1 //=- X86SchedSandyBridge.td - X86 Sandy Bridge Scheduling ----*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the machine model for Sandy Bridge to support instruction 11 // scheduling and other instruction cost heuristics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 def SandyBridgeModel : SchedMachineModel { 16 // All x86 instructions are modeled as a single micro-op, and SB can decode 4 17 // instructions per cycle. 18 // FIXME: Identify instructions that aren't a single fused micro-op. 19 let IssueWidth = 4; 20 let MicroOpBufferSize = 168; // Based on the reorder buffer. 21 let LoadLatency = 4; 22 let MispredictPenalty = 16; 23 24 // Based on the LSD (loop-stream detector) queue size. 25 let LoopMicroOpBufferSize = 28; 26 27 // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow 28 // the scheduler to assign a default model to unrecognized opcodes. 29 let CompleteModel = 0; 30 } 31 32 let SchedModel = SandyBridgeModel in { 33 34 // Sandy Bridge can issue micro-ops to 6 different ports in one cycle. 35 36 // Ports 0, 1, and 5 handle all computation. 37 def SBPort0 : ProcResource<1>; 38 def SBPort1 : ProcResource<1>; 39 def SBPort5 : ProcResource<1>; 40 41 // Ports 2 and 3 are identical. They handle loads and the address half of 42 // stores. 43 def SBPort23 : ProcResource<2>; 44 45 // Port 4 gets the data half of stores. Store data can be available later than 46 // the store address, but since we don't model the latency of stores, we can 47 // ignore that. 48 def SBPort4 : ProcResource<1>; 49 50 // Many micro-ops are capable of issuing on multiple ports. 51 def SBPort05 : ProcResGroup<[SBPort0, SBPort5]>; 52 def SBPort15 : ProcResGroup<[SBPort1, SBPort5]>; 53 def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>; 54 55 // 54 Entry Unified Scheduler 56 def SBPortAny : ProcResGroup<[SBPort0, SBPort1, SBPort23, SBPort4, SBPort5]> { 57 let BufferSize=54; 58 } 59 60 // Integer division issued on port 0. 61 def SBDivider : ProcResource<1>; 62 63 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 64 // cycles after the memory operand. 65 def : ReadAdvance<ReadAfterLd, 4>; 66 67 // Many SchedWrites are defined in pairs with and without a folded load. 68 // Instructions with folded loads are usually micro-fused, so they only appear 69 // as two micro-ops when queued in the reservation station. 70 // This multiclass defines the resource usage for variants with and without 71 // folded loads. 72 multiclass SBWriteResPair<X86FoldableSchedWrite SchedRW, 73 ProcResourceKind ExePort, 74 int Lat> { 75 // Register variant is using a single cycle on ExePort. 76 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 77 78 // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the 79 // latency. 80 def : WriteRes<SchedRW.Folded, [SBPort23, ExePort]> { 81 let Latency = !add(Lat, 4); 82 } 83 } 84 85 // A folded store needs a cycle on port 4 for the store data, but it does not 86 // need an extra port 2/3 cycle to recompute the address. 87 def : WriteRes<WriteRMW, [SBPort4]>; 88 89 def : WriteRes<WriteStore, [SBPort23, SBPort4]>; 90 def : WriteRes<WriteLoad, [SBPort23]> { let Latency = 4; } 91 def : WriteRes<WriteMove, [SBPort015]>; 92 def : WriteRes<WriteZero, []>; 93 94 defm : SBWriteResPair<WriteALU, SBPort015, 1>; 95 defm : SBWriteResPair<WriteIMul, SBPort1, 3>; 96 def : WriteRes<WriteIMulH, []> { let Latency = 3; } 97 defm : SBWriteResPair<WriteShift, SBPort05, 1>; 98 defm : SBWriteResPair<WriteJump, SBPort5, 1>; 99 100 // This is for simple LEAs with one or two input operands. 101 // The complex ones can only execute on port 1, and they require two cycles on 102 // the port to read all inputs. We don't model that. 103 def : WriteRes<WriteLEA, [SBPort15]>; 104 105 // This is quite rough, latency depends on the dividend. 106 def : WriteRes<WriteIDiv, [SBPort0, SBDivider]> { 107 let Latency = 25; 108 let ResourceCycles = [1, 10]; 109 } 110 def : WriteRes<WriteIDivLd, [SBPort23, SBPort0, SBDivider]> { 111 let Latency = 29; 112 let ResourceCycles = [1, 1, 10]; 113 } 114 115 // Scalar and vector floating point. 116 defm : SBWriteResPair<WriteFAdd, SBPort1, 3>; 117 defm : SBWriteResPair<WriteFMul, SBPort0, 5>; 118 defm : SBWriteResPair<WriteFDiv, SBPort0, 12>; // 10-14 cycles. 119 defm : SBWriteResPair<WriteFRcp, SBPort0, 5>; 120 defm : SBWriteResPair<WriteFRsqrt, SBPort0, 5>; 121 defm : SBWriteResPair<WriteFSqrt, SBPort0, 15>; 122 defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>; 123 defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>; 124 defm : SBWriteResPair<WriteCvtF2F, SBPort1, 3>; 125 defm : SBWriteResPair<WriteFShuffle, SBPort5, 1>; 126 defm : SBWriteResPair<WriteFBlend, SBPort05, 1>; 127 def : WriteRes<WriteFVarBlend, [SBPort0, SBPort5]> { 128 let Latency = 2; 129 let ResourceCycles = [1, 1]; 130 } 131 def : WriteRes<WriteFVarBlendLd, [SBPort0, SBPort5, SBPort23]> { 132 let Latency = 6; 133 let ResourceCycles = [1, 1, 1]; 134 } 135 136 // Vector integer operations. 137 defm : SBWriteResPair<WriteVecShift, SBPort05, 1>; 138 defm : SBWriteResPair<WriteVecLogic, SBPort015, 1>; 139 defm : SBWriteResPair<WriteVecALU, SBPort15, 1>; 140 defm : SBWriteResPair<WriteVecIMul, SBPort0, 5>; 141 defm : SBWriteResPair<WriteShuffle, SBPort15, 1>; 142 defm : SBWriteResPair<WriteBlend, SBPort15, 1>; 143 def : WriteRes<WriteVarBlend, [SBPort1, SBPort5]> { 144 let Latency = 2; 145 let ResourceCycles = [1, 1]; 146 } 147 def : WriteRes<WriteVarBlendLd, [SBPort1, SBPort5, SBPort23]> { 148 let Latency = 6; 149 let ResourceCycles = [1, 1, 1]; 150 } 151 def : WriteRes<WriteMPSAD, [SBPort0, SBPort1, SBPort5]> { 152 let Latency = 6; 153 let ResourceCycles = [1, 1, 1]; 154 } 155 def : WriteRes<WriteMPSADLd, [SBPort0, SBPort1, SBPort5, SBPort23]> { 156 let Latency = 6; 157 let ResourceCycles = [1, 1, 1, 1]; 158 } 159 160 // String instructions. 161 // Packed Compare Implicit Length Strings, Return Mask 162 def : WriteRes<WritePCmpIStrM, [SBPort015]> { 163 let Latency = 11; 164 let ResourceCycles = [3]; 165 } 166 def : WriteRes<WritePCmpIStrMLd, [SBPort015, SBPort23]> { 167 let Latency = 11; 168 let ResourceCycles = [3, 1]; 169 } 170 171 // Packed Compare Explicit Length Strings, Return Mask 172 def : WriteRes<WritePCmpEStrM, [SBPort015]> { 173 let Latency = 11; 174 let ResourceCycles = [8]; 175 } 176 def : WriteRes<WritePCmpEStrMLd, [SBPort015, SBPort23]> { 177 let Latency = 11; 178 let ResourceCycles = [7, 1]; 179 } 180 181 // Packed Compare Implicit Length Strings, Return Index 182 def : WriteRes<WritePCmpIStrI, [SBPort015]> { 183 let Latency = 3; 184 let ResourceCycles = [3]; 185 } 186 def : WriteRes<WritePCmpIStrILd, [SBPort015, SBPort23]> { 187 let Latency = 3; 188 let ResourceCycles = [3, 1]; 189 } 190 191 // Packed Compare Explicit Length Strings, Return Index 192 def : WriteRes<WritePCmpEStrI, [SBPort015]> { 193 let Latency = 4; 194 let ResourceCycles = [8]; 195 } 196 def : WriteRes<WritePCmpEStrILd, [SBPort015, SBPort23]> { 197 let Latency = 4; 198 let ResourceCycles = [7, 1]; 199 } 200 201 // AES Instructions. 202 def : WriteRes<WriteAESDecEnc, [SBPort015]> { 203 let Latency = 8; 204 let ResourceCycles = [2]; 205 } 206 def : WriteRes<WriteAESDecEncLd, [SBPort015, SBPort23]> { 207 let Latency = 8; 208 let ResourceCycles = [2, 1]; 209 } 210 211 def : WriteRes<WriteAESIMC, [SBPort015]> { 212 let Latency = 8; 213 let ResourceCycles = [2]; 214 } 215 def : WriteRes<WriteAESIMCLd, [SBPort015, SBPort23]> { 216 let Latency = 8; 217 let ResourceCycles = [2, 1]; 218 } 219 220 def : WriteRes<WriteAESKeyGen, [SBPort015]> { 221 let Latency = 8; 222 let ResourceCycles = [11]; 223 } 224 def : WriteRes<WriteAESKeyGenLd, [SBPort015, SBPort23]> { 225 let Latency = 8; 226 let ResourceCycles = [10, 1]; 227 } 228 229 // Carry-less multiplication instructions. 230 def : WriteRes<WriteCLMul, [SBPort015]> { 231 let Latency = 14; 232 let ResourceCycles = [18]; 233 } 234 def : WriteRes<WriteCLMulLd, [SBPort015, SBPort23]> { 235 let Latency = 14; 236 let ResourceCycles = [17, 1]; 237 } 238 239 240 def : WriteRes<WriteSystem, [SBPort015]> { let Latency = 100; } 241 def : WriteRes<WriteMicrocoded, [SBPort015]> { let Latency = 100; } 242 def : WriteRes<WriteFence, [SBPort23, SBPort4]>; 243 def : WriteRes<WriteNop, []>; 244 245 // AVX2 is not supported on that architecture, but we should define the basic 246 // scheduling resources anyway. 247 defm : SBWriteResPair<WriteFShuffle256, SBPort0, 1>; 248 defm : SBWriteResPair<WriteShuffle256, SBPort0, 1>; 249 defm : SBWriteResPair<WriteVarVecShift, SBPort0, 1>; 250 } // SchedModel 251