1 //===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===// 2 3 Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector 4 registers, to generate better spill code. 5 6 //===----------------------------------------------------------------------===// 7 8 The first should be a single lvx from the constant pool, the second should be 9 a xor/stvx: 10 11 void foo(void) { 12 int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 }; 13 bar (x); 14 } 15 16 #include <string.h> 17 void foo(void) { 18 int x[8] __attribute__((aligned(128))); 19 memset (x, 0, sizeof (x)); 20 bar (x); 21 } 22 23 //===----------------------------------------------------------------------===// 24 25 Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0: 26 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763 27 28 When -ffast-math is on, we can use 0.0. 29 30 //===----------------------------------------------------------------------===// 31 32 Consider this: 33 v4f32 Vector; 34 v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X }; 35 36 Since we know that "Vector" is 16-byte aligned and we know the element offset 37 of ".X", we should change the load into a lve*x instruction, instead of doing 38 a load/store/lve*x sequence. 39 40 //===----------------------------------------------------------------------===// 41 42 For functions that use altivec AND have calls, we are VRSAVE'ing all call 43 clobbered regs. 44 45 //===----------------------------------------------------------------------===// 46 47 Implement passing vectors by value into calls and receiving them as arguments. 48 49 //===----------------------------------------------------------------------===// 50 51 GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load 52 of C1/C2/C3, then a load and vperm of Variable. 53 54 //===----------------------------------------------------------------------===// 55 56 We need a way to teach tblgen that some operands of an intrinsic are required to 57 be constants. The verifier should enforce this constraint. 58 59 //===----------------------------------------------------------------------===// 60 61 We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte 62 aligned stack slot, followed by a load/vperm. We should probably just store it 63 to a scalar stack slot, then use lvsl/vperm to load it. If the value is already 64 in memory this is a big win. 65 66 //===----------------------------------------------------------------------===// 67 68 extract_vector_elt of an arbitrary constant vector can be done with the 69 following instructions: 70 71 vTemp = vec_splat(v0,2); // 2 is the element the src is in. 72 vec_ste(&destloc,0,vTemp); 73 74 We can do an arbitrary non-constant value by using lvsr/perm/ste. 75 76 //===----------------------------------------------------------------------===// 77 78 If we want to tie instruction selection into the scheduler, we can do some 79 constant formation with different instructions. For example, we can generate 80 "vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with 81 "vsplti 0" or "vxor", each of which use different execution units, thus could 82 help scheduling. 83 84 This is probably only reasonable for a post-pass scheduler. 85 86 //===----------------------------------------------------------------------===// 87 88 For this function: 89 90 void test(vector float *A, vector float *B) { 91 vector float C = (vector float)vec_cmpeq(*A, *B); 92 if (!vec_any_eq(*A, *B)) 93 *B = (vector float){0,0,0,0}; 94 *A = C; 95 } 96 97 we get the following basic block: 98 99 ... 100 lvx v2, 0, r4 101 lvx v3, 0, r3 102 vcmpeqfp v4, v3, v2 103 vcmpeqfp. v2, v3, v2 104 bne cr6, LBB1_2 ; cond_next 105 106 The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the 107 vcmpeqfp. result is used by a branch. This can be improved. 108 109 //===----------------------------------------------------------------------===// 110 111 The code generated for this is truly aweful: 112 113 vector float test(float a, float b) { 114 return (vector float){ 0.0, a, 0.0, 0.0}; 115 } 116 117 LCPI1_0: ; float 118 .space 4 119 .text 120 .globl _test 121 .align 4 122 _test: 123 mfspr r2, 256 124 oris r3, r2, 4096 125 mtspr 256, r3 126 lis r3, ha16(LCPI1_0) 127 addi r4, r1, -32 128 stfs f1, -16(r1) 129 addi r5, r1, -16 130 lfs f0, lo16(LCPI1_0)(r3) 131 stfs f0, -32(r1) 132 lvx v2, 0, r4 133 lvx v3, 0, r5 134 vmrghw v3, v3, v2 135 vspltw v2, v2, 0 136 vmrghw v2, v2, v3 137 mtspr 256, r2 138 blr 139 140 //===----------------------------------------------------------------------===// 141 142 int foo(vector float *x, vector float *y) { 143 if (vec_all_eq(*x,*y)) return 3245; 144 else return 12; 145 } 146 147 A predicate compare being used in a select_cc should have the same peephole 148 applied to it as a predicate compare used by a br_cc. There should be no 149 mfcr here: 150 151 _foo: 152 mfspr r2, 256 153 oris r5, r2, 12288 154 mtspr 256, r5 155 li r5, 12 156 li r6, 3245 157 lvx v2, 0, r4 158 lvx v3, 0, r3 159 vcmpeqfp. v2, v3, v2 160 mfcr r3, 2 161 rlwinm r3, r3, 25, 31, 31 162 cmpwi cr0, r3, 0 163 bne cr0, LBB1_2 ; entry 164 LBB1_1: ; entry 165 mr r6, r5 166 LBB1_2: ; entry 167 mr r3, r6 168 mtspr 256, r2 169 blr 170 171 //===----------------------------------------------------------------------===// 172 173 CodeGen/PowerPC/vec_constants.ll has an and operation that should be 174 codegen'd to andc. The issue is that the 'all ones' build vector is 175 SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected 176 which prevents the vnot pattern from matching. 177 178 179 //===----------------------------------------------------------------------===// 180 181 An alternative to the store/store/load approach for illegal insert element 182 lowering would be: 183 184 1. store element to any ol' slot 185 2. lvx the slot 186 3. lvsl 0; splat index; vcmpeq to generate a select mask 187 4. lvsl slot + x; vperm to rotate result into correct slot 188 5. vsel result together. 189 190 //===----------------------------------------------------------------------===// 191 192 Should codegen branches on vec_any/vec_all to avoid mfcr. Two examples: 193 194 #include <altivec.h> 195 int f(vector float a, vector float b) 196 { 197 int aa = 0; 198 if (vec_all_ge(a, b)) 199 aa |= 0x1; 200 if (vec_any_ge(a,b)) 201 aa |= 0x2; 202 return aa; 203 } 204 205 vector float f(vector float a, vector float b) { 206 if (vec_any_eq(a, b)) 207 return a; 208 else 209 return b; 210 } 211 212 //===----------------------------------------------------------------------===// 213 214 We should do a little better with eliminating dead stores. 215 The stores to the stack are dead since %a and %b are not needed 216 217 ; Function Attrs: nounwind 218 define <16 x i8> @test_vpmsumb() #0 { 219 entry: 220 %a = alloca <16 x i8>, align 16 221 %b = alloca <16 x i8>, align 16 222 store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16 223 store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16 224 %0 = load <16 x i8>* %a, align 16 225 %1 = load <16 x i8>* %b, align 16 226 %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1) 227 ret <16 x i8> %2 228 } 229 230 231 ; Function Attrs: nounwind readnone 232 declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1 233 234 235 Produces the following code with -mtriple=powerpc64-unknown-linux-gnu: 236 # BB#0: # %entry 237 addis 3, 2, .LCPI0_0@toc@ha 238 addis 4, 2, .LCPI0_1@toc@ha 239 addi 3, 3, .LCPI0_0@toc@l 240 addi 4, 4, .LCPI0_1@toc@l 241 lxvw4x 0, 0, 3 242 addi 3, 1, -16 243 lxvw4x 35, 0, 4 244 stxvw4x 0, 0, 3 245 ori 2, 2, 0 246 lxvw4x 34, 0, 3 247 addi 3, 1, -32 248 stxvw4x 35, 0, 3 249 vpmsumb 2, 2, 3 250 blr 251 .long 0 252 .quad 0 253 254 The two stxvw4x instructions are not needed. 255 With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes 256 are present too. 257 258 //===----------------------------------------------------------------------===// 259 260 The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll: 261 262 define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind { 263 %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0 264 %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1 265 %result = add <2 x i64> %x, %tmpvec2 266 ret <2 x i64> %result 267 268 This will generate the following instruction sequence: 269 std 5, -8(1) 270 std 5, -16(1) 271 addi 3, 1, -16 272 ori 2, 2, 0 273 lxvd2x 35, 0, 3 274 vaddudm 2, 2, 3 275 blr 276 277 This will almost certainly cause a load-hit-store hazard. 278 Since val is a value parameter, it should not need to be saved onto 279 the stack, unless it's being done set up the vector register. Instead, 280 it would be better to splat the value into a vector register, and then 281 remove the (dead) stores to the stack. 282 283 //===----------------------------------------------------------------------===// 284 285 At the moment we always generate a lxsdx in preference to lfd, or stxsdx in 286 preference to stfd. When we have a reg-immediate addressing mode, this is a 287 poor choice, since we have to load the address into an index register. This 288 should be fixed for P7/P8. 289 290 //===----------------------------------------------------------------------===// 291 292 Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE. 293 However, we could actually support both kinds on either endianness, if we check 294 for the appropriate shufflevector pattern for each case ... this would cause 295 some additional shufflevectors to be recognized and implemented via the 296 "swapped" form. 297 298 //===----------------------------------------------------------------------===// 299 300 There is a utility program called PerfectShuffle that generates a table of the 301 shortest instruction sequence for implementing a shufflevector operation on 302 PowerPC. However, this was designed for big-endian code generation. We could 303 modify this program to create a little endian version of the table. The table 304 is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE(). 305 306 //===----------------------------------------------------------------------===// 307 308 Opportunies to use instructions from PPCInstrVSX.td during code gen 309 - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07) 310 - Scalar comparisons (xscmpodp and xscmpudp) 311 - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp) 312 313 Related to this: we currently do not generate the lxvw4x instruction for either 314 v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires 315 a single target type. This should probably be addressed in the PPCISelDAGToDAG logic. 316 317 //===----------------------------------------------------------------------===// 318 319 Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only 320 for v2f64 with VSX available. We should create custom lowering 321 support for the other vector types. Without this support, we generate 322 sequences with load-hit-store hazards. 323 324 v4f32 can be supported with VSX by shifting the correct element into 325 big-endian lane 0, using xscvspdpn to produce a double-precision 326 representation of the single-precision value in big-endian 327 double-precision lane 0, and reinterpreting lane 0 as an FPR or 328 vector-scalar register. 329 330 v2i64 can be supported with VSX and P8Vector in the same manner as 331 v2f64, followed by a direct move to a GPR. 332 333 v4i32 can be supported with VSX and P8Vector by shifting the correct 334 element into big-endian lane 1, using a direct move to a GPR, and 335 sign-extending the 32-bit result to 64 bits. 336 337 v8i16 can be supported with VSX and P8Vector by shifting the correct 338 element into big-endian lane 3, using a direct move to a GPR, and 339 sign-extending the 16-bit result to 64 bits. 340 341 v16i8 can be supported with VSX and P8Vector by shifting the correct 342 element into big-endian lane 7, using a direct move to a GPR, and 343 sign-extending the 8-bit result to 64 bits. 344