Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/X86BaseInfo.h"
     11 #include "MCTargetDesc/X86FixupKinds.h"
     12 #include "llvm/ADT/StringSwitch.h"
     13 #include "llvm/MC/MCAsmBackend.h"
     14 #include "llvm/MC/MCELFObjectWriter.h"
     15 #include "llvm/MC/MCExpr.h"
     16 #include "llvm/MC/MCFixupKindInfo.h"
     17 #include "llvm/MC/MCInst.h"
     18 #include "llvm/MC/MCMachObjectWriter.h"
     19 #include "llvm/MC/MCObjectWriter.h"
     20 #include "llvm/MC/MCRegisterInfo.h"
     21 #include "llvm/MC/MCSectionCOFF.h"
     22 #include "llvm/MC/MCSectionELF.h"
     23 #include "llvm/MC/MCSectionMachO.h"
     24 #include "llvm/MC/MCSubtargetInfo.h"
     25 #include "llvm/Support/ELF.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MachO.h"
     28 #include "llvm/Support/TargetRegistry.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 using namespace llvm;
     31 
     32 static unsigned getFixupKindLog2Size(unsigned Kind) {
     33   switch (Kind) {
     34   default:
     35     llvm_unreachable("invalid fixup kind!");
     36   case FK_PCRel_1:
     37   case FK_SecRel_1:
     38   case FK_Data_1:
     39     return 0;
     40   case FK_PCRel_2:
     41   case FK_SecRel_2:
     42   case FK_Data_2:
     43     return 1;
     44   case FK_PCRel_4:
     45   case X86::reloc_riprel_4byte:
     46   case X86::reloc_riprel_4byte_relax:
     47   case X86::reloc_riprel_4byte_relax_rex:
     48   case X86::reloc_riprel_4byte_movq_load:
     49   case X86::reloc_signed_4byte:
     50   case X86::reloc_signed_4byte_relax:
     51   case X86::reloc_global_offset_table:
     52   case FK_SecRel_4:
     53   case FK_Data_4:
     54     return 2;
     55   case FK_PCRel_8:
     56   case FK_SecRel_8:
     57   case FK_Data_8:
     58   case X86::reloc_global_offset_table8:
     59     return 3;
     60   }
     61 }
     62 
     63 namespace {
     64 
     65 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
     66 public:
     67   X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
     68                      bool HasRelocationAddend, bool foobar)
     69     : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
     70 };
     71 
     72 class X86AsmBackend : public MCAsmBackend {
     73   const StringRef CPU;
     74   bool HasNopl;
     75   const uint64_t MaxNopLength;
     76 public:
     77   X86AsmBackend(const Target &T, StringRef CPU)
     78       : MCAsmBackend(), CPU(CPU),
     79         MaxNopLength((CPU == "slm" || CPU == "lakemont") ? 7 : 15) {
     80     HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
     81               CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
     82               CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
     83               CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
     84               CPU != "c3" && CPU != "c3-2";
     85   }
     86 
     87   unsigned getNumFixupKinds() const override {
     88     return X86::NumTargetFixupKinds;
     89   }
     90 
     91   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
     92     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
     93         {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     94         {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     95         {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     96         {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     97         {"reloc_signed_4byte", 0, 32, 0},
     98         {"reloc_signed_4byte_relax", 0, 32, 0},
     99         {"reloc_global_offset_table", 0, 32, 0},
    100         {"reloc_global_offset_table8", 0, 64, 0},
    101     };
    102 
    103     if (Kind < FirstTargetFixupKind)
    104       return MCAsmBackend::getFixupKindInfo(Kind);
    105 
    106     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
    107            "Invalid kind!");
    108     return Infos[Kind - FirstTargetFixupKind];
    109   }
    110 
    111   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
    112                   uint64_t Value, bool IsPCRel) const override {
    113     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
    114 
    115     assert(Fixup.getOffset() + Size <= DataSize &&
    116            "Invalid fixup offset!");
    117 
    118     // Check that uppper bits are either all zeros or all ones.
    119     // Specifically ignore overflow/underflow as long as the leakage is
    120     // limited to the lower bits. This is to remain compatible with
    121     // other assemblers.
    122     assert(isIntN(Size * 8 + 1, Value) &&
    123            "Value does not fit in the Fixup field");
    124 
    125     for (unsigned i = 0; i != Size; ++i)
    126       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
    127   }
    128 
    129   bool mayNeedRelaxation(const MCInst &Inst) const override;
    130 
    131   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
    132                             const MCRelaxableFragment *DF,
    133                             const MCAsmLayout &Layout) const override;
    134 
    135   void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
    136                         MCInst &Res) const override;
    137 
    138   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
    139 };
    140 } // end anonymous namespace
    141 
    142 static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool is16BitMode) {
    143   unsigned Op = Inst.getOpcode();
    144   switch (Op) {
    145   default:
    146     return Op;
    147   case X86::JAE_1:
    148     return (is16BitMode) ? X86::JAE_2 : X86::JAE_4;
    149   case X86::JA_1:
    150     return (is16BitMode) ? X86::JA_2 : X86::JA_4;
    151   case X86::JBE_1:
    152     return (is16BitMode) ? X86::JBE_2 : X86::JBE_4;
    153   case X86::JB_1:
    154     return (is16BitMode) ? X86::JB_2 : X86::JB_4;
    155   case X86::JE_1:
    156     return (is16BitMode) ? X86::JE_2 : X86::JE_4;
    157   case X86::JGE_1:
    158     return (is16BitMode) ? X86::JGE_2 : X86::JGE_4;
    159   case X86::JG_1:
    160     return (is16BitMode) ? X86::JG_2 : X86::JG_4;
    161   case X86::JLE_1:
    162     return (is16BitMode) ? X86::JLE_2 : X86::JLE_4;
    163   case X86::JL_1:
    164     return (is16BitMode) ? X86::JL_2 : X86::JL_4;
    165   case X86::JMP_1:
    166     return (is16BitMode) ? X86::JMP_2 : X86::JMP_4;
    167   case X86::JNE_1:
    168     return (is16BitMode) ? X86::JNE_2 : X86::JNE_4;
    169   case X86::JNO_1:
    170     return (is16BitMode) ? X86::JNO_2 : X86::JNO_4;
    171   case X86::JNP_1:
    172     return (is16BitMode) ? X86::JNP_2 : X86::JNP_4;
    173   case X86::JNS_1:
    174     return (is16BitMode) ? X86::JNS_2 : X86::JNS_4;
    175   case X86::JO_1:
    176     return (is16BitMode) ? X86::JO_2 : X86::JO_4;
    177   case X86::JP_1:
    178     return (is16BitMode) ? X86::JP_2 : X86::JP_4;
    179   case X86::JS_1:
    180     return (is16BitMode) ? X86::JS_2 : X86::JS_4;
    181   }
    182 }
    183 
    184 static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
    185   unsigned Op = Inst.getOpcode();
    186   switch (Op) {
    187   default:
    188     return Op;
    189 
    190     // IMUL
    191   case X86::IMUL16rri8: return X86::IMUL16rri;
    192   case X86::IMUL16rmi8: return X86::IMUL16rmi;
    193   case X86::IMUL32rri8: return X86::IMUL32rri;
    194   case X86::IMUL32rmi8: return X86::IMUL32rmi;
    195   case X86::IMUL64rri8: return X86::IMUL64rri32;
    196   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
    197 
    198     // AND
    199   case X86::AND16ri8: return X86::AND16ri;
    200   case X86::AND16mi8: return X86::AND16mi;
    201   case X86::AND32ri8: return X86::AND32ri;
    202   case X86::AND32mi8: return X86::AND32mi;
    203   case X86::AND64ri8: return X86::AND64ri32;
    204   case X86::AND64mi8: return X86::AND64mi32;
    205 
    206     // OR
    207   case X86::OR16ri8: return X86::OR16ri;
    208   case X86::OR16mi8: return X86::OR16mi;
    209   case X86::OR32ri8: return X86::OR32ri;
    210   case X86::OR32mi8: return X86::OR32mi;
    211   case X86::OR64ri8: return X86::OR64ri32;
    212   case X86::OR64mi8: return X86::OR64mi32;
    213 
    214     // XOR
    215   case X86::XOR16ri8: return X86::XOR16ri;
    216   case X86::XOR16mi8: return X86::XOR16mi;
    217   case X86::XOR32ri8: return X86::XOR32ri;
    218   case X86::XOR32mi8: return X86::XOR32mi;
    219   case X86::XOR64ri8: return X86::XOR64ri32;
    220   case X86::XOR64mi8: return X86::XOR64mi32;
    221 
    222     // ADD
    223   case X86::ADD16ri8: return X86::ADD16ri;
    224   case X86::ADD16mi8: return X86::ADD16mi;
    225   case X86::ADD32ri8: return X86::ADD32ri;
    226   case X86::ADD32mi8: return X86::ADD32mi;
    227   case X86::ADD64ri8: return X86::ADD64ri32;
    228   case X86::ADD64mi8: return X86::ADD64mi32;
    229 
    230    // ADC
    231   case X86::ADC16ri8: return X86::ADC16ri;
    232   case X86::ADC16mi8: return X86::ADC16mi;
    233   case X86::ADC32ri8: return X86::ADC32ri;
    234   case X86::ADC32mi8: return X86::ADC32mi;
    235   case X86::ADC64ri8: return X86::ADC64ri32;
    236   case X86::ADC64mi8: return X86::ADC64mi32;
    237 
    238     // SUB
    239   case X86::SUB16ri8: return X86::SUB16ri;
    240   case X86::SUB16mi8: return X86::SUB16mi;
    241   case X86::SUB32ri8: return X86::SUB32ri;
    242   case X86::SUB32mi8: return X86::SUB32mi;
    243   case X86::SUB64ri8: return X86::SUB64ri32;
    244   case X86::SUB64mi8: return X86::SUB64mi32;
    245 
    246    // SBB
    247   case X86::SBB16ri8: return X86::SBB16ri;
    248   case X86::SBB16mi8: return X86::SBB16mi;
    249   case X86::SBB32ri8: return X86::SBB32ri;
    250   case X86::SBB32mi8: return X86::SBB32mi;
    251   case X86::SBB64ri8: return X86::SBB64ri32;
    252   case X86::SBB64mi8: return X86::SBB64mi32;
    253 
    254     // CMP
    255   case X86::CMP16ri8: return X86::CMP16ri;
    256   case X86::CMP16mi8: return X86::CMP16mi;
    257   case X86::CMP32ri8: return X86::CMP32ri;
    258   case X86::CMP32mi8: return X86::CMP32mi;
    259   case X86::CMP64ri8: return X86::CMP64ri32;
    260   case X86::CMP64mi8: return X86::CMP64mi32;
    261 
    262     // PUSH
    263   case X86::PUSH32i8:  return X86::PUSHi32;
    264   case X86::PUSH16i8:  return X86::PUSHi16;
    265   case X86::PUSH64i8:  return X86::PUSH64i32;
    266   }
    267 }
    268 
    269 static unsigned getRelaxedOpcode(const MCInst &Inst, bool is16BitMode) {
    270   unsigned R = getRelaxedOpcodeArith(Inst);
    271   if (R != Inst.getOpcode())
    272     return R;
    273   return getRelaxedOpcodeBranch(Inst, is16BitMode);
    274 }
    275 
    276 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    277   // Branches can always be relaxed in either mode.
    278   if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
    279     return true;
    280 
    281   // Check if this instruction is ever relaxable.
    282   if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
    283     return false;
    284 
    285 
    286   // Check if the relaxable operand has an expression. For the current set of
    287   // relaxable instructions, the relaxable operand is always the last operand.
    288   unsigned RelaxableOp = Inst.getNumOperands() - 1;
    289   if (Inst.getOperand(RelaxableOp).isExpr())
    290     return true;
    291 
    292   return false;
    293 }
    294 
    295 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
    296                                          uint64_t Value,
    297                                          const MCRelaxableFragment *DF,
    298                                          const MCAsmLayout &Layout) const {
    299   // Relax if the value is too big for a (signed) i8.
    300   return int64_t(Value) != int64_t(int8_t(Value));
    301 }
    302 
    303 // FIXME: Can tblgen help at all here to verify there aren't other instructions
    304 // we can relax?
    305 void X86AsmBackend::relaxInstruction(const MCInst &Inst,
    306                                      const MCSubtargetInfo &STI,
    307                                      MCInst &Res) const {
    308   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
    309   bool is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
    310   unsigned RelaxedOp = getRelaxedOpcode(Inst, is16BitMode);
    311 
    312   if (RelaxedOp == Inst.getOpcode()) {
    313     SmallString<256> Tmp;
    314     raw_svector_ostream OS(Tmp);
    315     Inst.dump_pretty(OS);
    316     OS << "\n";
    317     report_fatal_error("unexpected instruction to relax: " + OS.str());
    318   }
    319 
    320   Res = Inst;
    321   Res.setOpcode(RelaxedOp);
    322 }
    323 
    324 /// \brief Write a sequence of optimal nops to the output, covering \p Count
    325 /// bytes.
    326 /// \return - true on success, false on failure
    327 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    328   static const uint8_t Nops[10][10] = {
    329     // nop
    330     {0x90},
    331     // xchg %ax,%ax
    332     {0x66, 0x90},
    333     // nopl (%[re]ax)
    334     {0x0f, 0x1f, 0x00},
    335     // nopl 0(%[re]ax)
    336     {0x0f, 0x1f, 0x40, 0x00},
    337     // nopl 0(%[re]ax,%[re]ax,1)
    338     {0x0f, 0x1f, 0x44, 0x00, 0x00},
    339     // nopw 0(%[re]ax,%[re]ax,1)
    340     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    341     // nopl 0L(%[re]ax)
    342     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    343     // nopl 0L(%[re]ax,%[re]ax,1)
    344     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    345     // nopw 0L(%[re]ax,%[re]ax,1)
    346     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    347     // nopw %cs:0L(%[re]ax,%[re]ax,1)
    348     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    349   };
    350 
    351   // This CPU doesn't support long nops. If needed add more.
    352   // FIXME: Can we get this from the subtarget somehow?
    353   // FIXME: We could generated something better than plain 0x90.
    354   if (!HasNopl) {
    355     for (uint64_t i = 0; i < Count; ++i)
    356       OW->write8(0x90);
    357     return true;
    358   }
    359 
    360   // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
    361   // needed, then emit a nop of the remaining length.
    362   do {
    363     const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
    364     const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
    365     for (uint8_t i = 0; i < Prefixes; i++)
    366       OW->write8(0x66);
    367     const uint8_t Rest = ThisNopLength - Prefixes;
    368     for (uint8_t i = 0; i < Rest; i++)
    369       OW->write8(Nops[Rest - 1][i]);
    370     Count -= ThisNopLength;
    371   } while (Count != 0);
    372 
    373   return true;
    374 }
    375 
    376 /* *** */
    377 
    378 namespace {
    379 
    380 class ELFX86AsmBackend : public X86AsmBackend {
    381 public:
    382   uint8_t OSABI;
    383   ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    384       : X86AsmBackend(T, CPU), OSABI(OSABI) {}
    385 };
    386 
    387 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
    388 public:
    389   ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    390     : ELFX86AsmBackend(T, OSABI, CPU) {}
    391 
    392   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    393     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
    394   }
    395 };
    396 
    397 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
    398 public:
    399   ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    400       : ELFX86AsmBackend(T, OSABI, CPU) {}
    401 
    402   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    403     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
    404                                     ELF::EM_X86_64);
    405   }
    406 };
    407 
    408 class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
    409 public:
    410   ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    411       : ELFX86AsmBackend(T, OSABI, CPU) {}
    412 
    413   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    414     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
    415                                     ELF::EM_IAMCU);
    416   }
    417 };
    418 
    419 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
    420 public:
    421   ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    422     : ELFX86AsmBackend(T, OSABI, CPU) {}
    423 
    424   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    425     return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
    426   }
    427 };
    428 
    429 class WindowsX86AsmBackend : public X86AsmBackend {
    430   bool Is64Bit;
    431 
    432 public:
    433   WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
    434     : X86AsmBackend(T, CPU)
    435     , Is64Bit(is64Bit) {
    436   }
    437 
    438   Optional<MCFixupKind> getFixupKind(StringRef Name) const override {
    439     return StringSwitch<Optional<MCFixupKind>>(Name)
    440         .Case("dir32", FK_Data_4)
    441         .Case("secrel32", FK_SecRel_4)
    442         .Case("secidx", FK_SecRel_2)
    443         .Default(MCAsmBackend::getFixupKind(Name));
    444   }
    445 
    446   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    447     return createX86WinCOFFObjectWriter(OS, Is64Bit);
    448   }
    449 };
    450 
    451 namespace CU {
    452 
    453   /// Compact unwind encoding values.
    454   enum CompactUnwindEncodings {
    455     /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
    456     /// the return address, then [RE]SP is moved to [RE]BP.
    457     UNWIND_MODE_BP_FRAME                   = 0x01000000,
    458 
    459     /// A frameless function with a small constant stack size.
    460     UNWIND_MODE_STACK_IMMD                 = 0x02000000,
    461 
    462     /// A frameless function with a large constant stack size.
    463     UNWIND_MODE_STACK_IND                  = 0x03000000,
    464 
    465     /// No compact unwind encoding is available.
    466     UNWIND_MODE_DWARF                      = 0x04000000,
    467 
    468     /// Mask for encoding the frame registers.
    469     UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
    470 
    471     /// Mask for encoding the frameless registers.
    472     UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
    473   };
    474 
    475 } // end CU namespace
    476 
    477 class DarwinX86AsmBackend : public X86AsmBackend {
    478   const MCRegisterInfo &MRI;
    479 
    480   /// \brief Number of registers that can be saved in a compact unwind encoding.
    481   enum { CU_NUM_SAVED_REGS = 6 };
    482 
    483   mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
    484   bool Is64Bit;
    485 
    486   unsigned OffsetSize;                   ///< Offset of a "push" instruction.
    487   unsigned MoveInstrSize;                ///< Size of a "move" instruction.
    488   unsigned StackDivide;                  ///< Amount to adjust stack size by.
    489 protected:
    490   /// \brief Size of a "push" instruction for the given register.
    491   unsigned PushInstrSize(unsigned Reg) const {
    492     switch (Reg) {
    493       case X86::EBX:
    494       case X86::ECX:
    495       case X86::EDX:
    496       case X86::EDI:
    497       case X86::ESI:
    498       case X86::EBP:
    499       case X86::RBX:
    500       case X86::RBP:
    501         return 1;
    502       case X86::R12:
    503       case X86::R13:
    504       case X86::R14:
    505       case X86::R15:
    506         return 2;
    507     }
    508     return 1;
    509   }
    510 
    511   /// \brief Implementation of algorithm to generate the compact unwind encoding
    512   /// for the CFI instructions.
    513   uint32_t
    514   generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
    515     if (Instrs.empty()) return 0;
    516 
    517     // Reset the saved registers.
    518     unsigned SavedRegIdx = 0;
    519     memset(SavedRegs, 0, sizeof(SavedRegs));
    520 
    521     bool HasFP = false;
    522 
    523     // Encode that we are using EBP/RBP as the frame pointer.
    524     uint32_t CompactUnwindEncoding = 0;
    525 
    526     unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
    527     unsigned InstrOffset = 0;
    528     unsigned StackAdjust = 0;
    529     unsigned StackSize = 0;
    530     unsigned PrevStackSize = 0;
    531     unsigned NumDefCFAOffsets = 0;
    532 
    533     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
    534       const MCCFIInstruction &Inst = Instrs[i];
    535 
    536       switch (Inst.getOperation()) {
    537       default:
    538         // Any other CFI directives indicate a frame that we aren't prepared
    539         // to represent via compact unwind, so just bail out.
    540         return 0;
    541       case MCCFIInstruction::OpDefCfaRegister: {
    542         // Defines a frame pointer. E.g.
    543         //
    544         //     movq %rsp, %rbp
    545         //  L0:
    546         //     .cfi_def_cfa_register %rbp
    547         //
    548         HasFP = true;
    549         assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
    550                (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
    551 
    552         // Reset the counts.
    553         memset(SavedRegs, 0, sizeof(SavedRegs));
    554         StackAdjust = 0;
    555         SavedRegIdx = 0;
    556         InstrOffset += MoveInstrSize;
    557         break;
    558       }
    559       case MCCFIInstruction::OpDefCfaOffset: {
    560         // Defines a new offset for the CFA. E.g.
    561         //
    562         //  With frame:
    563         //
    564         //     pushq %rbp
    565         //  L0:
    566         //     .cfi_def_cfa_offset 16
    567         //
    568         //  Without frame:
    569         //
    570         //     subq $72, %rsp
    571         //  L0:
    572         //     .cfi_def_cfa_offset 80
    573         //
    574         PrevStackSize = StackSize;
    575         StackSize = std::abs(Inst.getOffset()) / StackDivide;
    576         ++NumDefCFAOffsets;
    577         break;
    578       }
    579       case MCCFIInstruction::OpOffset: {
    580         // Defines a "push" of a callee-saved register. E.g.
    581         //
    582         //     pushq %r15
    583         //     pushq %r14
    584         //     pushq %rbx
    585         //  L0:
    586         //     subq $120, %rsp
    587         //  L1:
    588         //     .cfi_offset %rbx, -40
    589         //     .cfi_offset %r14, -32
    590         //     .cfi_offset %r15, -24
    591         //
    592         if (SavedRegIdx == CU_NUM_SAVED_REGS)
    593           // If there are too many saved registers, we cannot use a compact
    594           // unwind encoding.
    595           return CU::UNWIND_MODE_DWARF;
    596 
    597         unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
    598         SavedRegs[SavedRegIdx++] = Reg;
    599         StackAdjust += OffsetSize;
    600         InstrOffset += PushInstrSize(Reg);
    601         break;
    602       }
    603       }
    604     }
    605 
    606     StackAdjust /= StackDivide;
    607 
    608     if (HasFP) {
    609       if ((StackAdjust & 0xFF) != StackAdjust)
    610         // Offset was too big for a compact unwind encoding.
    611         return CU::UNWIND_MODE_DWARF;
    612 
    613       // Get the encoding of the saved registers when we have a frame pointer.
    614       uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
    615       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    616 
    617       CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
    618       CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
    619       CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    620     } else {
    621       // If the amount of the stack allocation is the size of a register, then
    622       // we "push" the RAX/EAX register onto the stack instead of adjusting the
    623       // stack pointer with a SUB instruction. We don't support the push of the
    624       // RAX/EAX register with compact unwind. So we check for that situation
    625       // here.
    626       if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
    627            StackSize - PrevStackSize == 1) ||
    628           (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
    629         return CU::UNWIND_MODE_DWARF;
    630 
    631       SubtractInstrIdx += InstrOffset;
    632       ++StackAdjust;
    633 
    634       if ((StackSize & 0xFF) == StackSize) {
    635         // Frameless stack with a small stack size.
    636         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
    637 
    638         // Encode the stack size.
    639         CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
    640       } else {
    641         if ((StackAdjust & 0x7) != StackAdjust)
    642           // The extra stack adjustments are too big for us to handle.
    643           return CU::UNWIND_MODE_DWARF;
    644 
    645         // Frameless stack with an offset too large for us to encode compactly.
    646         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
    647 
    648         // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    649         // instruction.
    650         CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    651 
    652         // Encode any extra stack stack adjustments (done via push
    653         // instructions).
    654         CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
    655       }
    656 
    657       // Encode the number of registers saved. (Reverse the list first.)
    658       std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
    659       CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
    660 
    661       // Get the encoding of the saved registers when we don't have a frame
    662       // pointer.
    663       uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
    664       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    665 
    666       // Encode the register encoding.
    667       CompactUnwindEncoding |=
    668         RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    669     }
    670 
    671     return CompactUnwindEncoding;
    672   }
    673 
    674 private:
    675   /// \brief Get the compact unwind number for a given register. The number
    676   /// corresponds to the enum lists in compact_unwind_encoding.h.
    677   int getCompactUnwindRegNum(unsigned Reg) const {
    678     static const MCPhysReg CU32BitRegs[7] = {
    679       X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    680     };
    681     static const MCPhysReg CU64BitRegs[] = {
    682       X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    683     };
    684     const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
    685     for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
    686       if (*CURegs == Reg)
    687         return Idx;
    688 
    689     return -1;
    690   }
    691 
    692   /// \brief Return the registers encoded for a compact encoding with a frame
    693   /// pointer.
    694   uint32_t encodeCompactUnwindRegistersWithFrame() const {
    695     // Encode the registers in the order they were saved --- 3-bits per
    696     // register. The list of saved registers is assumed to be in reverse
    697     // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
    698     uint32_t RegEnc = 0;
    699     for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
    700       unsigned Reg = SavedRegs[i];
    701       if (Reg == 0) break;
    702 
    703       int CURegNum = getCompactUnwindRegNum(Reg);
    704       if (CURegNum == -1) return ~0U;
    705 
    706       // Encode the 3-bit register number in order, skipping over 3-bits for
    707       // each register.
    708       RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    709     }
    710 
    711     assert((RegEnc & 0x3FFFF) == RegEnc &&
    712            "Invalid compact register encoding!");
    713     return RegEnc;
    714   }
    715 
    716   /// \brief Create the permutation encoding used with frameless stacks. It is
    717   /// passed the number of registers to be saved and an array of the registers
    718   /// saved.
    719   uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
    720     // The saved registers are numbered from 1 to 6. In order to encode the
    721     // order in which they were saved, we re-number them according to their
    722     // place in the register order. The re-numbering is relative to the last
    723     // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
    724     // that order:
    725     //
    726     //    Orig  Re-Num
    727     //    ----  ------
    728     //     6       6
    729     //     2       2
    730     //     4       3
    731     //     5       3
    732     //
    733     for (unsigned i = 0; i < RegCount; ++i) {
    734       int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
    735       if (CUReg == -1) return ~0U;
    736       SavedRegs[i] = CUReg;
    737     }
    738 
    739     // Reverse the list.
    740     std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
    741 
    742     uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    743     for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
    744       unsigned Countless = 0;
    745       for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
    746         if (SavedRegs[j] < SavedRegs[i])
    747           ++Countless;
    748 
    749       RenumRegs[i] = SavedRegs[i] - Countless - 1;
    750     }
    751 
    752     // Take the renumbered values and encode them into a 10-bit number.
    753     uint32_t permutationEncoding = 0;
    754     switch (RegCount) {
    755     case 6:
    756       permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    757                              + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    758                              +     RenumRegs[4];
    759       break;
    760     case 5:
    761       permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    762                              + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    763                              +     RenumRegs[5];
    764       break;
    765     case 4:
    766       permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    767                              + 3 * RenumRegs[4] +      RenumRegs[5];
    768       break;
    769     case 3:
    770       permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    771                              +     RenumRegs[5];
    772       break;
    773     case 2:
    774       permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    775       break;
    776     case 1:
    777       permutationEncoding |=       RenumRegs[5];
    778       break;
    779     }
    780 
    781     assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    782            "Invalid compact register encoding!");
    783     return permutationEncoding;
    784   }
    785 
    786 public:
    787   DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
    788                       bool Is64Bit)
    789     : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
    790     memset(SavedRegs, 0, sizeof(SavedRegs));
    791     OffsetSize = Is64Bit ? 8 : 4;
    792     MoveInstrSize = Is64Bit ? 3 : 2;
    793     StackDivide = Is64Bit ? 8 : 4;
    794   }
    795 };
    796 
    797 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
    798 public:
    799   DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    800                          StringRef CPU)
    801       : DarwinX86AsmBackend(T, MRI, CPU, false) {}
    802 
    803   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    804     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
    805                                      MachO::CPU_TYPE_I386,
    806                                      MachO::CPU_SUBTYPE_I386_ALL);
    807   }
    808 
    809   /// \brief Generate the compact unwind encoding for the CFI instructions.
    810   uint32_t generateCompactUnwindEncoding(
    811                              ArrayRef<MCCFIInstruction> Instrs) const override {
    812     return generateCompactUnwindEncodingImpl(Instrs);
    813   }
    814 };
    815 
    816 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
    817   const MachO::CPUSubTypeX86 Subtype;
    818 public:
    819   DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
    820                          StringRef CPU, MachO::CPUSubTypeX86 st)
    821       : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
    822 
    823   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
    824     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
    825                                      MachO::CPU_TYPE_X86_64, Subtype);
    826   }
    827 
    828   /// \brief Generate the compact unwind encoding for the CFI instructions.
    829   uint32_t generateCompactUnwindEncoding(
    830                              ArrayRef<MCCFIInstruction> Instrs) const override {
    831     return generateCompactUnwindEncodingImpl(Instrs);
    832   }
    833 };
    834 
    835 } // end anonymous namespace
    836 
    837 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
    838                                            const MCRegisterInfo &MRI,
    839                                            const Triple &TheTriple,
    840                                            StringRef CPU) {
    841   if (TheTriple.isOSBinFormatMachO())
    842     return new DarwinX86_32AsmBackend(T, MRI, CPU);
    843 
    844   if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
    845     return new WindowsX86AsmBackend(T, false, CPU);
    846 
    847   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    848 
    849   if (TheTriple.isOSIAMCU())
    850     return new ELFX86_IAMCUAsmBackend(T, OSABI, CPU);
    851 
    852   return new ELFX86_32AsmBackend(T, OSABI, CPU);
    853 }
    854 
    855 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
    856                                            const MCRegisterInfo &MRI,
    857                                            const Triple &TheTriple,
    858                                            StringRef CPU) {
    859   if (TheTriple.isOSBinFormatMachO()) {
    860     MachO::CPUSubTypeX86 CS =
    861         StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
    862             .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
    863             .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
    864     return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
    865   }
    866 
    867   if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
    868     return new WindowsX86AsmBackend(T, true, CPU);
    869 
    870   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    871 
    872   if (TheTriple.getEnvironment() == Triple::GNUX32)
    873     return new ELFX86_X32AsmBackend(T, OSABI, CPU);
    874   return new ELFX86_64AsmBackend(T, OSABI, CPU);
    875 }
    876