //    %x = phi [X, Loop]
    296   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
    297   //    br Loop                 ;; %x2 does not dominate all uses
    298   //
    299   // This is because the PHI node input is actually taken from the predecessor
    300   // basic block.  The only case this can happen is with a self loop, so we
    301   // check for this case explicitly now.
    302   //
    303   unsigned max_idx = APN->getNumIncomingValues();
    304   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
    305   if (max_idx == 2) {
    306     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
    307 
    308     // Disable PHI elimination!
    309     if (this == Other) max_idx = 3;
    310   }
    311 
    312   // <= Two predecessors BEFORE I remove one?
    313   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
    314     // Yup, loop through and nuke the PHI nodes
    315     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
    316       // Remove the predecessor first.
    317       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
    318 
    319       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
    320       if (max_idx == 2) {
    321         if (PN->getIncomingValue(0) != PN)
    322           PN->replaceAllUsesWith(PN->getIncomingValue(0));
    323         else
    324           // We are left with an infinite loop with no entries: kill the PHI.
    325           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    326         getInstList().pop_front();    // Remove the PHI node
    327       }
    328 
    329       // If the PHI node already only had one entry, it got deleted by
    330       // removeIncomingValue.
    331     }
    332   } else {
    333     // Okay, now we know that we need to remove predecessor #pred_idx from all
    334     // PHI nodes.  Iterate over each PHI node fixing them up
    335     PHINode *PN;
    336     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
    337       ++II;
    338       PN->removeIncomingValue(Pred, false);
    339       // If all incoming values to the Phi are the same, we can replace the Phi
    340       // with that value.
    341       Value* PNV = nullptr;
    342       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
    343         if (PNV != PN) {
    344           PN->replaceAllUsesWith(PNV);
    345           PN->eraseFromParent();
    346         }
    347     }
    348   }
    349 }
    350 
    351 bool BasicBlock::canSplitPredecessors() const {
    352   const Instruction *FirstNonPHI = getFirstNonPHI();
    353   if (isa<LandingPadInst>(FirstNonPHI))
    354     return true;
    355   // This is perhaps a little conservative because constructs like
    356   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
    357   // cannot handle such things just yet.
    358   if (FirstNonPHI->isEHPad())
    359     return false;
    360   return true;
    361 }
    362 
    363 /// This splits a basic block into two at the specified
    364 /// instruction.  Note that all instructions BEFORE the specified iterator stay
    365 /// as part of the original basic block, an unconditional branch is added to
    366 /// the new BB, and the rest of the instructions in the BB are moved to the new
    367 /// BB, including the old terminator.  This invalidates the iterator.
    368 ///
    369 /// Note that this only works on well formed basic blocks (must have a
    370 /// terminator), and 'I' must not be the end of instruction list (which would
    371 /// cause a degenerate basic block to be formed, having a terminator inside of
    372 /// the basic block).
    373 ///
    374 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
    375   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
    376   assert(I != InstList.end() &&
    377          "Trying to get me to create degenerate basic block!");
    378 
    379   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
    380                                        this->getNextNode());
    381 
    382   // Save DebugLoc of split point before invalidating iterator.
    383   DebugLoc Loc = I->getDebugLoc();
    384   // Move all of the specified instructions from the original basic block into
    385   // the new basic block.
    386   New->getInstList().splice(New->end(), this->getInstList(), I, end());
    387 
    388   // Add a branch instruction to the newly formed basic block.
    389   BranchInst *BI = BranchInst::Create(New, this);
    390   BI->setDebugLoc(Loc);
    391 
    392   // Now we must loop through all of the successors of the New block (which
    393   // _were_ the successors of the 'this' block), and update any PHI nodes in
    394   // successors.  If there were PHI nodes in the successors, then they need to
    395   // know that incoming branches will be from New, not from Old.
    396   //
    397   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
    398     // Loop over any phi nodes in the basic block, updating the BB field of
    399     // incoming values...
    400     BasicBlock *Successor = *I;
    401     PHINode *PN;
    402     for (BasicBlock::iterator II = Successor->begin();
    403          (PN = dyn_cast<PHINode>(II)); ++II) {
    404       int IDX = PN->getBasicBlockIndex(this);
    405       while (IDX != -1) {
    406         PN->setIncomingBlock((unsigned)IDX, New);
    407         IDX = PN->getBasicBlockIndex(this);
    408       }
    409     }
    410   }
    411   return New;
    412 }
    413 
    414 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
    415   TerminatorInst *TI = getTerminator();
    416   if (!TI)
    417     // Cope with being called on a BasicBlock that doesn't have a terminator
    418     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
    419     return;
    420   for (BasicBlock *Succ : TI->successors()) {
    421     // N.B. Succ might not be a complete BasicBlock, so don't assume
    422     // that it ends with a non-phi instruction.
    423     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
    424       PHINode *PN = dyn_cast<PHINode>(II);
    425       if (!PN)
    426         break;
    427       int i;
    428       while ((i = PN->getBasicBlockIndex(this)) >= 0)
    429         PN->setIncomingBlock(i, New);
    430     }
    431   }
    432 }
    433 
    434 /// Return true if this basic block is a landing pad. I.e., it's
    435 /// the destination of the 'unwind' edge of an invoke instruction.
    436 bool BasicBlock::isLandingPad() const {
    437   return isa<LandingPadInst>(getFirstNonPHI());
    438 }
    439 
    440 /// Return the landingpad instruction associated with the landing pad.
    441 LandingPadInst *BasicBlock::getLandingPadInst() {
    442   return dyn_cast<LandingPadInst>(getFirstNonPHI());
    443 }
    444 const LandingPadInst *BasicBlock::getLandingPadInst() const {
    445   return dyn_cast<LandingPadInst>(getFirstNonPHI());
    446 }
    447