Home | History | Annotate | Download | only in IPO
      1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
     11 // practice, this means looking for internal functions that have pointer
     12 // arguments.  If it can prove, through the use of alias analysis, that an
     13 // argument is *only* loaded, then it can pass the value into the function
     14 // instead of the address of the value.  This can cause recursive simplification
     15 // of code and lead to the elimination of allocas (especially in C++ template
     16 // code like the STL).
     17 //
     18 // This pass also handles aggregate arguments that are passed into a function,
     19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
     20 // by default it refuses to scalarize aggregates which would require passing in
     21 // more than three operands to the function, because passing thousands of
     22 // operands for a large array or structure is unprofitable! This limit can be
     23 // configured or disabled, however.
     24 //
     25 // Note that this transformation could also be done for arguments that are only
     26 // stored to (returning the value instead), but does not currently.  This case
     27 // would be best handled when and if LLVM begins supporting multiple return
     28 // values from functions.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #include "llvm/Transforms/IPO.h"
     33 #include "llvm/ADT/DepthFirstIterator.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/ADT/StringExtras.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Analysis/AssumptionCache.h"
     38 #include "llvm/Analysis/BasicAliasAnalysis.h"
     39 #include "llvm/Analysis/CallGraph.h"
     40 #include "llvm/Analysis/CallGraphSCCPass.h"
     41 #include "llvm/Analysis/Loads.h"
     42 #include "llvm/Analysis/TargetLibraryInfo.h"
     43 #include "llvm/Analysis/ValueTracking.h"
     44 #include "llvm/IR/CFG.h"
     45 #include "llvm/IR/CallSite.h"
     46 #include "llvm/IR/Constants.h"
     47 #include "llvm/IR/DataLayout.h"
     48 #include "llvm/IR/DebugInfo.h"
     49 #include "llvm/IR/DerivedTypes.h"
     50 #include "llvm/IR/Instructions.h"
     51 #include "llvm/IR/LLVMContext.h"
     52 #include "llvm/IR/Module.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include <set>
     56 using namespace llvm;
     57 
     58 #define DEBUG_TYPE "argpromotion"
     59 
     60 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
     61 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
     62 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
     63 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
     64 
     65 namespace {
     66   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
     67   ///
     68   struct ArgPromotion : public CallGraphSCCPass {
     69     void getAnalysisUsage(AnalysisUsage &AU) const override {
     70       AU.addRequired<AssumptionCacheTracker>();
     71       AU.addRequired<TargetLibraryInfoWrapperPass>();
     72       getAAResultsAnalysisUsage(AU);
     73       CallGraphSCCPass::getAnalysisUsage(AU);
     74     }
     75 
     76     bool runOnSCC(CallGraphSCC &SCC) override;
     77     static char ID; // Pass identification, replacement for typeid
     78     explicit ArgPromotion(unsigned maxElements = 3)
     79         : CallGraphSCCPass(ID), maxElements(maxElements) {
     80       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
     81     }
     82 
     83   private:
     84 
     85     using llvm::Pass::doInitialization;
     86     bool doInitialization(CallGraph &CG) override;
     87     /// The maximum number of elements to expand, or 0 for unlimited.
     88     unsigned maxElements;
     89   };
     90 }
     91 
     92 /// A vector used to hold the indices of a single GEP instruction
     93 typedef std::vector<uint64_t> IndicesVector;
     94 
     95 static CallGraphNode *
     96 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
     97                  function_ref<AAResults &(Function &F)> AARGetter,
     98                  unsigned MaxElements);
     99 static bool isDenselyPacked(Type *type, const DataLayout &DL);
    100 static bool canPaddingBeAccessed(Argument *Arg);
    101 static bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, AAResults &AAR,
    102                                     unsigned MaxElements);
    103 static CallGraphNode *
    104 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
    105             SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG);
    106 
    107 char ArgPromotion::ID = 0;
    108 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
    109                 "Promote 'by reference' arguments to scalars", false, false)
    110 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    111 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
    112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    113 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
    114                 "Promote 'by reference' arguments to scalars", false, false)
    115 
    116 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
    117   return new ArgPromotion(maxElements);
    118 }
    119 
    120 static bool runImpl(CallGraphSCC &SCC, CallGraph &CG,
    121                     function_ref<AAResults &(Function &F)> AARGetter,
    122                     unsigned MaxElements) {
    123   bool Changed = false, LocalChange;
    124 
    125   do {  // Iterate until we stop promoting from this SCC.
    126     LocalChange = false;
    127     // Attempt to promote arguments from all functions in this SCC.
    128     for (CallGraphNode *OldNode : SCC) {
    129       if (CallGraphNode *NewNode =
    130               PromoteArguments(OldNode, CG, AARGetter, MaxElements)) {
    131         LocalChange = true;
    132         SCC.ReplaceNode(OldNode, NewNode);
    133       }
    134     }
    135     Changed |= LocalChange;               // Remember that we changed something.
    136   } while (LocalChange);
    137 
    138   return Changed;
    139 }
    140 
    141 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
    142   if (skipSCC(SCC))
    143     return false;
    144 
    145   // Get the callgraph information that we need to update to reflect our
    146   // changes.
    147   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    148 
    149   // We compute dedicated AA results for each function in the SCC as needed. We
    150   // use a lambda referencing external objects so that they live long enough to
    151   // be queried, but we re-use them each time.
    152   Optional<BasicAAResult> BAR;
    153   Optional<AAResults> AAR;
    154   auto AARGetter = [&](Function &F) -> AAResults & {
    155     BAR.emplace(createLegacyPMBasicAAResult(*this, F));
    156     AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
    157     return *AAR;
    158   };
    159 
    160   return runImpl(SCC, CG, AARGetter, maxElements);
    161 }
    162 
    163 /// \brief Checks if a type could have padding bytes.
    164 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
    165 
    166   // There is no size information, so be conservative.
    167   if (!type->isSized())
    168     return false;
    169 
    170   // If the alloc size is not equal to the storage size, then there are padding
    171   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
    172   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
    173     return false;
    174 
    175   if (!isa<CompositeType>(type))
    176     return true;
    177 
    178   // For homogenous sequential types, check for padding within members.
    179   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
    180     return isa<PointerType>(seqTy) ||
    181            isDenselyPacked(seqTy->getElementType(), DL);
    182 
    183   // Check for padding within and between elements of a struct.
    184   StructType *StructTy = cast<StructType>(type);
    185   const StructLayout *Layout = DL.getStructLayout(StructTy);
    186   uint64_t StartPos = 0;
    187   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
    188     Type *ElTy = StructTy->getElementType(i);
    189     if (!isDenselyPacked(ElTy, DL))
    190       return false;
    191     if (StartPos != Layout->getElementOffsetInBits(i))
    192       return false;
    193     StartPos += DL.getTypeAllocSizeInBits(ElTy);
    194   }
    195 
    196   return true;
    197 }
    198 
    199 /// \brief Checks if the padding bytes of an argument could be accessed.
    200 static bool canPaddingBeAccessed(Argument *arg) {
    201 
    202   assert(arg->hasByValAttr());
    203 
    204   // Track all the pointers to the argument to make sure they are not captured.
    205   SmallPtrSet<Value *, 16> PtrValues;
    206   PtrValues.insert(arg);
    207 
    208   // Track all of the stores.
    209   SmallVector<StoreInst *, 16> Stores;
    210 
    211   // Scan through the uses recursively to make sure the pointer is always used
    212   // sanely.
    213   SmallVector<Value *, 16> WorkList;
    214   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
    215   while (!WorkList.empty()) {
    216     Value *V = WorkList.back();
    217     WorkList.pop_back();
    218     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
    219       if (PtrValues.insert(V).second)
    220         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
    221     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
    222       Stores.push_back(Store);
    223     } else if (!isa<LoadInst>(V)) {
    224       return true;
    225     }
    226   }
    227 
    228 // Check to make sure the pointers aren't captured
    229   for (StoreInst *Store : Stores)
    230     if (PtrValues.count(Store->getValueOperand()))
    231       return true;
    232 
    233   return false;
    234 }
    235 
    236 /// PromoteArguments - This method checks the specified function to see if there
    237 /// are any promotable arguments and if it is safe to promote the function (for
    238 /// example, all callers are direct).  If safe to promote some arguments, it
    239 /// calls the DoPromotion method.
    240 ///
    241 static CallGraphNode *
    242 PromoteArguments(CallGraphNode *CGN, CallGraph &CG,
    243                  function_ref<AAResults &(Function &F)> AARGetter,
    244                  unsigned MaxElements) {
    245   Function *F = CGN->getFunction();
    246 
    247   // Make sure that it is local to this module.
    248   if (!F || !F->hasLocalLinkage()) return nullptr;
    249 
    250   // Don't promote arguments for variadic functions. Adding, removing, or
    251   // changing non-pack parameters can change the classification of pack
    252   // parameters. Frontends encode that classification at the call site in the
    253   // IR, while in the callee the classification is determined dynamically based
    254   // on the number of registers consumed so far.
    255   if (F->isVarArg()) return nullptr;
    256 
    257   // First check: see if there are any pointer arguments!  If not, quick exit.
    258   SmallVector<Argument*, 16> PointerArgs;
    259   for (Argument &I : F->args())
    260     if (I.getType()->isPointerTy())
    261       PointerArgs.push_back(&I);
    262   if (PointerArgs.empty()) return nullptr;
    263 
    264   // Second check: make sure that all callers are direct callers.  We can't
    265   // transform functions that have indirect callers.  Also see if the function
    266   // is self-recursive.
    267   bool isSelfRecursive = false;
    268   for (Use &U : F->uses()) {
    269     CallSite CS(U.getUser());
    270     // Must be a direct call.
    271     if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
    272 
    273     if (CS.getInstruction()->getParent()->getParent() == F)
    274       isSelfRecursive = true;
    275   }
    276 
    277   const DataLayout &DL = F->getParent()->getDataLayout();
    278 
    279   AAResults &AAR = AARGetter(*F);
    280 
    281   // Check to see which arguments are promotable.  If an argument is promotable,
    282   // add it to ArgsToPromote.
    283   SmallPtrSet<Argument*, 8> ArgsToPromote;
    284   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
    285   for (Argument *PtrArg : PointerArgs) {
    286     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
    287 
    288     // Replace sret attribute with noalias. This reduces register pressure by
    289     // avoiding a register copy.
    290     if (PtrArg->hasStructRetAttr()) {
    291       unsigned ArgNo = PtrArg->getArgNo();
    292       F->setAttributes(
    293           F->getAttributes()
    294               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
    295               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
    296       for (Use &U : F->uses()) {
    297         CallSite CS(U.getUser());
    298         CS.setAttributes(
    299             CS.getAttributes()
    300                 .removeAttribute(F->getContext(), ArgNo + 1,
    301                                  Attribute::StructRet)
    302                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
    303       }
    304     }
    305 
    306     // If this is a byval argument, and if the aggregate type is small, just
    307     // pass the elements, which is always safe, if the passed value is densely
    308     // packed or if we can prove the padding bytes are never accessed. This does
    309     // not apply to inalloca.
    310     bool isSafeToPromote =
    311         PtrArg->hasByValAttr() &&
    312         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
    313     if (isSafeToPromote) {
    314       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    315         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
    316           DEBUG(dbgs() << "argpromotion disable promoting argument '"
    317                 << PtrArg->getName() << "' because it would require adding more"
    318                 << " than " << MaxElements << " arguments to the function.\n");
    319           continue;
    320         }
    321 
    322         // If all the elements are single-value types, we can promote it.
    323         bool AllSimple = true;
    324         for (const auto *EltTy : STy->elements()) {
    325           if (!EltTy->isSingleValueType()) {
    326             AllSimple = false;
    327             break;
    328           }
    329         }
    330 
    331         // Safe to transform, don't even bother trying to "promote" it.
    332         // Passing the elements as a scalar will allow sroa to hack on
    333         // the new alloca we introduce.
    334         if (AllSimple) {
    335           ByValArgsToTransform.insert(PtrArg);
    336           continue;
    337         }
    338       }
    339     }
    340 
    341     // If the argument is a recursive type and we're in a recursive
    342     // function, we could end up infinitely peeling the function argument.
    343     if (isSelfRecursive) {
    344       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    345         bool RecursiveType = false;
    346         for (const auto *EltTy : STy->elements()) {
    347           if (EltTy == PtrArg->getType()) {
    348             RecursiveType = true;
    349             break;
    350           }
    351         }
    352         if (RecursiveType)
    353           continue;
    354       }
    355     }
    356 
    357     // Otherwise, see if we can promote the pointer to its value.
    358     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
    359                                 MaxElements))
    360       ArgsToPromote.insert(PtrArg);
    361   }
    362 
    363   // No promotable pointer arguments.
    364   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    365     return nullptr;
    366 
    367   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG);
    368 }
    369 
    370 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
    371 /// all callees pass in a valid pointer for the specified function argument.
    372 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
    373   Function *Callee = Arg->getParent();
    374   const DataLayout &DL = Callee->getParent()->getDataLayout();
    375 
    376   unsigned ArgNo = Arg->getArgNo();
    377 
    378   // Look at all call sites of the function.  At this pointer we know we only
    379   // have direct callees.
    380   for (User *U : Callee->users()) {
    381     CallSite CS(U);
    382     assert(CS && "Should only have direct calls!");
    383 
    384     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
    385       return false;
    386   }
    387   return true;
    388 }
    389 
    390 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
    391 /// that is greater than or equal to the size of prefix, and each of the
    392 /// elements in Prefix is the same as the corresponding elements in Longer.
    393 ///
    394 /// This means it also returns true when Prefix and Longer are equal!
    395 static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
    396   if (Prefix.size() > Longer.size())
    397     return false;
    398   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
    399 }
    400 
    401 
    402 /// Checks if Indices, or a prefix of Indices, is in Set.
    403 static bool PrefixIn(const IndicesVector &Indices,
    404                      std::set<IndicesVector> &Set) {
    405     std::set<IndicesVector>::iterator Low;
    406     Low = Set.upper_bound(Indices);
    407     if (Low != Set.begin())
    408       Low--;
    409     // Low is now the last element smaller than or equal to Indices. This means
    410     // it points to a prefix of Indices (possibly Indices itself), if such
    411     // prefix exists.
    412     //
    413     // This load is safe if any prefix of its operands is safe to load.
    414     return Low != Set.end() && IsPrefix(*Low, Indices);
    415 }
    416 
    417 /// Mark the given indices (ToMark) as safe in the given set of indices
    418 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
    419 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
    420 /// already. Furthermore, any indices that Indices is itself a prefix of, are
    421 /// removed from Safe (since they are implicitely safe because of Indices now).
    422 static void MarkIndicesSafe(const IndicesVector &ToMark,
    423                             std::set<IndicesVector> &Safe) {
    424   std::set<IndicesVector>::iterator Low;
    425   Low = Safe.upper_bound(ToMark);
    426   // Guard against the case where Safe is empty
    427   if (Low != Safe.begin())
    428     Low--;
    429   // Low is now the last element smaller than or equal to Indices. This
    430   // means it points to a prefix of Indices (possibly Indices itself), if
    431   // such prefix exists.
    432   if (Low != Safe.end()) {
    433     if (IsPrefix(*Low, ToMark))
    434       // If there is already a prefix of these indices (or exactly these
    435       // indices) marked a safe, don't bother adding these indices
    436       return;
    437 
    438     // Increment Low, so we can use it as a "insert before" hint
    439     ++Low;
    440   }
    441   // Insert
    442   Low = Safe.insert(Low, ToMark);
    443   ++Low;
    444   // If there we're a prefix of longer index list(s), remove those
    445   std::set<IndicesVector>::iterator End = Safe.end();
    446   while (Low != End && IsPrefix(ToMark, *Low)) {
    447     std::set<IndicesVector>::iterator Remove = Low;
    448     ++Low;
    449     Safe.erase(Remove);
    450   }
    451 }
    452 
    453 /// isSafeToPromoteArgument - As you might guess from the name of this method,
    454 /// it checks to see if it is both safe and useful to promote the argument.
    455 /// This method limits promotion of aggregates to only promote up to three
    456 /// elements of the aggregate in order to avoid exploding the number of
    457 /// arguments passed in.
    458 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
    459                                     AAResults &AAR, unsigned MaxElements) {
    460   typedef std::set<IndicesVector> GEPIndicesSet;
    461 
    462   // Quick exit for unused arguments
    463   if (Arg->use_empty())
    464     return true;
    465 
    466   // We can only promote this argument if all of the uses are loads, or are GEP
    467   // instructions (with constant indices) that are subsequently loaded.
    468   //
    469   // Promoting the argument causes it to be loaded in the caller
    470   // unconditionally. This is only safe if we can prove that either the load
    471   // would have happened in the callee anyway (ie, there is a load in the entry
    472   // block) or the pointer passed in at every call site is guaranteed to be
    473   // valid.
    474   // In the former case, invalid loads can happen, but would have happened
    475   // anyway, in the latter case, invalid loads won't happen. This prevents us
    476   // from introducing an invalid load that wouldn't have happened in the
    477   // original code.
    478   //
    479   // This set will contain all sets of indices that are loaded in the entry
    480   // block, and thus are safe to unconditionally load in the caller.
    481   //
    482   // This optimization is also safe for InAlloca parameters, because it verifies
    483   // that the address isn't captured.
    484   GEPIndicesSet SafeToUnconditionallyLoad;
    485 
    486   // This set contains all the sets of indices that we are planning to promote.
    487   // This makes it possible to limit the number of arguments added.
    488   GEPIndicesSet ToPromote;
    489 
    490   // If the pointer is always valid, any load with first index 0 is valid.
    491   if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
    492     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    493 
    494   // First, iterate the entry block and mark loads of (geps of) arguments as
    495   // safe.
    496   BasicBlock &EntryBlock = Arg->getParent()->front();
    497   // Declare this here so we can reuse it
    498   IndicesVector Indices;
    499   for (Instruction &I : EntryBlock)
    500     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    501       Value *V = LI->getPointerOperand();
    502       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
    503         V = GEP->getPointerOperand();
    504         if (V == Arg) {
    505           // This load actually loads (part of) Arg? Check the indices then.
    506           Indices.reserve(GEP->getNumIndices());
    507           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    508                II != IE; ++II)
    509             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
    510               Indices.push_back(CI->getSExtValue());
    511             else
    512               // We found a non-constant GEP index for this argument? Bail out
    513               // right away, can't promote this argument at all.
    514               return false;
    515 
    516           // Indices checked out, mark them as safe
    517           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
    518           Indices.clear();
    519         }
    520       } else if (V == Arg) {
    521         // Direct loads are equivalent to a GEP with a single 0 index.
    522         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
    523       }
    524     }
    525 
    526   // Now, iterate all uses of the argument to see if there are any uses that are
    527   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
    528   SmallVector<LoadInst*, 16> Loads;
    529   IndicesVector Operands;
    530   for (Use &U : Arg->uses()) {
    531     User *UR = U.getUser();
    532     Operands.clear();
    533     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
    534       // Don't hack volatile/atomic loads
    535       if (!LI->isSimple()) return false;
    536       Loads.push_back(LI);
    537       // Direct loads are equivalent to a GEP with a zero index and then a load.
    538       Operands.push_back(0);
    539     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
    540       if (GEP->use_empty()) {
    541         // Dead GEP's cause trouble later.  Just remove them if we run into
    542         // them.
    543         GEP->eraseFromParent();
    544         // TODO: This runs the above loop over and over again for dead GEPs
    545         // Couldn't we just do increment the UI iterator earlier and erase the
    546         // use?
    547         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
    548                                        MaxElements);
    549       }
    550 
    551       // Ensure that all of the indices are constants.
    552       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
    553         i != e; ++i)
    554         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
    555           Operands.push_back(C->getSExtValue());
    556         else
    557           return false;  // Not a constant operand GEP!
    558 
    559       // Ensure that the only users of the GEP are load instructions.
    560       for (User *GEPU : GEP->users())
    561         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
    562           // Don't hack volatile/atomic loads
    563           if (!LI->isSimple()) return false;
    564           Loads.push_back(LI);
    565         } else {
    566           // Other uses than load?
    567           return false;
    568         }
    569     } else {
    570       return false;  // Not a load or a GEP.
    571     }
    572 
    573     // Now, see if it is safe to promote this load / loads of this GEP. Loading
    574     // is safe if Operands, or a prefix of Operands, is marked as safe.
    575     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
    576       return false;
    577 
    578     // See if we are already promoting a load with these indices. If not, check
    579     // to make sure that we aren't promoting too many elements.  If so, nothing
    580     // to do.
    581     if (ToPromote.find(Operands) == ToPromote.end()) {
    582       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
    583         DEBUG(dbgs() << "argpromotion not promoting argument '"
    584               << Arg->getName() << "' because it would require adding more "
    585               << "than " << MaxElements << " arguments to the function.\n");
    586         // We limit aggregate promotion to only promoting up to a fixed number
    587         // of elements of the aggregate.
    588         return false;
    589       }
    590       ToPromote.insert(std::move(Operands));
    591     }
    592   }
    593 
    594   if (Loads.empty()) return true;  // No users, this is a dead argument.
    595 
    596   // Okay, now we know that the argument is only used by load instructions and
    597   // it is safe to unconditionally perform all of them. Use alias analysis to
    598   // check to see if the pointer is guaranteed to not be modified from entry of
    599   // the function to each of the load instructions.
    600 
    601   // Because there could be several/many load instructions, remember which
    602   // blocks we know to be transparent to the load.
    603   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
    604 
    605   for (LoadInst *Load : Loads) {
    606     // Check to see if the load is invalidated from the start of the block to
    607     // the load itself.
    608     BasicBlock *BB = Load->getParent();
    609 
    610     MemoryLocation Loc = MemoryLocation::get(Load);
    611     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
    612       return false;  // Pointer is invalidated!
    613 
    614     // Now check every path from the entry block to the load for transparency.
    615     // To do this, we perform a depth first search on the inverse CFG from the
    616     // loading block.
    617     for (BasicBlock *P : predecessors(BB)) {
    618       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
    619         if (AAR.canBasicBlockModify(*TranspBB, Loc))
    620           return false;
    621     }
    622   }
    623 
    624   // If the path from the entry of the function to each load is free of
    625   // instructions that potentially invalidate the load, we can make the
    626   // transformation!
    627   return true;
    628 }
    629 
    630 /// DoPromotion - This method actually performs the promotion of the specified
    631 /// arguments, and returns the new function.  At this point, we know that it's
    632 /// safe to do so.
    633 static CallGraphNode *
    634 DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
    635             SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG) {
    636 
    637   // Start by computing a new prototype for the function, which is the same as
    638   // the old function, but has modified arguments.
    639   FunctionType *FTy = F->getFunctionType();
    640   std::vector<Type*> Params;
    641 
    642   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
    643 
    644   // ScalarizedElements - If we are promoting a pointer that has elements
    645   // accessed out of it, keep track of which elements are accessed so that we
    646   // can add one argument for each.
    647   //
    648   // Arguments that are directly loaded will have a zero element value here, to
    649   // handle cases where there are both a direct load and GEP accesses.
    650   //
    651   std::map<Argument*, ScalarizeTable> ScalarizedElements;
    652 
    653   // OriginalLoads - Keep track of a representative load instruction from the
    654   // original function so that we can tell the alias analysis implementation
    655   // what the new GEP/Load instructions we are inserting look like.
    656   // We need to keep the original loads for each argument and the elements
    657   // of the argument that are accessed.
    658   std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
    659 
    660   // Attribute - Keep track of the parameter attributes for the arguments
    661   // that we are *not* promoting. For the ones that we do promote, the parameter
    662   // attributes are lost
    663   SmallVector<AttributeSet, 8> AttributesVec;
    664   const AttributeSet &PAL = F->getAttributes();
    665 
    666   // Add any return attributes.
    667   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
    668     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    669                                               PAL.getRetAttributes()));
    670 
    671   // First, determine the new argument list
    672   unsigned ArgIndex = 1;
    673   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
    674        ++I, ++ArgIndex) {
    675     if (ByValArgsToTransform.count(&*I)) {
    676       // Simple byval argument? Just add all the struct element types.
    677       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    678       StructType *STy = cast<StructType>(AgTy);
    679       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
    680       ++NumByValArgsPromoted;
    681     } else if (!ArgsToPromote.count(&*I)) {
    682       // Unchanged argument
    683       Params.push_back(I->getType());
    684       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
    685       if (attrs.hasAttributes(ArgIndex)) {
    686         AttrBuilder B(attrs, ArgIndex);
    687         AttributesVec.
    688           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    689       }
    690     } else if (I->use_empty()) {
    691       // Dead argument (which are always marked as promotable)
    692       ++NumArgumentsDead;
    693     } else {
    694       // Okay, this is being promoted. This means that the only uses are loads
    695       // or GEPs which are only used by loads
    696 
    697       // In this table, we will track which indices are loaded from the argument
    698       // (where direct loads are tracked as no indices).
    699       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    700       for (User *U : I->users()) {
    701         Instruction *UI = cast<Instruction>(U);
    702         Type *SrcTy;
    703         if (LoadInst *L = dyn_cast<LoadInst>(UI))
    704           SrcTy = L->getType();
    705         else
    706           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
    707         IndicesVector Indices;
    708         Indices.reserve(UI->getNumOperands() - 1);
    709         // Since loads will only have a single operand, and GEPs only a single
    710         // non-index operand, this will record direct loads without any indices,
    711         // and gep+loads with the GEP indices.
    712         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
    713              II != IE; ++II)
    714           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
    715         // GEPs with a single 0 index can be merged with direct loads
    716         if (Indices.size() == 1 && Indices.front() == 0)
    717           Indices.clear();
    718         ArgIndices.insert(std::make_pair(SrcTy, Indices));
    719         LoadInst *OrigLoad;
    720         if (LoadInst *L = dyn_cast<LoadInst>(UI))
    721           OrigLoad = L;
    722         else
    723           // Take any load, we will use it only to update Alias Analysis
    724           OrigLoad = cast<LoadInst>(UI->user_back());
    725         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
    726       }
    727 
    728       // Add a parameter to the function for each element passed in.
    729       for (const auto &ArgIndex : ArgIndices) {
    730         // not allowed to dereference ->begin() if size() is 0
    731         Params.push_back(GetElementPtrInst::getIndexedType(
    732             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
    733             ArgIndex.second));
    734         assert(Params.back());
    735       }
    736 
    737       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
    738         ++NumArgumentsPromoted;
    739       else
    740         ++NumAggregatesPromoted;
    741     }
    742   }
    743 
    744   // Add any function attributes.
    745   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    746     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
    747                                               PAL.getFnAttributes()));
    748 
    749   Type *RetTy = FTy->getReturnType();
    750 
    751   // Construct the new function type using the new arguments.
    752   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
    753 
    754   // Create the new function body and insert it into the module.
    755   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
    756   NF->copyAttributesFrom(F);
    757 
    758   // Patch the pointer to LLVM function in debug info descriptor.
    759   NF->setSubprogram(F->getSubprogram());
    760   F->setSubprogram(nullptr);
    761 
    762   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
    763         << "From: " << *F);
    764 
    765   // Recompute the parameter attributes list based on the new arguments for
    766   // the function.
    767   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
    768   AttributesVec.clear();
    769 
    770   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
    771   NF->takeName(F);
    772 
    773   // Get a new callgraph node for NF.
    774   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
    775 
    776   // Loop over all of the callers of the function, transforming the call sites
    777   // to pass in the loaded pointers.
    778   //
    779   SmallVector<Value*, 16> Args;
    780   while (!F->use_empty()) {
    781     CallSite CS(F->user_back());
    782     assert(CS.getCalledFunction() == F);
    783     Instruction *Call = CS.getInstruction();
    784     const AttributeSet &CallPAL = CS.getAttributes();
    785 
    786     // Add any return attributes.
    787     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
    788       AttributesVec.push_back(AttributeSet::get(F->getContext(),
    789                                                 CallPAL.getRetAttributes()));
    790 
    791     // Loop over the operands, inserting GEP and loads in the caller as
    792     // appropriate.
    793     CallSite::arg_iterator AI = CS.arg_begin();
    794     ArgIndex = 1;
    795     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    796          I != E; ++I, ++AI, ++ArgIndex)
    797       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
    798         Args.push_back(*AI);          // Unmodified argument
    799 
    800         if (CallPAL.hasAttributes(ArgIndex)) {
    801           AttrBuilder B(CallPAL, ArgIndex);
    802           AttributesVec.
    803             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    804         }
    805       } else if (ByValArgsToTransform.count(&*I)) {
    806         // Emit a GEP and load for each element of the struct.
    807         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    808         StructType *STy = cast<StructType>(AgTy);
    809         Value *Idxs[2] = {
    810               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
    811         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    812           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    813           Value *Idx = GetElementPtrInst::Create(
    814               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
    815           // TODO: Tell AA about the new values?
    816           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
    817         }
    818       } else if (!I->use_empty()) {
    819         // Non-dead argument: insert GEPs and loads as appropriate.
    820         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    821         // Store the Value* version of the indices in here, but declare it now
    822         // for reuse.
    823         std::vector<Value*> Ops;
    824         for (const auto &ArgIndex : ArgIndices) {
    825           Value *V = *AI;
    826           LoadInst *OrigLoad =
    827               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
    828           if (!ArgIndex.second.empty()) {
    829             Ops.reserve(ArgIndex.second.size());
    830             Type *ElTy = V->getType();
    831             for (unsigned long II : ArgIndex.second) {
    832               // Use i32 to index structs, and i64 for others (pointers/arrays).
    833               // This satisfies GEP constraints.
    834               Type *IdxTy = (ElTy->isStructTy() ?
    835                     Type::getInt32Ty(F->getContext()) :
    836                     Type::getInt64Ty(F->getContext()));
    837               Ops.push_back(ConstantInt::get(IdxTy, II));
    838               // Keep track of the type we're currently indexing.
    839               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
    840             }
    841             // And create a GEP to extract those indices.
    842             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
    843                                           V->getName() + ".idx", Call);
    844             Ops.clear();
    845           }
    846           // Since we're replacing a load make sure we take the alignment
    847           // of the previous load.
    848           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
    849           newLoad->setAlignment(OrigLoad->getAlignment());
    850           // Transfer the AA info too.
    851           AAMDNodes AAInfo;
    852           OrigLoad->getAAMetadata(AAInfo);
    853           newLoad->setAAMetadata(AAInfo);
    854 
    855           Args.push_back(newLoad);
    856         }
    857       }
    858 
    859     // Push any varargs arguments on the list.
    860     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
    861       Args.push_back(*AI);
    862       if (CallPAL.hasAttributes(ArgIndex)) {
    863         AttrBuilder B(CallPAL, ArgIndex);
    864         AttributesVec.
    865           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    866       }
    867     }
    868 
    869     // Add any function attributes.
    870     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    871       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    872                                                 CallPAL.getFnAttributes()));
    873 
    874     SmallVector<OperandBundleDef, 1> OpBundles;
    875     CS.getOperandBundlesAsDefs(OpBundles);
    876 
    877     Instruction *New;
    878     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    879       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    880                                Args, OpBundles, "", Call);
    881       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    882       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
    883                                                             AttributesVec));
    884     } else {
    885       New = CallInst::Create(NF, Args, OpBundles, "", Call);
    886       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    887       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
    888                                                           AttributesVec));
    889       if (cast<CallInst>(Call)->isTailCall())
    890         cast<CallInst>(New)->setTailCall();
    891     }
    892     New->setDebugLoc(Call->getDebugLoc());
    893     Args.clear();
    894     AttributesVec.clear();
    895 
    896     // Update the callgraph to know that the callsite has been transformed.
    897     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    898     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
    899 
    900     if (!Call->use_empty()) {
    901       Call->replaceAllUsesWith(New);
    902       New->takeName(Call);
    903     }
    904 
    905     // Finally, remove the old call from the program, reducing the use-count of
    906     // F.
    907     Call->eraseFromParent();
    908   }
    909 
    910   // Since we have now created the new function, splice the body of the old
    911   // function right into the new function, leaving the old rotting hulk of the
    912   // function empty.
    913   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    914 
    915   // Loop over the argument list, transferring uses of the old arguments over to
    916   // the new arguments, also transferring over the names as well.
    917   //
    918   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    919        I2 = NF->arg_begin(); I != E; ++I) {
    920     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
    921       // If this is an unmodified argument, move the name and users over to the
    922       // new version.
    923       I->replaceAllUsesWith(&*I2);
    924       I2->takeName(&*I);
    925       ++I2;
    926       continue;
    927     }
    928 
    929     if (ByValArgsToTransform.count(&*I)) {
    930       // In the callee, we create an alloca, and store each of the new incoming
    931       // arguments into the alloca.
    932       Instruction *InsertPt = &NF->begin()->front();
    933 
    934       // Just add all the struct element types.
    935       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    936       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
    937       StructType *STy = cast<StructType>(AgTy);
    938       Value *Idxs[2] = {
    939             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
    940 
    941       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    942         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    943         Value *Idx = GetElementPtrInst::Create(
    944             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
    945             InsertPt);
    946         I2->setName(I->getName()+"."+Twine(i));
    947         new StoreInst(&*I2++, Idx, InsertPt);
    948       }
    949 
    950       // Anything that used the arg should now use the alloca.
    951       I->replaceAllUsesWith(TheAlloca);
    952       TheAlloca->takeName(&*I);
    953 
    954       // If the alloca is used in a call, we must clear the tail flag since
    955       // the callee now uses an alloca from the caller.
    956       for (User *U : TheAlloca->users()) {
    957         CallInst *Call = dyn_cast<CallInst>(U);
    958         if (!Call)
    959           continue;
    960         Call->setTailCall(false);
    961       }
    962       continue;
    963     }
    964 
    965     if (I->use_empty())
    966       continue;
    967 
    968     // Otherwise, if we promoted this argument, then all users are load
    969     // instructions (or GEPs with only load users), and all loads should be
    970     // using the new argument that we added.
    971     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
    972 
    973     while (!I->use_empty()) {
    974       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
    975         assert(ArgIndices.begin()->second.empty() &&
    976                "Load element should sort to front!");
    977         I2->setName(I->getName()+".val");
    978         LI->replaceAllUsesWith(&*I2);
    979         LI->eraseFromParent();
    980         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
    981               << "' in function '" << F->getName() << "'\n");
    982       } else {
    983         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
    984         IndicesVector Operands;
    985         Operands.reserve(GEP->getNumIndices());
    986         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    987              II != IE; ++II)
    988           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
    989 
    990         // GEPs with a single 0 index can be merged with direct loads
    991         if (Operands.size() == 1 && Operands.front() == 0)
    992           Operands.clear();
    993 
    994         Function::arg_iterator TheArg = I2;
    995         for (ScalarizeTable::iterator It = ArgIndices.begin();
    996              It->second != Operands; ++It, ++TheArg) {
    997           assert(It != ArgIndices.end() && "GEP not handled??");
    998         }
    999 
   1000         std::string NewName = I->getName();
   1001         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
   1002             NewName += "." + utostr(Operands[i]);
   1003         }
   1004         NewName += ".val";
   1005         TheArg->setName(NewName);
   1006 
   1007         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
   1008               << "' of function '" << NF->getName() << "'\n");
   1009 
   1010         // All of the uses must be load instructions.  Replace them all with
   1011         // the argument specified by ArgNo.
   1012         while (!GEP->use_empty()) {
   1013           LoadInst *L = cast<LoadInst>(GEP->user_back());
   1014           L->replaceAllUsesWith(&*TheArg);
   1015           L->eraseFromParent();
   1016         }
   1017         GEP->eraseFromParent();
   1018       }
   1019     }
   1020 
   1021     // Increment I2 past all of the arguments added for this promoted pointer.
   1022     std::advance(I2, ArgIndices.size());
   1023   }
   1024 
   1025   NF_CGN->stealCalledFunctionsFrom(CG[F]);
   1026 
   1027   // Now that the old function is dead, delete it.  If there is a dangling
   1028   // reference to the CallgraphNode, just leave the dead function around for
   1029   // someone else to nuke.
   1030   CallGraphNode *CGN = CG[F];
   1031   if (CGN->getNumReferences() == 0)
   1032     delete CG.removeFunctionFromModule(CGN);
   1033   else
   1034     F->setLinkage(Function::ExternalLinkage);
   1035 
   1036   return NF_CGN;
   1037 }
   1038 
   1039 bool ArgPromotion::doInitialization(CallGraph &CG) {
   1040   return CallGraphSCCPass::doInitialization(CG);
   1041 }
   1042