Home | History | Annotate | Download | only in ARM
      1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //
     11 //===----------------------------------------------------------------------===//
     12 
     13 #include "ARM.h"
     14 #include "ARMFrameLowering.h"
     15 #include "ARMTargetMachine.h"
     16 #include "ARMTargetObjectFile.h"
     17 #include "ARMTargetTransformInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/CodeGen/TargetPassConfig.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/LegacyPassManager.h"
     22 #include "llvm/MC/MCAsmInfo.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/FormattedStream.h"
     25 #include "llvm/Support/TargetRegistry.h"
     26 #include "llvm/Target/TargetOptions.h"
     27 #include "llvm/Transforms/Scalar.h"
     28 using namespace llvm;
     29 
     30 static cl::opt<bool>
     31 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
     32                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
     33                    cl::init(false));
     34 
     35 static cl::opt<bool>
     36 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
     37                  cl::desc("Run SimplifyCFG after expanding atomic operations"
     38                           " to make use of cmpxchg flow-based information"),
     39                  cl::init(true));
     40 
     41 static cl::opt<bool>
     42 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
     43                       cl::desc("Enable ARM load/store optimization pass"),
     44                       cl::init(true));
     45 
     46 // FIXME: Unify control over GlobalMerge.
     47 static cl::opt<cl::boolOrDefault>
     48 EnableGlobalMerge("arm-global-merge", cl::Hidden,
     49                   cl::desc("Enable the global merge pass"));
     50 
     51 extern "C" void LLVMInitializeARMTarget() {
     52   // Register the target.
     53   RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
     54   RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
     55   RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
     56   RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
     57 }
     58 
     59 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
     60   if (TT.isOSBinFormatMachO())
     61     return make_unique<TargetLoweringObjectFileMachO>();
     62   if (TT.isOSWindows())
     63     return make_unique<TargetLoweringObjectFileCOFF>();
     64   return make_unique<ARMElfTargetObjectFile>();
     65 }
     66 
     67 static ARMBaseTargetMachine::ARMABI
     68 computeTargetABI(const Triple &TT, StringRef CPU,
     69                  const TargetOptions &Options) {
     70   if (Options.MCOptions.getABIName() == "aapcs16")
     71     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
     72   else if (Options.MCOptions.getABIName().startswith("aapcs"))
     73     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
     74   else if (Options.MCOptions.getABIName().startswith("apcs"))
     75     return ARMBaseTargetMachine::ARM_ABI_APCS;
     76 
     77   assert(Options.MCOptions.getABIName().empty() &&
     78          "Unknown target-abi option!");
     79 
     80   ARMBaseTargetMachine::ARMABI TargetABI =
     81       ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
     82 
     83   // FIXME: This is duplicated code from the front end and should be unified.
     84   if (TT.isOSBinFormatMachO()) {
     85     if (TT.getEnvironment() == llvm::Triple::EABI ||
     86         (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
     87         CPU.startswith("cortex-m")) {
     88       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
     89     } else if (TT.isWatchABI()) {
     90       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
     91     } else {
     92       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
     93     }
     94   } else if (TT.isOSWindows()) {
     95     // FIXME: this is invalid for WindowsCE
     96     TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
     97   } else {
     98     // Select the default based on the platform.
     99     switch (TT.getEnvironment()) {
    100     case llvm::Triple::Android:
    101     case llvm::Triple::GNUEABI:
    102     case llvm::Triple::GNUEABIHF:
    103     case llvm::Triple::MuslEABI:
    104     case llvm::Triple::MuslEABIHF:
    105     case llvm::Triple::EABIHF:
    106     case llvm::Triple::EABI:
    107       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
    108       break;
    109     case llvm::Triple::GNU:
    110       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
    111       break;
    112     default:
    113       if (TT.isOSNetBSD())
    114         TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
    115       else
    116         TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
    117       break;
    118     }
    119   }
    120 
    121   return TargetABI;
    122 }
    123 
    124 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
    125                                      const TargetOptions &Options,
    126                                      bool isLittle) {
    127   auto ABI = computeTargetABI(TT, CPU, Options);
    128   std::string Ret = "";
    129 
    130   if (isLittle)
    131     // Little endian.
    132     Ret += "e";
    133   else
    134     // Big endian.
    135     Ret += "E";
    136 
    137   Ret += DataLayout::getManglingComponent(TT);
    138 
    139   // Pointers are 32 bits and aligned to 32 bits.
    140   Ret += "-p:32:32";
    141 
    142   // ABIs other than APCS have 64 bit integers with natural alignment.
    143   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
    144     Ret += "-i64:64";
    145 
    146   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
    147   // bits, others to 64 bits. We always try to align to 64 bits.
    148   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
    149     Ret += "-f64:32:64";
    150 
    151   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
    152   // to 64. We always ty to give them natural alignment.
    153   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
    154     Ret += "-v64:32:64-v128:32:128";
    155   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
    156     Ret += "-v128:64:128";
    157 
    158   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
    159   // particular hardware support on 32-bit ARM).
    160   Ret += "-a:0:32";
    161 
    162   // Integer registers are 32 bits.
    163   Ret += "-n32";
    164 
    165   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
    166   // aligned everywhere else.
    167   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
    168     Ret += "-S128";
    169   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
    170     Ret += "-S64";
    171   else
    172     Ret += "-S32";
    173 
    174   return Ret;
    175 }
    176 
    177 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
    178                                            Optional<Reloc::Model> RM) {
    179   if (!RM.hasValue())
    180     // Default relocation model on Darwin is PIC.
    181     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
    182 
    183   // DynamicNoPIC is only used on darwin.
    184   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
    185     return Reloc::Static;
    186 
    187   return *RM;
    188 }
    189 
    190 /// Create an ARM architecture model.
    191 ///
    192 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
    193                                            StringRef CPU, StringRef FS,
    194                                            const TargetOptions &Options,
    195                                            Optional<Reloc::Model> RM,
    196                                            CodeModel::Model CM,
    197                                            CodeGenOpt::Level OL, bool isLittle)
    198     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
    199                         CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
    200                         OL),
    201       TargetABI(computeTargetABI(TT, CPU, Options)),
    202       TLOF(createTLOF(getTargetTriple())),
    203       Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
    204 
    205   // Default to triple-appropriate float ABI
    206   if (Options.FloatABIType == FloatABI::Default)
    207     this->Options.FloatABIType =
    208         Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
    209 
    210   // Default to triple-appropriate EABI
    211   if (Options.EABIVersion == EABI::Default ||
    212       Options.EABIVersion == EABI::Unknown) {
    213     // musl is compatible with glibc with regard to EABI version
    214     if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
    215       this->Options.EABIVersion = EABI::GNU;
    216     else
    217       this->Options.EABIVersion = EABI::EABI5;
    218   }
    219 }
    220 
    221 ARMBaseTargetMachine::~ARMBaseTargetMachine() {}
    222 
    223 const ARMSubtarget *
    224 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
    225   Attribute CPUAttr = F.getFnAttribute("target-cpu");
    226   Attribute FSAttr = F.getFnAttribute("target-features");
    227 
    228   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
    229                         ? CPUAttr.getValueAsString().str()
    230                         : TargetCPU;
    231   std::string FS = !FSAttr.hasAttribute(Attribute::None)
    232                        ? FSAttr.getValueAsString().str()
    233                        : TargetFS;
    234 
    235   // FIXME: This is related to the code below to reset the target options,
    236   // we need to know whether or not the soft float flag is set on the
    237   // function before we can generate a subtarget. We also need to use
    238   // it as a key for the subtarget since that can be the only difference
    239   // between two functions.
    240   bool SoftFloat =
    241       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
    242   // If the soft float attribute is set on the function turn on the soft float
    243   // subtarget feature.
    244   if (SoftFloat)
    245     FS += FS.empty() ? "+soft-float" : ",+soft-float";
    246 
    247   auto &I = SubtargetMap[CPU + FS];
    248   if (!I) {
    249     // This needs to be done before we create a new subtarget since any
    250     // creation will depend on the TM and the code generation flags on the
    251     // function that reside in TargetOptions.
    252     resetTargetOptions(F);
    253     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
    254   }
    255   return I.get();
    256 }
    257 
    258 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
    259   return TargetIRAnalysis([this](const Function &F) {
    260     return TargetTransformInfo(ARMTTIImpl(this, F));
    261   });
    262 }
    263 
    264 void ARMTargetMachine::anchor() {}
    265 
    266 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
    267                                    StringRef CPU, StringRef FS,
    268                                    const TargetOptions &Options,
    269                                    Optional<Reloc::Model> RM,
    270                                    CodeModel::Model CM, CodeGenOpt::Level OL,
    271                                    bool isLittle)
    272     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
    273   initAsmInfo();
    274   if (!Subtarget.hasARMOps())
    275     report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
    276                        "support ARM mode execution!");
    277 }
    278 
    279 void ARMLETargetMachine::anchor() {}
    280 
    281 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
    282                                        StringRef CPU, StringRef FS,
    283                                        const TargetOptions &Options,
    284                                        Optional<Reloc::Model> RM,
    285                                        CodeModel::Model CM,
    286                                        CodeGenOpt::Level OL)
    287     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
    288 
    289 void ARMBETargetMachine::anchor() {}
    290 
    291 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
    292                                        StringRef CPU, StringRef FS,
    293                                        const TargetOptions &Options,
    294                                        Optional<Reloc::Model> RM,
    295                                        CodeModel::Model CM,
    296                                        CodeGenOpt::Level OL)
    297     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
    298 
    299 void ThumbTargetMachine::anchor() {}
    300 
    301 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
    302                                        StringRef CPU, StringRef FS,
    303                                        const TargetOptions &Options,
    304                                        Optional<Reloc::Model> RM,
    305                                        CodeModel::Model CM,
    306                                        CodeGenOpt::Level OL, bool isLittle)
    307     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
    308   initAsmInfo();
    309 }
    310 
    311 void ThumbLETargetMachine::anchor() {}
    312 
    313 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
    314                                            StringRef CPU, StringRef FS,
    315                                            const TargetOptions &Options,
    316                                            Optional<Reloc::Model> RM,
    317                                            CodeModel::Model CM,
    318                                            CodeGenOpt::Level OL)
    319     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
    320 
    321 void ThumbBETargetMachine::anchor() {}
    322 
    323 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
    324                                            StringRef CPU, StringRef FS,
    325                                            const TargetOptions &Options,
    326                                            Optional<Reloc::Model> RM,
    327                                            CodeModel::Model CM,
    328                                            CodeGenOpt::Level OL)
    329     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
    330 
    331 namespace {
    332 /// ARM Code Generator Pass Configuration Options.
    333 class ARMPassConfig : public TargetPassConfig {
    334 public:
    335   ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
    336     : TargetPassConfig(TM, PM) {}
    337 
    338   ARMBaseTargetMachine &getARMTargetMachine() const {
    339     return getTM<ARMBaseTargetMachine>();
    340   }
    341 
    342   void addIRPasses() override;
    343   bool addPreISel() override;
    344   bool addInstSelector() override;
    345   void addPreRegAlloc() override;
    346   void addPreSched2() override;
    347   void addPreEmitPass() override;
    348 };
    349 } // namespace
    350 
    351 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
    352   return new ARMPassConfig(this, PM);
    353 }
    354 
    355 void ARMPassConfig::addIRPasses() {
    356   if (TM->Options.ThreadModel == ThreadModel::Single)
    357     addPass(createLowerAtomicPass());
    358   else
    359     addPass(createAtomicExpandPass(TM));
    360 
    361   // Cmpxchg instructions are often used with a subsequent comparison to
    362   // determine whether it succeeded. We can exploit existing control-flow in
    363   // ldrex/strex loops to simplify this, but it needs tidying up.
    364   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
    365     addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
    366       const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
    367       return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
    368     }));
    369 
    370   TargetPassConfig::addIRPasses();
    371 
    372   // Match interleaved memory accesses to ldN/stN intrinsics.
    373   if (TM->getOptLevel() != CodeGenOpt::None)
    374     addPass(createInterleavedAccessPass(TM));
    375 }
    376 
    377 bool ARMPassConfig::addPreISel() {
    378   if ((TM->getOptLevel() != CodeGenOpt::None &&
    379        EnableGlobalMerge == cl::BOU_UNSET) ||
    380       EnableGlobalMerge == cl::BOU_TRUE) {
    381     // FIXME: This is using the thumb1 only constant value for
    382     // maximal global offset for merging globals. We may want
    383     // to look into using the old value for non-thumb1 code of
    384     // 4095 based on the TargetMachine, but this starts to become
    385     // tricky when doing code gen per function.
    386     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
    387                                (EnableGlobalMerge == cl::BOU_UNSET);
    388     // Merging of extern globals is enabled by default on non-Mach-O as we
    389     // expect it to be generally either beneficial or harmless. On Mach-O it
    390     // is disabled as we emit the .subsections_via_symbols directive which
    391     // means that merging extern globals is not safe.
    392     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
    393     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
    394                                   MergeExternalByDefault));
    395   }
    396 
    397   return false;
    398 }
    399 
    400 bool ARMPassConfig::addInstSelector() {
    401   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
    402   return false;
    403 }
    404 
    405 void ARMPassConfig::addPreRegAlloc() {
    406   if (getOptLevel() != CodeGenOpt::None) {
    407     addPass(createMLxExpansionPass());
    408 
    409     if (EnableARMLoadStoreOpt)
    410       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
    411 
    412     if (!DisableA15SDOptimization)
    413       addPass(createA15SDOptimizerPass());
    414   }
    415 }
    416 
    417 void ARMPassConfig::addPreSched2() {
    418   if (getOptLevel() != CodeGenOpt::None) {
    419     if (EnableARMLoadStoreOpt)
    420       addPass(createARMLoadStoreOptimizationPass());
    421 
    422     addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
    423   }
    424 
    425   // Expand some pseudo instructions into multiple instructions to allow
    426   // proper scheduling.
    427   addPass(createARMExpandPseudoPass());
    428 
    429   if (getOptLevel() != CodeGenOpt::None) {
    430     // in v8, IfConversion depends on Thumb instruction widths
    431     addPass(createThumb2SizeReductionPass([this](const Function &F) {
    432       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
    433     }));
    434 
    435     addPass(createIfConverter([this](const Function &F) {
    436       return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only();
    437     }));
    438   }
    439   addPass(createThumb2ITBlockPass());
    440 }
    441 
    442 void ARMPassConfig::addPreEmitPass() {
    443   addPass(createThumb2SizeReductionPass());
    444 
    445   // Constant island pass work on unbundled instructions.
    446   addPass(createUnpackMachineBundles([this](const Function &F) {
    447     return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2();
    448   }));
    449 
    450   // Don't optimize barriers at -O0.
    451   if (getOptLevel() != CodeGenOpt::None)
    452     addPass(createARMOptimizeBarriersPass());
    453 
    454   addPass(createARMConstantIslandPass());
    455 }
    456