Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "SystemZTargetMachine.h"
     11 #include "SystemZTargetTransformInfo.h"
     12 #include "llvm/CodeGen/Passes.h"
     13 #include "llvm/CodeGen/TargetPassConfig.h"
     14 #include "llvm/Support/TargetRegistry.h"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     17 
     18 using namespace llvm;
     19 
     20 extern cl::opt<bool> MISchedPostRA;
     21 extern "C" void LLVMInitializeSystemZTarget() {
     22   // Register the target.
     23   RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
     24 }
     25 
     26 // Determine whether we use the vector ABI.
     27 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
     28   // We use the vector ABI whenever the vector facility is avaiable.
     29   // This is the case by default if CPU is z13 or later, and can be
     30   // overridden via "[+-]vector" feature string elements.
     31   bool VectorABI = true;
     32   if (CPU.empty() || CPU == "generic" ||
     33       CPU == "z10" || CPU == "z196" || CPU == "zEC12")
     34     VectorABI = false;
     35 
     36   SmallVector<StringRef, 3> Features;
     37   FS.split(Features, ',', -1, false /* KeepEmpty */);
     38   for (auto &Feature : Features) {
     39     if (Feature == "vector" || Feature == "+vector")
     40       VectorABI = true;
     41     if (Feature == "-vector")
     42       VectorABI = false;
     43   }
     44 
     45   return VectorABI;
     46 }
     47 
     48 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
     49                                      StringRef FS) {
     50   bool VectorABI = UsesVectorABI(CPU, FS);
     51   std::string Ret = "";
     52 
     53   // Big endian.
     54   Ret += "E";
     55 
     56   // Data mangling.
     57   Ret += DataLayout::getManglingComponent(TT);
     58 
     59   // Make sure that global data has at least 16 bits of alignment by
     60   // default, so that we can refer to it using LARL.  We don't have any
     61   // special requirements for stack variables though.
     62   Ret += "-i1:8:16-i8:8:16";
     63 
     64   // 64-bit integers are naturally aligned.
     65   Ret += "-i64:64";
     66 
     67   // 128-bit floats are aligned only to 64 bits.
     68   Ret += "-f128:64";
     69 
     70   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
     71   if (VectorABI)
     72     Ret += "-v128:64";
     73 
     74   // We prefer 16 bits of aligned for all globals; see above.
     75   Ret += "-a:8:16";
     76 
     77   // Integer registers are 32 or 64 bits.
     78   Ret += "-n32:64";
     79 
     80   return Ret;
     81 }
     82 
     83 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
     84   // Static code is suitable for use in a dynamic executable; there is no
     85   // separate DynamicNoPIC model.
     86   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
     87     return Reloc::Static;
     88   return *RM;
     89 }
     90 
     91 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
     92                                            StringRef CPU, StringRef FS,
     93                                            const TargetOptions &Options,
     94                                            Optional<Reloc::Model> RM,
     95                                            CodeModel::Model CM,
     96                                            CodeGenOpt::Level OL)
     97     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
     98                         getEffectiveRelocModel(RM), CM, OL),
     99       TLOF(make_unique<TargetLoweringObjectFileELF>()),
    100       Subtarget(TT, CPU, FS, *this) {
    101   initAsmInfo();
    102 }
    103 
    104 SystemZTargetMachine::~SystemZTargetMachine() {}
    105 
    106 namespace {
    107 /// SystemZ Code Generator Pass Configuration Options.
    108 class SystemZPassConfig : public TargetPassConfig {
    109 public:
    110   SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
    111     : TargetPassConfig(TM, PM) {}
    112 
    113   SystemZTargetMachine &getSystemZTargetMachine() const {
    114     return getTM<SystemZTargetMachine>();
    115   }
    116 
    117   void addIRPasses() override;
    118   bool addInstSelector() override;
    119   void addPreSched2() override;
    120   void addPreEmitPass() override;
    121 };
    122 } // end anonymous namespace
    123 
    124 void SystemZPassConfig::addIRPasses() {
    125   if (getOptLevel() != CodeGenOpt::None)
    126     addPass(createSystemZTDCPass());
    127 
    128   TargetPassConfig::addIRPasses();
    129 }
    130 
    131 bool SystemZPassConfig::addInstSelector() {
    132   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
    133 
    134  if (getOptLevel() != CodeGenOpt::None)
    135     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
    136 
    137   return false;
    138 }
    139 
    140 void SystemZPassConfig::addPreSched2() {
    141   if (getOptLevel() != CodeGenOpt::None)
    142     addPass(&IfConverterID);
    143 }
    144 
    145 void SystemZPassConfig::addPreEmitPass() {
    146 
    147   // Do instruction shortening before compare elimination because some
    148   // vector instructions will be shortened into opcodes that compare
    149   // elimination recognizes.
    150   if (getOptLevel() != CodeGenOpt::None)
    151     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
    152 
    153   // We eliminate comparisons here rather than earlier because some
    154   // transformations can change the set of available CC values and we
    155   // generally want those transformations to have priority.  This is
    156   // especially true in the commonest case where the result of the comparison
    157   // is used by a single in-range branch instruction, since we will then
    158   // be able to fuse the compare and the branch instead.
    159   //
    160   // For example, two-address NILF can sometimes be converted into
    161   // three-address RISBLG.  NILF produces a CC value that indicates whether
    162   // the low word is zero, but RISBLG does not modify CC at all.  On the
    163   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
    164   // The CC value produced by NILL isn't useful for our purposes, but the
    165   // value produced by RISBG can be used for any comparison with zero
    166   // (not just equality).  So there are some transformations that lose
    167   // CC values (while still being worthwhile) and others that happen to make
    168   // the CC result more useful than it was originally.
    169   //
    170   // Another reason is that we only want to use BRANCH ON COUNT in cases
    171   // where we know that the count register is not going to be spilled.
    172   //
    173   // Doing it so late makes it more likely that a register will be reused
    174   // between the comparison and the branch, but it isn't clear whether
    175   // preventing that would be a win or not.
    176   if (getOptLevel() != CodeGenOpt::None)
    177     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
    178   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
    179 
    180   // Do final scheduling after all other optimizations, to get an
    181   // optimal input for the decoder (branch relaxation must happen
    182   // after block placement).
    183   if (getOptLevel() != CodeGenOpt::None) {
    184     if (MISchedPostRA)
    185       addPass(&PostMachineSchedulerID);
    186     else
    187       addPass(&PostRASchedulerID);
    188   }
    189 }
    190 
    191 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
    192   return new SystemZPassConfig(this, PM);
    193 }
    194 
    195 TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
    196   return TargetIRAnalysis([this](const Function &F) {
    197     return TargetTransformInfo(SystemZTTIImpl(this, F));
    198   });
    199 }
    200