Home | History | Annotate | Download | only in IR
      1 //===-- Value.cpp - Implement the Value class -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Value, ValueHandle, and User classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Value.h"
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/IR/CallSite.h"
     19 #include "llvm/IR/Constant.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/GetElementPtrTypeIterator.h"
     24 #include "llvm/IR/InstrTypes.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/IR/Statepoint.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/IR/ValueSymbolTable.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/ManagedStatic.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include <algorithm>
     37 
     38 using namespace llvm;
     39 
     40 //===----------------------------------------------------------------------===//
     41 //                                Value Class
     42 //===----------------------------------------------------------------------===//
     43 static inline Type *checkType(Type *Ty) {
     44   assert(Ty && "Value defined with a null type: Error!");
     45   return Ty;
     46 }
     47 
     48 Value::Value(Type *ty, unsigned scid)
     49     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
     50       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
     51       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
     52   // FIXME: Why isn't this in the subclass gunk??
     53   // Note, we cannot call isa<CallInst> before the CallInst has been
     54   // constructed.
     55   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
     56     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
     57            "invalid CallInst type!");
     58   else if (SubclassID != BasicBlockVal &&
     59            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
     60     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
     61            "Cannot create non-first-class values except for constants!");
     62   static_assert(sizeof(Value) == 3 * sizeof(void *) + 2 * sizeof(unsigned),
     63                 "Value too big");
     64 }
     65 
     66 Value::~Value() {
     67   // Notify all ValueHandles (if present) that this value is going away.
     68   if (HasValueHandle)
     69     ValueHandleBase::ValueIsDeleted(this);
     70   if (isUsedByMetadata())
     71     ValueAsMetadata::handleDeletion(this);
     72 
     73 #ifndef NDEBUG      // Only in -g mode...
     74   // Check to make sure that there are no uses of this value that are still
     75   // around when the value is destroyed.  If there are, then we have a dangling
     76   // reference and something is wrong.  This code is here to print out where
     77   // the value is still being referenced.
     78   //
     79   if (!use_empty()) {
     80     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
     81     for (auto *U : users())
     82       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
     83   }
     84 #endif
     85   assert(use_empty() && "Uses remain when a value is destroyed!");
     86 
     87   // If this value is named, destroy the name.  This should not be in a symtab
     88   // at this point.
     89   destroyValueName();
     90 }
     91 
     92 void Value::destroyValueName() {
     93   ValueName *Name = getValueName();
     94   if (Name)
     95     Name->Destroy();
     96   setValueName(nullptr);
     97 }
     98 
     99 bool Value::hasNUses(unsigned N) const {
    100   const_use_iterator UI = use_begin(), E = use_end();
    101 
    102   for (; N; --N, ++UI)
    103     if (UI == E) return false;  // Too few.
    104   return UI == E;
    105 }
    106 
    107 bool Value::hasNUsesOrMore(unsigned N) const {
    108   const_use_iterator UI = use_begin(), E = use_end();
    109 
    110   for (; N; --N, ++UI)
    111     if (UI == E) return false;  // Too few.
    112 
    113   return true;
    114 }
    115 
    116 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
    117   // This can be computed either by scanning the instructions in BB, or by
    118   // scanning the use list of this Value. Both lists can be very long, but
    119   // usually one is quite short.
    120   //
    121   // Scan both lists simultaneously until one is exhausted. This limits the
    122   // search to the shorter list.
    123   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
    124   const_user_iterator UI = user_begin(), UE = user_end();
    125   for (; BI != BE && UI != UE; ++BI, ++UI) {
    126     // Scan basic block: Check if this Value is used by the instruction at BI.
    127     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
    128       return true;
    129     // Scan use list: Check if the use at UI is in BB.
    130     const Instruction *User = dyn_cast<Instruction>(*UI);
    131     if (User && User->getParent() == BB)
    132       return true;
    133   }
    134   return false;
    135 }
    136 
    137 unsigned Value::getNumUses() const {
    138   return (unsigned)std::distance(use_begin(), use_end());
    139 }
    140 
    141 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
    142   ST = nullptr;
    143   if (Instruction *I = dyn_cast<Instruction>(V)) {
    144     if (BasicBlock *P = I->getParent())
    145       if (Function *PP = P->getParent())
    146         ST = &PP->getValueSymbolTable();
    147   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    148     if (Function *P = BB->getParent())
    149       ST = &P->getValueSymbolTable();
    150   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    151     if (Module *P = GV->getParent())
    152       ST = &P->getValueSymbolTable();
    153   } else if (Argument *A = dyn_cast<Argument>(V)) {
    154     if (Function *P = A->getParent())
    155       ST = &P->getValueSymbolTable();
    156   } else {
    157     assert(isa<Constant>(V) && "Unknown value type!");
    158     return true;  // no name is setable for this.
    159   }
    160   return false;
    161 }
    162 
    163 ValueName *Value::getValueName() const {
    164   if (!HasName) return nullptr;
    165 
    166   LLVMContext &Ctx = getContext();
    167   auto I = Ctx.pImpl->ValueNames.find(this);
    168   assert(I != Ctx.pImpl->ValueNames.end() &&
    169          "No name entry found!");
    170 
    171   return I->second;
    172 }
    173 
    174 void Value::setValueName(ValueName *VN) {
    175   LLVMContext &Ctx = getContext();
    176 
    177   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
    178          "HasName bit out of sync!");
    179 
    180   if (!VN) {
    181     if (HasName)
    182       Ctx.pImpl->ValueNames.erase(this);
    183     HasName = false;
    184     return;
    185   }
    186 
    187   HasName = true;
    188   Ctx.pImpl->ValueNames[this] = VN;
    189 }
    190 
    191 StringRef Value::getName() const {
    192   // Make sure the empty string is still a C string. For historical reasons,
    193   // some clients want to call .data() on the result and expect it to be null
    194   // terminated.
    195   if (!hasName())
    196     return StringRef("", 0);
    197   return getValueName()->getKey();
    198 }
    199 
    200 void Value::setNameImpl(const Twine &NewName) {
    201   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
    202   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
    203     return;
    204 
    205   // Fast path for common IRBuilder case of setName("") when there is no name.
    206   if (NewName.isTriviallyEmpty() && !hasName())
    207     return;
    208 
    209   SmallString<256> NameData;
    210   StringRef NameRef = NewName.toStringRef(NameData);
    211   assert(NameRef.find_first_of(0) == StringRef::npos &&
    212          "Null bytes are not allowed in names");
    213 
    214   // Name isn't changing?
    215   if (getName() == NameRef)
    216     return;
    217 
    218   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
    219 
    220   // Get the symbol table to update for this object.
    221   ValueSymbolTable *ST;
    222   if (getSymTab(this, ST))
    223     return;  // Cannot set a name on this value (e.g. constant).
    224 
    225   if (!ST) { // No symbol table to update?  Just do the change.
    226     if (NameRef.empty()) {
    227       // Free the name for this value.
    228       destroyValueName();
    229       return;
    230     }
    231 
    232     // NOTE: Could optimize for the case the name is shrinking to not deallocate
    233     // then reallocated.
    234     destroyValueName();
    235 
    236     // Create the new name.
    237     setValueName(ValueName::Create(NameRef));
    238     getValueName()->setValue(this);
    239     return;
    240   }
    241 
    242   // NOTE: Could optimize for the case the name is shrinking to not deallocate
    243   // then reallocated.
    244   if (hasName()) {
    245     // Remove old name.
    246     ST->removeValueName(getValueName());
    247     destroyValueName();
    248 
    249     if (NameRef.empty())
    250       return;
    251   }
    252 
    253   // Name is changing to something new.
    254   setValueName(ST->createValueName(NameRef, this));
    255 }
    256 
    257 void Value::setName(const Twine &NewName) {
    258   setNameImpl(NewName);
    259   if (Function *F = dyn_cast<Function>(this))
    260     F->recalculateIntrinsicID();
    261 }
    262 
    263 void Value::takeName(Value *V) {
    264   ValueSymbolTable *ST = nullptr;
    265   // If this value has a name, drop it.
    266   if (hasName()) {
    267     // Get the symtab this is in.
    268     if (getSymTab(this, ST)) {
    269       // We can't set a name on this value, but we need to clear V's name if
    270       // it has one.
    271       if (V->hasName()) V->setName("");
    272       return;  // Cannot set a name on this value (e.g. constant).
    273     }
    274 
    275     // Remove old name.
    276     if (ST)
    277       ST->removeValueName(getValueName());
    278     destroyValueName();
    279   }
    280 
    281   // Now we know that this has no name.
    282 
    283   // If V has no name either, we're done.
    284   if (!V->hasName()) return;
    285 
    286   // Get this's symtab if we didn't before.
    287   if (!ST) {
    288     if (getSymTab(this, ST)) {
    289       // Clear V's name.
    290       V->setName("");
    291       return;  // Cannot set a name on this value (e.g. constant).
    292     }
    293   }
    294 
    295   // Get V's ST, this should always succed, because V has a name.
    296   ValueSymbolTable *VST;
    297   bool Failure = getSymTab(V, VST);
    298   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
    299 
    300   // If these values are both in the same symtab, we can do this very fast.
    301   // This works even if both values have no symtab yet.
    302   if (ST == VST) {
    303     // Take the name!
    304     setValueName(V->getValueName());
    305     V->setValueName(nullptr);
    306     getValueName()->setValue(this);
    307     return;
    308   }
    309 
    310   // Otherwise, things are slightly more complex.  Remove V's name from VST and
    311   // then reinsert it into ST.
    312 
    313   if (VST)
    314     VST->removeValueName(V->getValueName());
    315   setValueName(V->getValueName());
    316   V->setValueName(nullptr);
    317   getValueName()->setValue(this);
    318 
    319   if (ST)
    320     ST->reinsertValue(this);
    321 }
    322 
    323 void Value::assertModuleIsMaterialized() const {
    324 #ifndef NDEBUG
    325   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
    326   if (!GV)
    327     return;
    328   const Module *M = GV->getParent();
    329   if (!M)
    330     return;
    331   assert(M->isMaterialized());
    332 #endif
    333 }
    334 
    335 #ifndef NDEBUG
    336 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
    337                      Constant *C) {
    338   if (!Cache.insert(Expr).second)
    339     return false;
    340 
    341   for (auto &O : Expr->operands()) {
    342     if (O == C)
    343       return true;
    344     auto *CE = dyn_cast<ConstantExpr>(O);
    345     if (!CE)
    346       continue;
    347     if (contains(Cache, CE, C))
    348       return true;
    349   }
    350   return false;
    351 }
    352 
    353 static bool contains(Value *Expr, Value *V) {
    354   if (Expr == V)
    355     return true;
    356 
    357   auto *C = dyn_cast<Constant>(V);
    358   if (!C)
    359     return false;
    360 
    361   auto *CE = dyn_cast<ConstantExpr>(Expr);
    362   if (!CE)
    363     return false;
    364 
    365   SmallPtrSet<ConstantExpr *, 4> Cache;
    366   return contains(Cache, CE, C);
    367 }
    368 #endif // NDEBUG
    369 
    370 void Value::replaceAllUsesWith(Value *New) {
    371   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
    372   assert(!contains(New, this) &&
    373          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
    374   assert(New->getType() == getType() &&
    375          "replaceAllUses of value with new value of different type!");
    376 
    377   // Notify all ValueHandles (if present) that this value is going away.
    378   if (HasValueHandle)
    379     ValueHandleBase::ValueIsRAUWd(this, New);
    380   if (isUsedByMetadata())
    381     ValueAsMetadata::handleRAUW(this, New);
    382 
    383   while (!use_empty()) {
    384     Use &U = *UseList;
    385     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    386     // constant because they are uniqued.
    387     if (auto *C = dyn_cast<Constant>(U.getUser())) {
    388       if (!isa<GlobalValue>(C)) {
    389         C->handleOperandChange(this, New);
    390         continue;
    391       }
    392     }
    393 
    394     U.set(New);
    395   }
    396 
    397   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    398     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
    399 }
    400 
    401 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
    402 // This routine leaves uses within BB.
    403 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
    404   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
    405   assert(!contains(New, this) &&
    406          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
    407   assert(New->getType() == getType() &&
    408          "replaceUses of value with new value of different type!");
    409   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
    410 
    411   use_iterator UI = use_begin(), E = use_end();
    412   for (; UI != E;) {
    413     Use &U = *UI;
    414     ++UI;
    415     auto *Usr = dyn_cast<Instruction>(U.getUser());
    416     if (Usr && Usr->getParent() == BB)
    417       continue;
    418     U.set(New);
    419   }
    420 }
    421 
    422 namespace {
    423 // Various metrics for how much to strip off of pointers.
    424 enum PointerStripKind {
    425   PSK_ZeroIndices,
    426   PSK_ZeroIndicesAndAliases,
    427   PSK_InBoundsConstantIndices,
    428   PSK_InBounds
    429 };
    430 
    431 template <PointerStripKind StripKind>
    432 static Value *stripPointerCastsAndOffsets(Value *V) {
    433   if (!V->getType()->isPointerTy())
    434     return V;
    435 
    436   // Even though we don't look through PHI nodes, we could be called on an
    437   // instruction in an unreachable block, which may be on a cycle.
    438   SmallPtrSet<Value *, 4> Visited;
    439 
    440   Visited.insert(V);
    441   do {
    442     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    443       switch (StripKind) {
    444       case PSK_ZeroIndicesAndAliases:
    445       case PSK_ZeroIndices:
    446         if (!GEP->hasAllZeroIndices())
    447           return V;
    448         break;
    449       case PSK_InBoundsConstantIndices:
    450         if (!GEP->hasAllConstantIndices())
    451           return V;
    452         // fallthrough
    453       case PSK_InBounds:
    454         if (!GEP->isInBounds())
    455           return V;
    456         break;
    457       }
    458       V = GEP->getPointerOperand();
    459     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
    460                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
    461       V = cast<Operator>(V)->getOperand(0);
    462     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    463       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
    464         return V;
    465       V = GA->getAliasee();
    466     } else {
    467       if (auto CS = CallSite(V))
    468         if (Value *RV = CS.getReturnedArgOperand()) {
    469           V = RV;
    470           continue;
    471         }
    472 
    473       return V;
    474     }
    475     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    476   } while (Visited.insert(V).second);
    477 
    478   return V;
    479 }
    480 } // end anonymous namespace
    481 
    482 Value *Value::stripPointerCasts() {
    483   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
    484 }
    485 
    486 Value *Value::stripPointerCastsNoFollowAliases() {
    487   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
    488 }
    489 
    490 Value *Value::stripInBoundsConstantOffsets() {
    491   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
    492 }
    493 
    494 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
    495                                                         APInt &Offset) {
    496   if (!getType()->isPointerTy())
    497     return this;
    498 
    499   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
    500                                      getType())->getAddressSpace()) &&
    501          "The offset must have exactly as many bits as our pointer.");
    502 
    503   // Even though we don't look through PHI nodes, we could be called on an
    504   // instruction in an unreachable block, which may be on a cycle.
    505   SmallPtrSet<Value *, 4> Visited;
    506   Visited.insert(this);
    507   Value *V = this;
    508   do {
    509     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    510       if (!GEP->isInBounds())
    511         return V;
    512       APInt GEPOffset(Offset);
    513       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
    514         return V;
    515       Offset = GEPOffset;
    516       V = GEP->getPointerOperand();
    517     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    518       V = cast<Operator>(V)->getOperand(0);
    519     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    520       V = GA->getAliasee();
    521     } else {
    522       if (auto CS = CallSite(V))
    523         if (Value *RV = CS.getReturnedArgOperand()) {
    524           V = RV;
    525           continue;
    526         }
    527 
    528       return V;
    529     }
    530     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    531   } while (Visited.insert(V).second);
    532 
    533   return V;
    534 }
    535 
    536 Value *Value::stripInBoundsOffsets() {
    537   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
    538 }
    539 
    540 unsigned Value::getPointerDereferenceableBytes(const DataLayout &DL,
    541                                                bool &CanBeNull) const {
    542   assert(getType()->isPointerTy() && "must be pointer");
    543 
    544   unsigned DerefBytes = 0;
    545   CanBeNull = false;
    546   if (const Argument *A = dyn_cast<Argument>(this)) {
    547     DerefBytes = A->getDereferenceableBytes();
    548     if (DerefBytes == 0 && A->hasByValAttr() && A->getType()->isSized()) {
    549       DerefBytes = DL.getTypeStoreSize(A->getType());
    550       CanBeNull = false;
    551     }
    552     if (DerefBytes == 0) {
    553       DerefBytes = A->getDereferenceableOrNullBytes();
    554       CanBeNull = true;
    555     }
    556   } else if (auto CS = ImmutableCallSite(this)) {
    557     DerefBytes = CS.getDereferenceableBytes(0);
    558     if (DerefBytes == 0) {
    559       DerefBytes = CS.getDereferenceableOrNullBytes(0);
    560       CanBeNull = true;
    561     }
    562   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
    563     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
    564       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
    565       DerefBytes = CI->getLimitedValue();
    566     }
    567     if (DerefBytes == 0) {
    568       if (MDNode *MD =
    569               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
    570         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
    571         DerefBytes = CI->getLimitedValue();
    572       }
    573       CanBeNull = true;
    574     }
    575   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
    576     if (AI->getAllocatedType()->isSized()) {
    577       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
    578       CanBeNull = false;
    579     }
    580   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
    581     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
    582       // TODO: Don't outright reject hasExternalWeakLinkage but set the
    583       // CanBeNull flag.
    584       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
    585       CanBeNull = false;
    586     }
    587   }
    588   return DerefBytes;
    589 }
    590 
    591 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
    592   assert(getType()->isPointerTy() && "must be pointer");
    593 
    594   unsigned Align = 0;
    595   if (auto *GO = dyn_cast<GlobalObject>(this)) {
    596     Align = GO->getAlignment();
    597     if (Align == 0) {
    598       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
    599         Type *ObjectType = GVar->getValueType();
    600         if (ObjectType->isSized()) {
    601           // If the object is defined in the current Module, we'll be giving
    602           // it the preferred alignment. Otherwise, we have to assume that it
    603           // may only have the minimum ABI alignment.
    604           if (GVar->isStrongDefinitionForLinker())
    605             Align = DL.getPreferredAlignment(GVar);
    606           else
    607             Align = DL.getABITypeAlignment(ObjectType);
    608         }
    609       }
    610     }
    611   } else if (const Argument *A = dyn_cast<Argument>(this)) {
    612     Align = A->getParamAlignment();
    613 
    614     if (!Align && A->hasStructRetAttr()) {
    615       // An sret parameter has at least the ABI alignment of the return type.
    616       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
    617       if (EltTy->isSized())
    618         Align = DL.getABITypeAlignment(EltTy);
    619     }
    620   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
    621     Align = AI->getAlignment();
    622     if (Align == 0) {
    623       Type *AllocatedType = AI->getAllocatedType();
    624       if (AllocatedType->isSized())
    625         Align = DL.getPrefTypeAlignment(AllocatedType);
    626     }
    627   } else if (auto CS = ImmutableCallSite(this))
    628     Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
    629   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    630     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
    631       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
    632       Align = CI->getLimitedValue();
    633     }
    634 
    635   return Align;
    636 }
    637 
    638 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
    639                                const BasicBlock *PredBB) {
    640   PHINode *PN = dyn_cast<PHINode>(this);
    641   if (PN && PN->getParent() == CurBB)
    642     return PN->getIncomingValueForBlock(PredBB);
    643   return this;
    644 }
    645 
    646 LLVMContext &Value::getContext() const { return VTy->getContext(); }
    647 
    648 void Value::reverseUseList() {
    649   if (!UseList || !UseList->Next)
    650     // No need to reverse 0 or 1 uses.
    651     return;
    652 
    653   Use *Head = UseList;
    654   Use *Current = UseList->Next;
    655   Head->Next = nullptr;
    656   while (Current) {
    657     Use *Next = Current->Next;
    658     Current->Next = Head;
    659     Head->setPrev(&Current->Next);
    660     Head = Current;
    661     Current = Next;
    662   }
    663   UseList = Head;
    664   Head->setPrev(&UseList);
    665 }
    666 
    667 //===----------------------------------------------------------------------===//
    668 //                             ValueHandleBase Class
    669 //===----------------------------------------------------------------------===//
    670 
    671 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
    672   assert(List && "Handle list is null?");
    673 
    674   // Splice ourselves into the list.
    675   Next = *List;
    676   *List = this;
    677   setPrevPtr(List);
    678   if (Next) {
    679     Next->setPrevPtr(&Next);
    680     assert(V == Next->V && "Added to wrong list?");
    681   }
    682 }
    683 
    684 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
    685   assert(List && "Must insert after existing node");
    686 
    687   Next = List->Next;
    688   setPrevPtr(&List->Next);
    689   List->Next = this;
    690   if (Next)
    691     Next->setPrevPtr(&Next);
    692 }
    693 
    694 void ValueHandleBase::AddToUseList() {
    695   assert(V && "Null pointer doesn't have a use list!");
    696 
    697   LLVMContextImpl *pImpl = V->getContext().pImpl;
    698 
    699   if (V->HasValueHandle) {
    700     // If this value already has a ValueHandle, then it must be in the
    701     // ValueHandles map already.
    702     ValueHandleBase *&Entry = pImpl->ValueHandles[V];
    703     assert(Entry && "Value doesn't have any handles?");
    704     AddToExistingUseList(&Entry);
    705     return;
    706   }
    707 
    708   // Ok, it doesn't have any handles yet, so we must insert it into the
    709   // DenseMap.  However, doing this insertion could cause the DenseMap to
    710   // reallocate itself, which would invalidate all of the PrevP pointers that
    711   // point into the old table.  Handle this by checking for reallocation and
    712   // updating the stale pointers only if needed.
    713   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    714   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
    715 
    716   ValueHandleBase *&Entry = Handles[V];
    717   assert(!Entry && "Value really did already have handles?");
    718   AddToExistingUseList(&Entry);
    719   V->HasValueHandle = true;
    720 
    721   // If reallocation didn't happen or if this was the first insertion, don't
    722   // walk the table.
    723   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
    724       Handles.size() == 1) {
    725     return;
    726   }
    727 
    728   // Okay, reallocation did happen.  Fix the Prev Pointers.
    729   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
    730        E = Handles.end(); I != E; ++I) {
    731     assert(I->second && I->first == I->second->V &&
    732            "List invariant broken!");
    733     I->second->setPrevPtr(&I->second);
    734   }
    735 }
    736 
    737 void ValueHandleBase::RemoveFromUseList() {
    738   assert(V && V->HasValueHandle &&
    739          "Pointer doesn't have a use list!");
    740 
    741   // Unlink this from its use list.
    742   ValueHandleBase **PrevPtr = getPrevPtr();
    743   assert(*PrevPtr == this && "List invariant broken");
    744 
    745   *PrevPtr = Next;
    746   if (Next) {
    747     assert(Next->getPrevPtr() == &Next && "List invariant broken");
    748     Next->setPrevPtr(PrevPtr);
    749     return;
    750   }
    751 
    752   // If the Next pointer was null, then it is possible that this was the last
    753   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
    754   // map.
    755   LLVMContextImpl *pImpl = V->getContext().pImpl;
    756   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    757   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    758     Handles.erase(V);
    759     V->HasValueHandle = false;
    760   }
    761 }
    762 
    763 void ValueHandleBase::ValueIsDeleted(Value *V) {
    764   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
    765 
    766   // Get the linked list base, which is guaranteed to exist since the
    767   // HasValueHandle flag is set.
    768   LLVMContextImpl *pImpl = V->getContext().pImpl;
    769   ValueHandleBase *Entry = pImpl->ValueHandles[V];
    770   assert(Entry && "Value bit set but no entries exist");
    771 
    772   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
    773   // and remove themselves from the list without breaking our iteration.  This
    774   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
    775   // Note that we deliberately do not the support the case when dropping a value
    776   // handle results in a new value handle being permanently added to the list
    777   // (as might occur in theory for CallbackVH's): the new value handle will not
    778   // be processed and the checking code will mete out righteous punishment if
    779   // the handle is still present once we have finished processing all the other
    780   // value handles (it is fine to momentarily add then remove a value handle).
    781   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    782     Iterator.RemoveFromUseList();
    783     Iterator.AddToExistingUseListAfter(Entry);
    784     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    785 
    786     switch (Entry->getKind()) {
    787     case Assert:
    788       break;
    789     case Tracking:
    790       // Mark that this value has been deleted by setting it to an invalid Value
    791       // pointer.
    792       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
    793       break;
    794     case Weak:
    795       // Weak just goes to null, which will unlink it from the list.
    796       Entry->operator=(nullptr);
    797       break;
    798     case Callback:
    799       // Forward to the subclass's implementation.
    800       static_cast<CallbackVH*>(Entry)->deleted();
    801       break;
    802     }
    803   }
    804 
    805   // All callbacks, weak references, and assertingVHs should be dropped by now.
    806   if (V->HasValueHandle) {
    807 #ifndef NDEBUG      // Only in +Asserts mode...
    808     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
    809            << "\n";
    810     if (pImpl->ValueHandles[V]->getKind() == Assert)
    811       llvm_unreachable("An asserting value handle still pointed to this"
    812                        " value!");
    813 
    814 #endif
    815     llvm_unreachable("All references to V were not removed?");
    816   }
    817 }
    818 
    819 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
    820   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
    821   assert(Old != New && "Changing value into itself!");
    822   assert(Old->getType() == New->getType() &&
    823          "replaceAllUses of value with new value of different type!");
    824 
    825   // Get the linked list base, which is guaranteed to exist since the
    826   // HasValueHandle flag is set.
    827   LLVMContextImpl *pImpl = Old->getContext().pImpl;
    828   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
    829 
    830   assert(Entry && "Value bit set but no entries exist");
    831 
    832   // We use a local ValueHandleBase as an iterator so that
    833   // ValueHandles can add and remove themselves from the list without
    834   // breaking our iteration.  This is not really an AssertingVH; we
    835   // just have to give ValueHandleBase some kind.
    836   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    837     Iterator.RemoveFromUseList();
    838     Iterator.AddToExistingUseListAfter(Entry);
    839     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    840 
    841     switch (Entry->getKind()) {
    842     case Assert:
    843       // Asserting handle does not follow RAUW implicitly.
    844       break;
    845     case Tracking:
    846       // Tracking goes to new value like a WeakVH. Note that this may make it
    847       // something incompatible with its templated type. We don't want to have a
    848       // virtual (or inline) interface to handle this though, so instead we make
    849       // the TrackingVH accessors guarantee that a client never sees this value.
    850 
    851       // FALLTHROUGH
    852     case Weak:
    853       // Weak goes to the new value, which will unlink it from Old's list.
    854       Entry->operator=(New);
    855       break;
    856     case Callback:
    857       // Forward to the subclass's implementation.
    858       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
    859       break;
    860     }
    861   }
    862 
    863 #ifndef NDEBUG
    864   // If any new tracking or weak value handles were added while processing the
    865   // list, then complain about it now.
    866   if (Old->HasValueHandle)
    867     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
    868       switch (Entry->getKind()) {
    869       case Tracking:
    870       case Weak:
    871         dbgs() << "After RAUW from " << *Old->getType() << " %"
    872                << Old->getName() << " to " << *New->getType() << " %"
    873                << New->getName() << "\n";
    874         llvm_unreachable("A tracking or weak value handle still pointed to the"
    875                          " old value!\n");
    876       default:
    877         break;
    878       }
    879 #endif
    880 }
    881 
    882 // Pin the vtable to this file.
    883 void CallbackVH::anchor() {}
    884