Home | History | Annotate | Download | only in X86
      1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 Register file, defining the registers themselves,
     11 // aliases between the registers, and the register classes built out of the
     12 // registers.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
     17   let Namespace = "X86";
     18   let HWEncoding = Enc;
     19   let SubRegs = subregs;
     20 }
     21 
     22 // Subregister indices.
     23 let Namespace = "X86" in {
     24   def sub_8bit    : SubRegIndex<8>;
     25   def sub_8bit_hi : SubRegIndex<8, 8>;
     26   def sub_16bit   : SubRegIndex<16>;
     27   def sub_32bit   : SubRegIndex<32>;
     28   def sub_xmm     : SubRegIndex<128>;
     29   def sub_ymm     : SubRegIndex<256>;
     30 }
     31 
     32 //===----------------------------------------------------------------------===//
     33 //  Register definitions...
     34 //
     35 
     36 // In the register alias definitions below, we define which registers alias
     37 // which others.  We only specify which registers the small registers alias,
     38 // because the register file generator is smart enough to figure out that
     39 // AL aliases AX if we tell it that AX aliased AL (for example).
     40 
     41 // Dwarf numbering is different for 32-bit and 64-bit, and there are
     42 // variations by target as well. Currently the first entry is for X86-64,
     43 // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
     44 // and debug information on X86-32/Darwin)
     45 
     46 // 8-bit registers
     47 // Low registers
     48 def AL : X86Reg<"al", 0>;
     49 def DL : X86Reg<"dl", 2>;
     50 def CL : X86Reg<"cl", 1>;
     51 def BL : X86Reg<"bl", 3>;
     52 
     53 // High registers. On x86-64, these cannot be used in any instruction
     54 // with a REX prefix.
     55 def AH : X86Reg<"ah", 4>;
     56 def DH : X86Reg<"dh", 6>;
     57 def CH : X86Reg<"ch", 5>;
     58 def BH : X86Reg<"bh", 7>;
     59 
     60 // X86-64 only, requires REX.
     61 let CostPerUse = 1 in {
     62 def SIL  : X86Reg<"sil",   6>;
     63 def DIL  : X86Reg<"dil",   7>;
     64 def BPL  : X86Reg<"bpl",   5>;
     65 def SPL  : X86Reg<"spl",   4>;
     66 def R8B  : X86Reg<"r8b",   8>;
     67 def R9B  : X86Reg<"r9b",   9>;
     68 def R10B : X86Reg<"r10b", 10>;
     69 def R11B : X86Reg<"r11b", 11>;
     70 def R12B : X86Reg<"r12b", 12>;
     71 def R13B : X86Reg<"r13b", 13>;
     72 def R14B : X86Reg<"r14b", 14>;
     73 def R15B : X86Reg<"r15b", 15>;
     74 }
     75 
     76 // 16-bit registers
     77 let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
     78 def AX : X86Reg<"ax", 0, [AL,AH]>;
     79 def DX : X86Reg<"dx", 2, [DL,DH]>;
     80 def CX : X86Reg<"cx", 1, [CL,CH]>;
     81 def BX : X86Reg<"bx", 3, [BL,BH]>;
     82 }
     83 let SubRegIndices = [sub_8bit] in {
     84 def SI : X86Reg<"si", 6, [SIL]>;
     85 def DI : X86Reg<"di", 7, [DIL]>;
     86 def BP : X86Reg<"bp", 5, [BPL]>;
     87 def SP : X86Reg<"sp", 4, [SPL]>;
     88 }
     89 def IP : X86Reg<"ip", 0>;
     90 
     91 // X86-64 only, requires REX.
     92 let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
     93 def R8W  : X86Reg<"r8w",   8, [R8B]>;
     94 def R9W  : X86Reg<"r9w",   9, [R9B]>;
     95 def R10W : X86Reg<"r10w", 10, [R10B]>;
     96 def R11W : X86Reg<"r11w", 11, [R11B]>;
     97 def R12W : X86Reg<"r12w", 12, [R12B]>;
     98 def R13W : X86Reg<"r13w", 13, [R13B]>;
     99 def R14W : X86Reg<"r14w", 14, [R14B]>;
    100 def R15W : X86Reg<"r15w", 15, [R15B]>;
    101 }
    102 
    103 // 32-bit registers
    104 let SubRegIndices = [sub_16bit] in {
    105 def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>;
    106 def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>;
    107 def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>;
    108 def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>;
    109 def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>;
    110 def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>;
    111 def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>;
    112 def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>;
    113 def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>;
    114 
    115 // X86-64 only, requires REX
    116 let CostPerUse = 1 in {
    117 def R8D  : X86Reg<"r8d",   8, [R8W]>;
    118 def R9D  : X86Reg<"r9d",   9, [R9W]>;
    119 def R10D : X86Reg<"r10d", 10, [R10W]>;
    120 def R11D : X86Reg<"r11d", 11, [R11W]>;
    121 def R12D : X86Reg<"r12d", 12, [R12W]>;
    122 def R13D : X86Reg<"r13d", 13, [R13W]>;
    123 def R14D : X86Reg<"r14d", 14, [R14W]>;
    124 def R15D : X86Reg<"r15d", 15, [R15W]>;
    125 }}
    126 
    127 // 64-bit registers, X86-64 only
    128 let SubRegIndices = [sub_32bit] in {
    129 def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
    130 def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
    131 def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
    132 def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
    133 def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
    134 def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
    135 def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
    136 def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
    137 
    138 // These also require REX.
    139 let CostPerUse = 1 in {
    140 def R8  : X86Reg<"r8",   8, [R8D]>,  DwarfRegNum<[ 8, -2, -2]>;
    141 def R9  : X86Reg<"r9",   9, [R9D]>,  DwarfRegNum<[ 9, -2, -2]>;
    142 def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
    143 def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
    144 def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
    145 def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
    146 def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
    147 def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
    148 def RIP : X86Reg<"rip",  0, [EIP]>,  DwarfRegNum<[16, -2, -2]>;
    149 }}
    150 
    151 // MMX Registers. These are actually aliased to ST0 .. ST7
    152 def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
    153 def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
    154 def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
    155 def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
    156 def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
    157 def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
    158 def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
    159 def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
    160 
    161 // Pseudo Floating Point registers
    162 def FP0 : X86Reg<"fp0", 0>;
    163 def FP1 : X86Reg<"fp1", 0>;
    164 def FP2 : X86Reg<"fp2", 0>;
    165 def FP3 : X86Reg<"fp3", 0>;
    166 def FP4 : X86Reg<"fp4", 0>;
    167 def FP5 : X86Reg<"fp5", 0>;
    168 def FP6 : X86Reg<"fp6", 0>;
    169 def FP7 : X86Reg<"fp7", 0>;
    170 
    171 // XMM Registers, used by the various SSE instruction set extensions.
    172 def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
    173 def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
    174 def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
    175 def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
    176 def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
    177 def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
    178 def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
    179 def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
    180 
    181 // X86-64 only
    182 let CostPerUse = 1 in {
    183 def XMM8:  X86Reg<"xmm8",   8>, DwarfRegNum<[25, -2, -2]>;
    184 def XMM9:  X86Reg<"xmm9",   9>, DwarfRegNum<[26, -2, -2]>;
    185 def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
    186 def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
    187 def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
    188 def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
    189 def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
    190 def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
    191 
    192 def XMM16:  X86Reg<"xmm16", 16>, DwarfRegNum<[60, -2, -2]>;
    193 def XMM17:  X86Reg<"xmm17", 17>, DwarfRegNum<[61, -2, -2]>;
    194 def XMM18:  X86Reg<"xmm18", 18>, DwarfRegNum<[62, -2, -2]>;
    195 def XMM19:  X86Reg<"xmm19", 19>, DwarfRegNum<[63, -2, -2]>;
    196 def XMM20:  X86Reg<"xmm20", 20>, DwarfRegNum<[64, -2, -2]>;
    197 def XMM21:  X86Reg<"xmm21", 21>, DwarfRegNum<[65, -2, -2]>;
    198 def XMM22:  X86Reg<"xmm22", 22>, DwarfRegNum<[66, -2, -2]>;
    199 def XMM23:  X86Reg<"xmm23", 23>, DwarfRegNum<[67, -2, -2]>;
    200 def XMM24:  X86Reg<"xmm24", 24>, DwarfRegNum<[68, -2, -2]>;
    201 def XMM25:  X86Reg<"xmm25", 25>, DwarfRegNum<[69, -2, -2]>;
    202 def XMM26:  X86Reg<"xmm26", 26>, DwarfRegNum<[70, -2, -2]>;
    203 def XMM27:  X86Reg<"xmm27", 27>, DwarfRegNum<[71, -2, -2]>;
    204 def XMM28:  X86Reg<"xmm28", 28>, DwarfRegNum<[72, -2, -2]>;
    205 def XMM29:  X86Reg<"xmm29", 29>, DwarfRegNum<[73, -2, -2]>;
    206 def XMM30:  X86Reg<"xmm30", 30>, DwarfRegNum<[74, -2, -2]>;
    207 def XMM31:  X86Reg<"xmm31", 31>, DwarfRegNum<[75, -2, -2]>;
    208 
    209 } // CostPerUse
    210 
    211 // YMM0-15 registers, used by AVX instructions and
    212 // YMM16-31 registers, used by AVX-512 instructions.
    213 let SubRegIndices = [sub_xmm] in {
    214   foreach  Index = 0-31 in {
    215     def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
    216                     DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
    217   }
    218 }
    219 
    220 // ZMM Registers, used by AVX-512 instructions.
    221 let SubRegIndices = [sub_ymm] in {
    222   foreach  Index = 0-31 in {
    223     def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
    224                     DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
    225   }
    226 }
    227 
    228 // Mask Registers, used by AVX-512 instructions.
    229 def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118,  93,  93]>;
    230 def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119,  94,  94]>;
    231 def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120,  95,  95]>;
    232 def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121,  96,  96]>;
    233 def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122,  97,  97]>;
    234 def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123,  98,  98]>;
    235 def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124,  99,  99]>;
    236 def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;
    237 
    238 // Floating point stack registers. These don't map one-to-one to the FP
    239 // pseudo registers, but we still mark them as aliasing FP registers. That
    240 // way both kinds can be live without exceeding the stack depth. ST registers
    241 // are only live around inline assembly.
    242 def ST0 : X86Reg<"st(0)", 0>, DwarfRegNum<[33, 12, 11]>;
    243 def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
    244 def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
    245 def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
    246 def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
    247 def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
    248 def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
    249 def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
    250 
    251 // Floating-point status word
    252 def FPSW : X86Reg<"fpsw", 0>;
    253 
    254 // Status flags register
    255 def EFLAGS : X86Reg<"flags", 0>;
    256 
    257 // Segment registers
    258 def CS : X86Reg<"cs", 1>;
    259 def DS : X86Reg<"ds", 3>;
    260 def SS : X86Reg<"ss", 2>;
    261 def ES : X86Reg<"es", 0>;
    262 def FS : X86Reg<"fs", 4>;
    263 def GS : X86Reg<"gs", 5>;
    264 
    265 // Debug registers
    266 def DR0  : X86Reg<"dr0",   0>;
    267 def DR1  : X86Reg<"dr1",   1>;
    268 def DR2  : X86Reg<"dr2",   2>;
    269 def DR3  : X86Reg<"dr3",   3>;
    270 def DR4  : X86Reg<"dr4",   4>;
    271 def DR5  : X86Reg<"dr5",   5>;
    272 def DR6  : X86Reg<"dr6",   6>;
    273 def DR7  : X86Reg<"dr7",   7>;
    274 def DR8  : X86Reg<"dr8",   8>;
    275 def DR9  : X86Reg<"dr9",   9>;
    276 def DR10 : X86Reg<"dr10", 10>;
    277 def DR11 : X86Reg<"dr11", 11>;
    278 def DR12 : X86Reg<"dr12", 12>;
    279 def DR13 : X86Reg<"dr13", 13>;
    280 def DR14 : X86Reg<"dr14", 14>;
    281 def DR15 : X86Reg<"dr15", 15>;
    282 
    283 // Control registers
    284 def CR0  : X86Reg<"cr0",   0>;
    285 def CR1  : X86Reg<"cr1",   1>;
    286 def CR2  : X86Reg<"cr2",   2>;
    287 def CR3  : X86Reg<"cr3",   3>;
    288 def CR4  : X86Reg<"cr4",   4>;
    289 def CR5  : X86Reg<"cr5",   5>;
    290 def CR6  : X86Reg<"cr6",   6>;
    291 def CR7  : X86Reg<"cr7",   7>;
    292 def CR8  : X86Reg<"cr8",   8>;
    293 def CR9  : X86Reg<"cr9",   9>;
    294 def CR10 : X86Reg<"cr10", 10>;
    295 def CR11 : X86Reg<"cr11", 11>;
    296 def CR12 : X86Reg<"cr12", 12>;
    297 def CR13 : X86Reg<"cr13", 13>;
    298 def CR14 : X86Reg<"cr14", 14>;
    299 def CR15 : X86Reg<"cr15", 15>;
    300 
    301 // Pseudo index registers
    302 def EIZ : X86Reg<"eiz", 4>;
    303 def RIZ : X86Reg<"riz", 4>;
    304 
    305 // Bound registers, used in MPX instructions
    306 def BND0 : X86Reg<"bnd0",   0>;
    307 def BND1 : X86Reg<"bnd1",   1>;
    308 def BND2 : X86Reg<"bnd2",   2>;
    309 def BND3 : X86Reg<"bnd3",   3>;
    310 
    311 //===----------------------------------------------------------------------===//
    312 // Register Class Definitions... now that we have all of the pieces, define the
    313 // top-level register classes.  The order specified in the register list is
    314 // implicitly defined to be the register allocation order.
    315 //
    316 
    317 // List call-clobbered registers before callee-save registers. RBX, RBP, (and
    318 // R12, R13, R14, and R15 for X86-64) are callee-save registers.
    319 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
    320 // R8B, ... R15B.
    321 // Allocate R12 and R13 last, as these require an extra byte when
    322 // encoded in x86_64 instructions.
    323 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
    324 // 64-bit mode. The main complication is that they cannot be encoded in an
    325 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
    326 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
    327 // cannot be encoded.
    328 def GR8 : RegisterClass<"X86", [i8],  8,
    329                         (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
    330                              R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
    331   let AltOrders = [(sub GR8, AH, BH, CH, DH)];
    332   let AltOrderSelect = [{
    333     return MF.getSubtarget<X86Subtarget>().is64Bit();
    334   }];
    335 }
    336 
    337 def GR16 : RegisterClass<"X86", [i16], 16,
    338                          (add AX, CX, DX, SI, DI, BX, BP, SP,
    339                               R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
    340 
    341 def GR32 : RegisterClass<"X86", [i32], 32,
    342                          (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
    343                               R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
    344 
    345 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
    346 // RIP isn't really a register and it can't be used anywhere except in an
    347 // address, but it doesn't cause trouble.
    348 def GR64 : RegisterClass<"X86", [i64], 64,
    349                          (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
    350                               RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
    351 
    352 // Segment registers for use by MOV instructions (and others) that have a
    353 //   segment register as one operand.  Always contain a 16-bit segment
    354 //   descriptor.
    355 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
    356 
    357 // Debug registers.
    358 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
    359 
    360 // Control registers.
    361 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
    362 
    363 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
    364 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
    365 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
    366 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
    367 // and GR64_ABCD are classes for registers that support 8-bit h-register
    368 // operations.
    369 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
    370 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
    371 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
    372 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
    373 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
    374 def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>;
    375 def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
    376                                                      R8, R9, R11, RIP)>;
    377 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
    378                                                       R8, R9, R10, R11, RIP)>;
    379 
    380 // GR8_NOREX - GR8 registers which do not require a REX prefix.
    381 def GR8_NOREX : RegisterClass<"X86", [i8], 8,
    382                               (add AL, CL, DL, AH, CH, DH, BL, BH)> {
    383   let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
    384   let AltOrderSelect = [{
    385     return MF.getSubtarget<X86Subtarget>().is64Bit();
    386   }];
    387 }
    388 // GR16_NOREX - GR16 registers which do not require a REX prefix.
    389 def GR16_NOREX : RegisterClass<"X86", [i16], 16,
    390                                (add AX, CX, DX, SI, DI, BX, BP, SP)>;
    391 // GR32_NOREX - GR32 registers which do not require a REX prefix.
    392 def GR32_NOREX : RegisterClass<"X86", [i32], 32,
    393                                (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
    394 // GR64_NOREX - GR64 registers which do not require a REX prefix.
    395 def GR64_NOREX : RegisterClass<"X86", [i64], 64,
    396                             (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
    397 
    398 // GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
    399 // mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
    400 // to clear upper 32-bits of RAX so is not a NOP.
    401 def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>;
    402 
    403 // GR32_NOSP - GR32 registers except ESP.
    404 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
    405 
    406 // GR64_NOSP - GR64 registers except RSP (and RIP).
    407 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
    408 
    409 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
    410 // ESP.
    411 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
    412                                     (and GR32_NOREX, GR32_NOSP)>;
    413 
    414 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
    415 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
    416                                     (and GR64_NOREX, GR64_NOSP)>;
    417 
    418 // Register classes used for ABIs that use 32-bit address accesses,
    419 // while using the whole x84_64 ISA.
    420 
    421 // In such cases, it is fine to use RIP as we are sure the 32 high
    422 // bits are not set. We do not need variants for NOSP as RIP is not
    423 // allowed there.
    424 // RIP is not spilled anywhere for now, so stick to 32-bit alignment
    425 // to save on memory space.
    426 // FIXME: We could allow all 64bit registers, but we would need
    427 // something to check that the 32 high bits are not set,
    428 // which we do not have right now.
    429 def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;
    430 
    431 // When RBP is used as a base pointer in a 32-bit addresses environement,
    432 // this is also safe to use the full register to access addresses.
    433 // Since RBP will never be spilled, stick to a 32 alignment to save
    434 // on memory consumption.
    435 def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
    436                                           (add LOW32_ADDR_ACCESS, RBP)>;
    437 
    438 // A class to support the 'A' assembler constraint: EAX then EDX.
    439 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
    440 
    441 // Scalar SSE2 floating point registers.
    442 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
    443 
    444 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
    445 
    446 def FR128 : RegisterClass<"X86", [i128, f128], 128, (add FR32)>;
    447 
    448 
    449 // FIXME: This sets up the floating point register files as though they are f64
    450 // values, though they really are f80 values.  This will cause us to spill
    451 // values as 64-bit quantities instead of 80-bit quantities, which is much much
    452 // faster on common hardware.  In reality, this should be controlled by a
    453 // command line option or something.
    454 
    455 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
    456 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
    457 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
    458 
    459 // Floating point stack registers (these are not allocatable by the
    460 // register allocator - the floating point stackifier is responsible
    461 // for transforming FPn allocations to STn registers)
    462 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
    463   let isAllocatable = 0;
    464 }
    465 
    466 // Generic vector registers: VR64 and VR128.
    467 // Ensure that float types are declared first - only float is legal on SSE1.
    468 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
    469 def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
    470                           128, (add FR32)>;
    471 def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
    472                           256, (sequence "YMM%u", 0, 15)>;
    473 
    474 // Special classes that help the assembly parser choose some alternate
    475 // instructions to favor 2-byte VEX encodings.
    476 def VR128L : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
    477                            128, (sequence "XMM%u", 0, 7)>;
    478 def VR128H : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
    479                            128, (sequence "XMM%u", 8, 15)>;
    480 def VR256L : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
    481                            256, (sequence "YMM%u", 0, 7)>;
    482 def VR256H : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
    483                            256, (sequence "YMM%u", 8, 15)>;
    484 
    485 // Status flags registers.
    486 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
    487   let CopyCost = -1;  // Don't allow copying of status registers.
    488   let isAllocatable = 0;
    489 }
    490 def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
    491   let CopyCost = -1;  // Don't allow copying of status registers.
    492   let isAllocatable = 0;
    493 }
    494 
    495 // AVX-512 vector/mask registers.
    496 def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
    497                           512, (sequence "ZMM%u", 0, 31)>;
    498 
    499 // Scalar AVX-512 floating point registers.
    500 def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
    501 
    502 def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
    503 
    504 // Extended VR128 and VR256 for AVX-512 instructions
    505 def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64],
    506                            128, (add FR32X)>;
    507 def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
    508                            256, (sequence "YMM%u", 0, 31)>;
    509 
    510 // Mask registers
    511 def VK1     : RegisterClass<"X86", [i1],    16,  (sequence "K%u", 0, 7)> {let Size = 16;}
    512 def VK2     : RegisterClass<"X86", [v2i1],  16,  (add VK1)> {let Size = 16;}
    513 def VK4     : RegisterClass<"X86", [v4i1],  16,  (add VK2)> {let Size = 16;}
    514 def VK8     : RegisterClass<"X86", [v8i1],  16,  (add VK4)> {let Size = 16;}
    515 def VK16    : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
    516 def VK32    : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
    517 def VK64    : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
    518 
    519 def VK1WM   : RegisterClass<"X86", [i1],    16,  (sub VK1, K0)> {let Size = 16;}
    520 def VK2WM   : RegisterClass<"X86", [v2i1],  16,  (sub VK2, K0)> {let Size = 16;}
    521 def VK4WM   : RegisterClass<"X86", [v4i1],  16,  (sub VK4, K0)> {let Size = 16;}
    522 def VK8WM   : RegisterClass<"X86", [v8i1],  16,  (sub VK8, K0)> {let Size = 16;}
    523 def VK16WM  : RegisterClass<"X86", [v16i1], 16, (add VK8WM)>   {let Size = 16;}
    524 def VK32WM  : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
    525 def VK64WM  : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
    526 
    527 // Bound registers
    528 def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;
    529