Home | History | Annotate | Download | only in Scalar
      1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs various transformations related to eliminating memcpy
     11 // calls, or transforming sets of stores into memset's.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/GlobalVariable.h"
     24 #include "llvm/IR/IRBuilder.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/Local.h"
     28 #include <algorithm>
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "memcpyopt"
     32 
     33 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
     34 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
     35 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
     36 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
     37 
     38 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
     39                                   bool &VariableIdxFound,
     40                                   const DataLayout &DL) {
     41   // Skip over the first indices.
     42   gep_type_iterator GTI = gep_type_begin(GEP);
     43   for (unsigned i = 1; i != Idx; ++i, ++GTI)
     44     /*skip along*/;
     45 
     46   // Compute the offset implied by the rest of the indices.
     47   int64_t Offset = 0;
     48   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
     49     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
     50     if (!OpC)
     51       return VariableIdxFound = true;
     52     if (OpC->isZero()) continue;  // No offset.
     53 
     54     // Handle struct indices, which add their field offset to the pointer.
     55     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
     56       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
     57       continue;
     58     }
     59 
     60     // Otherwise, we have a sequential type like an array or vector.  Multiply
     61     // the index by the ElementSize.
     62     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
     63     Offset += Size*OpC->getSExtValue();
     64   }
     65 
     66   return Offset;
     67 }
     68 
     69 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
     70 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
     71 /// might be &A[40]. In this case offset would be -8.
     72 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
     73                             const DataLayout &DL) {
     74   Ptr1 = Ptr1->stripPointerCasts();
     75   Ptr2 = Ptr2->stripPointerCasts();
     76 
     77   // Handle the trivial case first.
     78   if (Ptr1 == Ptr2) {
     79     Offset = 0;
     80     return true;
     81   }
     82 
     83   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
     84   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
     85 
     86   bool VariableIdxFound = false;
     87 
     88   // If one pointer is a GEP and the other isn't, then see if the GEP is a
     89   // constant offset from the base, as in "P" and "gep P, 1".
     90   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
     91     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
     92     return !VariableIdxFound;
     93   }
     94 
     95   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
     96     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
     97     return !VariableIdxFound;
     98   }
     99 
    100   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
    101   // base.  After that base, they may have some number of common (and
    102   // potentially variable) indices.  After that they handle some constant
    103   // offset, which determines their offset from each other.  At this point, we
    104   // handle no other case.
    105   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    106     return false;
    107 
    108   // Skip any common indices and track the GEP types.
    109   unsigned Idx = 1;
    110   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    111     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
    112       break;
    113 
    114   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
    115   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
    116   if (VariableIdxFound) return false;
    117 
    118   Offset = Offset2-Offset1;
    119   return true;
    120 }
    121 
    122 
    123 /// Represents a range of memset'd bytes with the ByteVal value.
    124 /// This allows us to analyze stores like:
    125 ///   store 0 -> P+1
    126 ///   store 0 -> P+0
    127 ///   store 0 -> P+3
    128 ///   store 0 -> P+2
    129 /// which sometimes happens with stores to arrays of structs etc.  When we see
    130 /// the first store, we make a range [1, 2).  The second store extends the range
    131 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
    132 /// two ranges into [0, 3) which is memset'able.
    133 namespace {
    134 struct MemsetRange {
    135   // Start/End - A semi range that describes the span that this range covers.
    136   // The range is closed at the start and open at the end: [Start, End).
    137   int64_t Start, End;
    138 
    139   /// StartPtr - The getelementptr instruction that points to the start of the
    140   /// range.
    141   Value *StartPtr;
    142 
    143   /// Alignment - The known alignment of the first store.
    144   unsigned Alignment;
    145 
    146   /// TheStores - The actual stores that make up this range.
    147   SmallVector<Instruction*, 16> TheStores;
    148 
    149   bool isProfitableToUseMemset(const DataLayout &DL) const;
    150 };
    151 } // end anon namespace
    152 
    153 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
    154   // If we found more than 4 stores to merge or 16 bytes, use memset.
    155   if (TheStores.size() >= 4 || End-Start >= 16) return true;
    156 
    157   // If there is nothing to merge, don't do anything.
    158   if (TheStores.size() < 2) return false;
    159 
    160   // If any of the stores are a memset, then it is always good to extend the
    161   // memset.
    162   for (Instruction *SI : TheStores)
    163     if (!isa<StoreInst>(SI))
    164       return true;
    165 
    166   // Assume that the code generator is capable of merging pairs of stores
    167   // together if it wants to.
    168   if (TheStores.size() == 2) return false;
    169 
    170   // If we have fewer than 8 stores, it can still be worthwhile to do this.
    171   // For example, merging 4 i8 stores into an i32 store is useful almost always.
    172   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
    173   // memset will be split into 2 32-bit stores anyway) and doing so can
    174   // pessimize the llvm optimizer.
    175   //
    176   // Since we don't have perfect knowledge here, make some assumptions: assume
    177   // the maximum GPR width is the same size as the largest legal integer
    178   // size. If so, check to see whether we will end up actually reducing the
    179   // number of stores used.
    180   unsigned Bytes = unsigned(End-Start);
    181   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
    182   if (MaxIntSize == 0)
    183     MaxIntSize = 1;
    184   unsigned NumPointerStores = Bytes / MaxIntSize;
    185 
    186   // Assume the remaining bytes if any are done a byte at a time.
    187   unsigned NumByteStores = Bytes % MaxIntSize;
    188 
    189   // If we will reduce the # stores (according to this heuristic), do the
    190   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
    191   // etc.
    192   return TheStores.size() > NumPointerStores+NumByteStores;
    193 }
    194 
    195 
    196 namespace {
    197 class MemsetRanges {
    198   /// A sorted list of the memset ranges.
    199   SmallVector<MemsetRange, 8> Ranges;
    200   typedef SmallVectorImpl<MemsetRange>::iterator range_iterator;
    201   const DataLayout &DL;
    202 public:
    203   MemsetRanges(const DataLayout &DL) : DL(DL) {}
    204 
    205   typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator;
    206   const_iterator begin() const { return Ranges.begin(); }
    207   const_iterator end() const { return Ranges.end(); }
    208   bool empty() const { return Ranges.empty(); }
    209 
    210   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    211     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    212       addStore(OffsetFromFirst, SI);
    213     else
    214       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
    215   }
    216 
    217   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    218     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
    219 
    220     addRange(OffsetFromFirst, StoreSize,
    221              SI->getPointerOperand(), SI->getAlignment(), SI);
    222   }
    223 
    224   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    225     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    226     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
    227   }
    228 
    229   void addRange(int64_t Start, int64_t Size, Value *Ptr,
    230                 unsigned Alignment, Instruction *Inst);
    231 
    232 };
    233 
    234 } // end anon namespace
    235 
    236 
    237 /// Add a new store to the MemsetRanges data structure.  This adds a
    238 /// new range for the specified store at the specified offset, merging into
    239 /// existing ranges as appropriate.
    240 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
    241                             unsigned Alignment, Instruction *Inst) {
    242   int64_t End = Start+Size;
    243 
    244   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
    245     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
    246 
    247   // We now know that I == E, in which case we didn't find anything to merge
    248   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
    249   // to insert a new range.  Handle this now.
    250   if (I == Ranges.end() || End < I->Start) {
    251     MemsetRange &R = *Ranges.insert(I, MemsetRange());
    252     R.Start        = Start;
    253     R.End          = End;
    254     R.StartPtr     = Ptr;
    255     R.Alignment    = Alignment;
    256     R.TheStores.push_back(Inst);
    257     return;
    258   }
    259 
    260   // This store overlaps with I, add it.
    261   I->TheStores.push_back(Inst);
    262 
    263   // At this point, we may have an interval that completely contains our store.
    264   // If so, just add it to the interval and return.
    265   if (I->Start <= Start && I->End >= End)
    266     return;
    267 
    268   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
    269   // but is not entirely contained within the range.
    270 
    271   // See if the range extends the start of the range.  In this case, it couldn't
    272   // possibly cause it to join the prior range, because otherwise we would have
    273   // stopped on *it*.
    274   if (Start < I->Start) {
    275     I->Start = Start;
    276     I->StartPtr = Ptr;
    277     I->Alignment = Alignment;
    278   }
    279 
    280   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
    281   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
    282   // End.
    283   if (End > I->End) {
    284     I->End = End;
    285     range_iterator NextI = I;
    286     while (++NextI != Ranges.end() && End >= NextI->Start) {
    287       // Merge the range in.
    288       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
    289       if (NextI->End > I->End)
    290         I->End = NextI->End;
    291       Ranges.erase(NextI);
    292       NextI = I;
    293     }
    294   }
    295 }
    296 
    297 //===----------------------------------------------------------------------===//
    298 //                         MemCpyOptLegacyPass Pass
    299 //===----------------------------------------------------------------------===//
    300 
    301 namespace {
    302   class MemCpyOptLegacyPass : public FunctionPass {
    303     MemCpyOptPass Impl;
    304   public:
    305     static char ID; // Pass identification, replacement for typeid
    306     MemCpyOptLegacyPass() : FunctionPass(ID) {
    307       initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
    308     }
    309 
    310     bool runOnFunction(Function &F) override;
    311 
    312   private:
    313     // This transformation requires dominator postdominator info
    314     void getAnalysisUsage(AnalysisUsage &AU) const override {
    315       AU.setPreservesCFG();
    316       AU.addRequired<AssumptionCacheTracker>();
    317       AU.addRequired<DominatorTreeWrapperPass>();
    318       AU.addRequired<MemoryDependenceWrapperPass>();
    319       AU.addRequired<AAResultsWrapperPass>();
    320       AU.addRequired<TargetLibraryInfoWrapperPass>();
    321       AU.addPreserved<GlobalsAAWrapperPass>();
    322       AU.addPreserved<MemoryDependenceWrapperPass>();
    323     }
    324 
    325     // Helper functions
    326     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
    327     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
    328     bool processMemCpy(MemCpyInst *M);
    329     bool processMemMove(MemMoveInst *M);
    330     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
    331                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
    332     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
    333     bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
    334     bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
    335     bool processByValArgument(CallSite CS, unsigned ArgNo);
    336     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
    337                                       Value *ByteVal);
    338 
    339     bool iterateOnFunction(Function &F);
    340   };
    341 
    342   char MemCpyOptLegacyPass::ID = 0;
    343 }
    344 
    345 /// The public interface to this file...
    346 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
    347 
    348 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
    349                       false, false)
    350 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    352 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
    353 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    354 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    355 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    356 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
    357                     false, false)
    358 
    359 /// When scanning forward over instructions, we look for some other patterns to
    360 /// fold away. In particular, this looks for stores to neighboring locations of
    361 /// memory. If it sees enough consecutive ones, it attempts to merge them
    362 /// together into a memcpy/memset.
    363 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
    364                                                  Value *StartPtr,
    365                                                  Value *ByteVal) {
    366   const DataLayout &DL = StartInst->getModule()->getDataLayout();
    367 
    368   // Okay, so we now have a single store that can be splatable.  Scan to find
    369   // all subsequent stores of the same value to offset from the same pointer.
    370   // Join these together into ranges, so we can decide whether contiguous blocks
    371   // are stored.
    372   MemsetRanges Ranges(DL);
    373 
    374   BasicBlock::iterator BI(StartInst);
    375   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    376     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
    377       // If the instruction is readnone, ignore it, otherwise bail out.  We
    378       // don't even allow readonly here because we don't want something like:
    379       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
    380       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
    381         break;
    382       continue;
    383     }
    384 
    385     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
    386       // If this is a store, see if we can merge it in.
    387       if (!NextStore->isSimple()) break;
    388 
    389       // Check to see if this stored value is of the same byte-splattable value.
    390       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
    391         break;
    392 
    393       // Check to see if this store is to a constant offset from the start ptr.
    394       int64_t Offset;
    395       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
    396                            DL))
    397         break;
    398 
    399       Ranges.addStore(Offset, NextStore);
    400     } else {
    401       MemSetInst *MSI = cast<MemSetInst>(BI);
    402 
    403       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
    404           !isa<ConstantInt>(MSI->getLength()))
    405         break;
    406 
    407       // Check to see if this store is to a constant offset from the start ptr.
    408       int64_t Offset;
    409       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
    410         break;
    411 
    412       Ranges.addMemSet(Offset, MSI);
    413     }
    414   }
    415 
    416   // If we have no ranges, then we just had a single store with nothing that
    417   // could be merged in.  This is a very common case of course.
    418   if (Ranges.empty())
    419     return nullptr;
    420 
    421   // If we had at least one store that could be merged in, add the starting
    422   // store as well.  We try to avoid this unless there is at least something
    423   // interesting as a small compile-time optimization.
    424   Ranges.addInst(0, StartInst);
    425 
    426   // If we create any memsets, we put it right before the first instruction that
    427   // isn't part of the memset block.  This ensure that the memset is dominated
    428   // by any addressing instruction needed by the start of the block.
    429   IRBuilder<> Builder(&*BI);
    430 
    431   // Now that we have full information about ranges, loop over the ranges and
    432   // emit memset's for anything big enough to be worthwhile.
    433   Instruction *AMemSet = nullptr;
    434   for (const MemsetRange &Range : Ranges) {
    435 
    436     if (Range.TheStores.size() == 1) continue;
    437 
    438     // If it is profitable to lower this range to memset, do so now.
    439     if (!Range.isProfitableToUseMemset(DL))
    440       continue;
    441 
    442     // Otherwise, we do want to transform this!  Create a new memset.
    443     // Get the starting pointer of the block.
    444     StartPtr = Range.StartPtr;
    445 
    446     // Determine alignment
    447     unsigned Alignment = Range.Alignment;
    448     if (Alignment == 0) {
    449       Type *EltType =
    450         cast<PointerType>(StartPtr->getType())->getElementType();
    451       Alignment = DL.getABITypeAlignment(EltType);
    452     }
    453 
    454     AMemSet =
    455       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
    456 
    457     DEBUG(dbgs() << "Replace stores:\n";
    458           for (Instruction *SI : Range.TheStores)
    459             dbgs() << *SI << '\n';
    460           dbgs() << "With: " << *AMemSet << '\n');
    461 
    462     if (!Range.TheStores.empty())
    463       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
    464 
    465     // Zap all the stores.
    466     for (Instruction *SI : Range.TheStores) {
    467       MD->removeInstruction(SI);
    468       SI->eraseFromParent();
    469     }
    470     ++NumMemSetInfer;
    471   }
    472 
    473   return AMemSet;
    474 }
    475 
    476 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
    477                                      const LoadInst *LI) {
    478   unsigned StoreAlign = SI->getAlignment();
    479   if (!StoreAlign)
    480     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
    481   unsigned LoadAlign = LI->getAlignment();
    482   if (!LoadAlign)
    483     LoadAlign = DL.getABITypeAlignment(LI->getType());
    484 
    485   return std::min(StoreAlign, LoadAlign);
    486 }
    487 
    488 // This method try to lift a store instruction before position P.
    489 // It will lift the store and its argument + that anything that
    490 // may alias with these.
    491 // The method returns true if it was successful.
    492 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P) {
    493   // If the store alias this position, early bail out.
    494   MemoryLocation StoreLoc = MemoryLocation::get(SI);
    495   if (AA.getModRefInfo(P, StoreLoc) != MRI_NoModRef)
    496     return false;
    497 
    498   // Keep track of the arguments of all instruction we plan to lift
    499   // so we can make sure to lift them as well if apropriate.
    500   DenseSet<Instruction*> Args;
    501   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
    502     if (Ptr->getParent() == SI->getParent())
    503       Args.insert(Ptr);
    504 
    505   // Instruction to lift before P.
    506   SmallVector<Instruction*, 8> ToLift;
    507 
    508   // Memory locations of lifted instructions.
    509   SmallVector<MemoryLocation, 8> MemLocs;
    510   MemLocs.push_back(StoreLoc);
    511 
    512   // Lifted callsites.
    513   SmallVector<ImmutableCallSite, 8> CallSites;
    514 
    515   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
    516     auto *C = &*I;
    517 
    518     bool MayAlias = AA.getModRefInfo(C) != MRI_NoModRef;
    519 
    520     bool NeedLift = false;
    521     if (Args.erase(C))
    522       NeedLift = true;
    523     else if (MayAlias) {
    524       NeedLift = std::any_of(MemLocs.begin(), MemLocs.end(),
    525         [C, &AA](const MemoryLocation &ML) {
    526           return AA.getModRefInfo(C, ML);
    527         });
    528 
    529       if (!NeedLift)
    530         NeedLift = std::any_of(CallSites.begin(), CallSites.end(),
    531           [C, &AA](const ImmutableCallSite &CS) {
    532             return AA.getModRefInfo(C, CS);
    533           });
    534     }
    535 
    536     if (!NeedLift)
    537       continue;
    538 
    539     if (MayAlias) {
    540       if (auto CS = ImmutableCallSite(C)) {
    541         // If we can't lift this before P, it's game over.
    542         if (AA.getModRefInfo(P, CS) != MRI_NoModRef)
    543           return false;
    544 
    545         CallSites.push_back(CS);
    546       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
    547         // If we can't lift this before P, it's game over.
    548         auto ML = MemoryLocation::get(C);
    549         if (AA.getModRefInfo(P, ML) != MRI_NoModRef)
    550           return false;
    551 
    552         MemLocs.push_back(ML);
    553       } else
    554         // We don't know how to lift this instruction.
    555         return false;
    556     }
    557 
    558     ToLift.push_back(C);
    559     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
    560       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
    561         if (A->getParent() == SI->getParent())
    562           Args.insert(A);
    563   }
    564 
    565   // We made it, we need to lift
    566   for (auto *I : reverse(ToLift)) {
    567     DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
    568     I->moveBefore(P);
    569   }
    570 
    571   return true;
    572 }
    573 
    574 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
    575   if (!SI->isSimple()) return false;
    576 
    577   // Avoid merging nontemporal stores since the resulting
    578   // memcpy/memset would not be able to preserve the nontemporal hint.
    579   // In theory we could teach how to propagate the !nontemporal metadata to
    580   // memset calls. However, that change would force the backend to
    581   // conservatively expand !nontemporal memset calls back to sequences of
    582   // store instructions (effectively undoing the merging).
    583   if (SI->getMetadata(LLVMContext::MD_nontemporal))
    584     return false;
    585 
    586   const DataLayout &DL = SI->getModule()->getDataLayout();
    587 
    588   // Load to store forwarding can be interpreted as memcpy.
    589   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    590     if (LI->isSimple() && LI->hasOneUse() &&
    591         LI->getParent() == SI->getParent()) {
    592 
    593       auto *T = LI->getType();
    594       if (T->isAggregateType()) {
    595         AliasAnalysis &AA = LookupAliasAnalysis();
    596         MemoryLocation LoadLoc = MemoryLocation::get(LI);
    597 
    598         // We use alias analysis to check if an instruction may store to
    599         // the memory we load from in between the load and the store. If
    600         // such an instruction is found, we try to promote there instead
    601         // of at the store position.
    602         Instruction *P = SI;
    603         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
    604           if (AA.getModRefInfo(&I, LoadLoc) & MRI_Mod) {
    605             P = &I;
    606             break;
    607           }
    608         }
    609 
    610         // We found an instruction that may write to the loaded memory.
    611         // We can try to promote at this position instead of the store
    612         // position if nothing alias the store memory after this and the store
    613         // destination is not in the range.
    614         if (P && P != SI) {
    615           if (!moveUp(AA, SI, P))
    616             P = nullptr;
    617         }
    618 
    619         // If a valid insertion position is found, then we can promote
    620         // the load/store pair to a memcpy.
    621         if (P) {
    622           // If we load from memory that may alias the memory we store to,
    623           // memmove must be used to preserve semantic. If not, memcpy can
    624           // be used.
    625           bool UseMemMove = false;
    626           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
    627             UseMemMove = true;
    628 
    629           unsigned Align = findCommonAlignment(DL, SI, LI);
    630           uint64_t Size = DL.getTypeStoreSize(T);
    631 
    632           IRBuilder<> Builder(P);
    633           Instruction *M;
    634           if (UseMemMove)
    635             M = Builder.CreateMemMove(SI->getPointerOperand(),
    636                                       LI->getPointerOperand(), Size,
    637                                       Align, SI->isVolatile());
    638           else
    639             M = Builder.CreateMemCpy(SI->getPointerOperand(),
    640                                      LI->getPointerOperand(), Size,
    641                                      Align, SI->isVolatile());
    642 
    643           DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI
    644                        << " => " << *M << "\n");
    645 
    646           MD->removeInstruction(SI);
    647           SI->eraseFromParent();
    648           MD->removeInstruction(LI);
    649           LI->eraseFromParent();
    650           ++NumMemCpyInstr;
    651 
    652           // Make sure we do not invalidate the iterator.
    653           BBI = M->getIterator();
    654           return true;
    655         }
    656       }
    657 
    658       // Detect cases where we're performing call slot forwarding, but
    659       // happen to be using a load-store pair to implement it, rather than
    660       // a memcpy.
    661       MemDepResult ldep = MD->getDependency(LI);
    662       CallInst *C = nullptr;
    663       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
    664         C = dyn_cast<CallInst>(ldep.getInst());
    665 
    666       if (C) {
    667         // Check that nothing touches the dest of the "copy" between
    668         // the call and the store.
    669         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
    670         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
    671         AliasAnalysis &AA = LookupAliasAnalysis();
    672         MemoryLocation StoreLoc = MemoryLocation::get(SI);
    673         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
    674              I != E; --I) {
    675           if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
    676             C = nullptr;
    677             break;
    678           }
    679           // The store to dest may never happen if an exception can be thrown
    680           // between the load and the store.
    681           if (I->mayThrow() && !CpyDestIsLocal) {
    682             C = nullptr;
    683             break;
    684           }
    685         }
    686       }
    687 
    688       if (C) {
    689         bool changed = performCallSlotOptzn(
    690             LI, SI->getPointerOperand()->stripPointerCasts(),
    691             LI->getPointerOperand()->stripPointerCasts(),
    692             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
    693             findCommonAlignment(DL, SI, LI), C);
    694         if (changed) {
    695           MD->removeInstruction(SI);
    696           SI->eraseFromParent();
    697           MD->removeInstruction(LI);
    698           LI->eraseFromParent();
    699           ++NumMemCpyInstr;
    700           return true;
    701         }
    702       }
    703     }
    704   }
    705 
    706   // There are two cases that are interesting for this code to handle: memcpy
    707   // and memset.  Right now we only handle memset.
    708 
    709   // Ensure that the value being stored is something that can be memset'able a
    710   // byte at a time like "0" or "-1" or any width, as well as things like
    711   // 0xA0A0A0A0 and 0.0.
    712   auto *V = SI->getOperand(0);
    713   if (Value *ByteVal = isBytewiseValue(V)) {
    714     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
    715                                               ByteVal)) {
    716       BBI = I->getIterator(); // Don't invalidate iterator.
    717       return true;
    718     }
    719 
    720     // If we have an aggregate, we try to promote it to memset regardless
    721     // of opportunity for merging as it can expose optimization opportunities
    722     // in subsequent passes.
    723     auto *T = V->getType();
    724     if (T->isAggregateType()) {
    725       uint64_t Size = DL.getTypeStoreSize(T);
    726       unsigned Align = SI->getAlignment();
    727       if (!Align)
    728         Align = DL.getABITypeAlignment(T);
    729       IRBuilder<> Builder(SI);
    730       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
    731                                      Size, Align, SI->isVolatile());
    732 
    733       DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
    734 
    735       MD->removeInstruction(SI);
    736       SI->eraseFromParent();
    737       NumMemSetInfer++;
    738 
    739       // Make sure we do not invalidate the iterator.
    740       BBI = M->getIterator();
    741       return true;
    742     }
    743   }
    744 
    745   return false;
    746 }
    747 
    748 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
    749   // See if there is another memset or store neighboring this memset which
    750   // allows us to widen out the memset to do a single larger store.
    751   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    752     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
    753                                               MSI->getValue())) {
    754       BBI = I->getIterator(); // Don't invalidate iterator.
    755       return true;
    756     }
    757   return false;
    758 }
    759 
    760 
    761 /// Takes a memcpy and a call that it depends on,
    762 /// and checks for the possibility of a call slot optimization by having
    763 /// the call write its result directly into the destination of the memcpy.
    764 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
    765                                          Value *cpySrc, uint64_t cpyLen,
    766                                          unsigned cpyAlign, CallInst *C) {
    767   // The general transformation to keep in mind is
    768   //
    769   //   call @func(..., src, ...)
    770   //   memcpy(dest, src, ...)
    771   //
    772   // ->
    773   //
    774   //   memcpy(dest, src, ...)
    775   //   call @func(..., dest, ...)
    776   //
    777   // Since moving the memcpy is technically awkward, we additionally check that
    778   // src only holds uninitialized values at the moment of the call, meaning that
    779   // the memcpy can be discarded rather than moved.
    780 
    781   // Lifetime marks shouldn't be operated on.
    782   if (Function *F = C->getCalledFunction())
    783     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
    784       return false;
    785 
    786   // Deliberately get the source and destination with bitcasts stripped away,
    787   // because we'll need to do type comparisons based on the underlying type.
    788   CallSite CS(C);
    789 
    790   // Require that src be an alloca.  This simplifies the reasoning considerably.
    791   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
    792   if (!srcAlloca)
    793     return false;
    794 
    795   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
    796   if (!srcArraySize)
    797     return false;
    798 
    799   const DataLayout &DL = cpy->getModule()->getDataLayout();
    800   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
    801                      srcArraySize->getZExtValue();
    802 
    803   if (cpyLen < srcSize)
    804     return false;
    805 
    806   // Check that accessing the first srcSize bytes of dest will not cause a
    807   // trap.  Otherwise the transform is invalid since it might cause a trap
    808   // to occur earlier than it otherwise would.
    809   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    810     // The destination is an alloca.  Check it is larger than srcSize.
    811     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    812     if (!destArraySize)
    813       return false;
    814 
    815     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
    816                         destArraySize->getZExtValue();
    817 
    818     if (destSize < srcSize)
    819       return false;
    820   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    821     // The store to dest may never happen if the call can throw.
    822     if (C->mayThrow())
    823       return false;
    824 
    825     if (A->getDereferenceableBytes() < srcSize) {
    826       // If the destination is an sret parameter then only accesses that are
    827       // outside of the returned struct type can trap.
    828       if (!A->hasStructRetAttr())
    829         return false;
    830 
    831       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
    832       if (!StructTy->isSized()) {
    833         // The call may never return and hence the copy-instruction may never
    834         // be executed, and therefore it's not safe to say "the destination
    835         // has at least <cpyLen> bytes, as implied by the copy-instruction",
    836         return false;
    837       }
    838 
    839       uint64_t destSize = DL.getTypeAllocSize(StructTy);
    840       if (destSize < srcSize)
    841         return false;
    842     }
    843   } else {
    844     return false;
    845   }
    846 
    847   // Check that dest points to memory that is at least as aligned as src.
    848   unsigned srcAlign = srcAlloca->getAlignment();
    849   if (!srcAlign)
    850     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
    851   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
    852   // If dest is not aligned enough and we can't increase its alignment then
    853   // bail out.
    854   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
    855     return false;
    856 
    857   // Check that src is not accessed except via the call and the memcpy.  This
    858   // guarantees that it holds only undefined values when passed in (so the final
    859   // memcpy can be dropped), that it is not read or written between the call and
    860   // the memcpy, and that writing beyond the end of it is undefined.
    861   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
    862                                    srcAlloca->user_end());
    863   while (!srcUseList.empty()) {
    864     User *U = srcUseList.pop_back_val();
    865 
    866     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
    867       for (User *UU : U->users())
    868         srcUseList.push_back(UU);
    869       continue;
    870     }
    871     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
    872       if (!G->hasAllZeroIndices())
    873         return false;
    874 
    875       for (User *UU : U->users())
    876         srcUseList.push_back(UU);
    877       continue;
    878     }
    879     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
    880       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
    881           IT->getIntrinsicID() == Intrinsic::lifetime_end)
    882         continue;
    883 
    884     if (U != C && U != cpy)
    885       return false;
    886   }
    887 
    888   // Check that src isn't captured by the called function since the
    889   // transformation can cause aliasing issues in that case.
    890   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    891     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
    892       return false;
    893 
    894   // Since we're changing the parameter to the callsite, we need to make sure
    895   // that what would be the new parameter dominates the callsite.
    896   DominatorTree &DT = LookupDomTree();
    897   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    898     if (!DT.dominates(cpyDestInst, C))
    899       return false;
    900 
    901   // In addition to knowing that the call does not access src in some
    902   // unexpected manner, for example via a global, which we deduce from
    903   // the use analysis, we also need to know that it does not sneakily
    904   // access dest.  We rely on AA to figure this out for us.
    905   AliasAnalysis &AA = LookupAliasAnalysis();
    906   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
    907   // If necessary, perform additional analysis.
    908   if (MR != MRI_NoModRef)
    909     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
    910   if (MR != MRI_NoModRef)
    911     return false;
    912 
    913   // All the checks have passed, so do the transformation.
    914   bool changedArgument = false;
    915   for (unsigned i = 0; i < CS.arg_size(); ++i)
    916     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
    917       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
    918         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
    919                                       cpyDest->getName(), C);
    920       changedArgument = true;
    921       if (CS.getArgument(i)->getType() == Dest->getType())
    922         CS.setArgument(i, Dest);
    923       else
    924         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
    925                           CS.getArgument(i)->getType(), Dest->getName(), C));
    926     }
    927 
    928   if (!changedArgument)
    929     return false;
    930 
    931   // If the destination wasn't sufficiently aligned then increase its alignment.
    932   if (!isDestSufficientlyAligned) {
    933     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    934     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
    935   }
    936 
    937   // Drop any cached information about the call, because we may have changed
    938   // its dependence information by changing its parameter.
    939   MD->removeInstruction(C);
    940 
    941   // Update AA metadata
    942   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
    943   // handled here, but combineMetadata doesn't support them yet
    944   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
    945                          LLVMContext::MD_noalias,
    946                          LLVMContext::MD_invariant_group};
    947   combineMetadata(C, cpy, KnownIDs);
    948 
    949   // Remove the memcpy.
    950   MD->removeInstruction(cpy);
    951   ++NumMemCpyInstr;
    952 
    953   return true;
    954 }
    955 
    956 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
    957 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
    958 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
    959                                                   MemCpyInst *MDep) {
    960   // We can only transforms memcpy's where the dest of one is the source of the
    961   // other.
    962   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
    963     return false;
    964 
    965   // If dep instruction is reading from our current input, then it is a noop
    966   // transfer and substituting the input won't change this instruction.  Just
    967   // ignore the input and let someone else zap MDep.  This handles cases like:
    968   //    memcpy(a <- a)
    969   //    memcpy(b <- a)
    970   if (M->getSource() == MDep->getSource())
    971     return false;
    972 
    973   // Second, the length of the memcpy's must be the same, or the preceding one
    974   // must be larger than the following one.
    975   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
    976   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
    977   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
    978     return false;
    979 
    980   AliasAnalysis &AA = LookupAliasAnalysis();
    981 
    982   // Verify that the copied-from memory doesn't change in between the two
    983   // transfers.  For example, in:
    984   //    memcpy(a <- b)
    985   //    *b = 42;
    986   //    memcpy(c <- a)
    987   // It would be invalid to transform the second memcpy into memcpy(c <- b).
    988   //
    989   // TODO: If the code between M and MDep is transparent to the destination "c",
    990   // then we could still perform the xform by moving M up to the first memcpy.
    991   //
    992   // NOTE: This is conservative, it will stop on any read from the source loc,
    993   // not just the defining memcpy.
    994   MemDepResult SourceDep =
    995       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
    996                                    M->getIterator(), M->getParent());
    997   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    998     return false;
    999 
   1000   // If the dest of the second might alias the source of the first, then the
   1001   // source and dest might overlap.  We still want to eliminate the intermediate
   1002   // value, but we have to generate a memmove instead of memcpy.
   1003   bool UseMemMove = false;
   1004   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
   1005                     MemoryLocation::getForSource(MDep)))
   1006     UseMemMove = true;
   1007 
   1008   // If all checks passed, then we can transform M.
   1009 
   1010   // Make sure to use the lesser of the alignment of the source and the dest
   1011   // since we're changing where we're reading from, but don't want to increase
   1012   // the alignment past what can be read from or written to.
   1013   // TODO: Is this worth it if we're creating a less aligned memcpy? For
   1014   // example we could be moving from movaps -> movq on x86.
   1015   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
   1016 
   1017   IRBuilder<> Builder(M);
   1018   if (UseMemMove)
   1019     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
   1020                           Align, M->isVolatile());
   1021   else
   1022     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
   1023                          Align, M->isVolatile());
   1024 
   1025   // Remove the instruction we're replacing.
   1026   MD->removeInstruction(M);
   1027   M->eraseFromParent();
   1028   ++NumMemCpyInstr;
   1029   return true;
   1030 }
   1031 
   1032 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
   1033 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
   1034 /// weren't copied over by \p MemCpy.
   1035 ///
   1036 /// In other words, transform:
   1037 /// \code
   1038 ///   memset(dst, c, dst_size);
   1039 ///   memcpy(dst, src, src_size);
   1040 /// \endcode
   1041 /// into:
   1042 /// \code
   1043 ///   memcpy(dst, src, src_size);
   1044 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
   1045 /// \endcode
   1046 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
   1047                                                   MemSetInst *MemSet) {
   1048   // We can only transform memset/memcpy with the same destination.
   1049   if (MemSet->getDest() != MemCpy->getDest())
   1050     return false;
   1051 
   1052   // Check that there are no other dependencies on the memset destination.
   1053   MemDepResult DstDepInfo =
   1054       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
   1055                                    MemCpy->getIterator(), MemCpy->getParent());
   1056   if (DstDepInfo.getInst() != MemSet)
   1057     return false;
   1058 
   1059   // Use the same i8* dest as the memcpy, killing the memset dest if different.
   1060   Value *Dest = MemCpy->getRawDest();
   1061   Value *DestSize = MemSet->getLength();
   1062   Value *SrcSize = MemCpy->getLength();
   1063 
   1064   // By default, create an unaligned memset.
   1065   unsigned Align = 1;
   1066   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
   1067   // of the sum.
   1068   const unsigned DestAlign =
   1069       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
   1070   if (DestAlign > 1)
   1071     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
   1072       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
   1073 
   1074   IRBuilder<> Builder(MemCpy);
   1075 
   1076   // If the sizes have different types, zext the smaller one.
   1077   if (DestSize->getType() != SrcSize->getType()) {
   1078     if (DestSize->getType()->getIntegerBitWidth() >
   1079         SrcSize->getType()->getIntegerBitWidth())
   1080       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
   1081     else
   1082       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
   1083   }
   1084 
   1085   Value *MemsetLen =
   1086       Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
   1087                            ConstantInt::getNullValue(DestSize->getType()),
   1088                            Builder.CreateSub(DestSize, SrcSize));
   1089   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
   1090                        MemsetLen, Align);
   1091 
   1092   MD->removeInstruction(MemSet);
   1093   MemSet->eraseFromParent();
   1094   return true;
   1095 }
   1096 
   1097 /// Transform memcpy to memset when its source was just memset.
   1098 /// In other words, turn:
   1099 /// \code
   1100 ///   memset(dst1, c, dst1_size);
   1101 ///   memcpy(dst2, dst1, dst2_size);
   1102 /// \endcode
   1103 /// into:
   1104 /// \code
   1105 ///   memset(dst1, c, dst1_size);
   1106 ///   memset(dst2, c, dst2_size);
   1107 /// \endcode
   1108 /// When dst2_size <= dst1_size.
   1109 ///
   1110 /// The \p MemCpy must have a Constant length.
   1111 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
   1112                                                MemSetInst *MemSet) {
   1113   // This only makes sense on memcpy(..., memset(...), ...).
   1114   if (MemSet->getRawDest() != MemCpy->getRawSource())
   1115     return false;
   1116 
   1117   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
   1118   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
   1119   // Make sure the memcpy doesn't read any more than what the memset wrote.
   1120   // Don't worry about sizes larger than i64.
   1121   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
   1122     return false;
   1123 
   1124   IRBuilder<> Builder(MemCpy);
   1125   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
   1126                        CopySize, MemCpy->getAlignment());
   1127   return true;
   1128 }
   1129 
   1130 /// Perform simplification of memcpy's.  If we have memcpy A
   1131 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
   1132 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
   1133 /// circumstances). This allows later passes to remove the first memcpy
   1134 /// altogether.
   1135 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
   1136   // We can only optimize non-volatile memcpy's.
   1137   if (M->isVolatile()) return false;
   1138 
   1139   // If the source and destination of the memcpy are the same, then zap it.
   1140   if (M->getSource() == M->getDest()) {
   1141     MD->removeInstruction(M);
   1142     M->eraseFromParent();
   1143     return false;
   1144   }
   1145 
   1146   // If copying from a constant, try to turn the memcpy into a memset.
   1147   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
   1148     if (GV->isConstant() && GV->hasDefinitiveInitializer())
   1149       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
   1150         IRBuilder<> Builder(M);
   1151         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
   1152                              M->getAlignment(), false);
   1153         MD->removeInstruction(M);
   1154         M->eraseFromParent();
   1155         ++NumCpyToSet;
   1156         return true;
   1157       }
   1158 
   1159   MemDepResult DepInfo = MD->getDependency(M);
   1160 
   1161   // Try to turn a partially redundant memset + memcpy into
   1162   // memcpy + smaller memset.  We don't need the memcpy size for this.
   1163   if (DepInfo.isClobber())
   1164     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
   1165       if (processMemSetMemCpyDependence(M, MDep))
   1166         return true;
   1167 
   1168   // The optimizations after this point require the memcpy size.
   1169   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
   1170   if (!CopySize) return false;
   1171 
   1172   // There are four possible optimizations we can do for memcpy:
   1173   //   a) memcpy-memcpy xform which exposes redundance for DSE.
   1174   //   b) call-memcpy xform for return slot optimization.
   1175   //   c) memcpy from freshly alloca'd space or space that has just started its
   1176   //      lifetime copies undefined data, and we can therefore eliminate the
   1177   //      memcpy in favor of the data that was already at the destination.
   1178   //   d) memcpy from a just-memset'd source can be turned into memset.
   1179   if (DepInfo.isClobber()) {
   1180     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
   1181       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
   1182                                CopySize->getZExtValue(), M->getAlignment(),
   1183                                C)) {
   1184         MD->removeInstruction(M);
   1185         M->eraseFromParent();
   1186         return true;
   1187       }
   1188     }
   1189   }
   1190 
   1191   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
   1192   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
   1193       SrcLoc, true, M->getIterator(), M->getParent());
   1194 
   1195   if (SrcDepInfo.isClobber()) {
   1196     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
   1197       return processMemCpyMemCpyDependence(M, MDep);
   1198   } else if (SrcDepInfo.isDef()) {
   1199     Instruction *I = SrcDepInfo.getInst();
   1200     bool hasUndefContents = false;
   1201 
   1202     if (isa<AllocaInst>(I)) {
   1203       hasUndefContents = true;
   1204     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1205       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   1206         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
   1207           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
   1208             hasUndefContents = true;
   1209     }
   1210 
   1211     if (hasUndefContents) {
   1212       MD->removeInstruction(M);
   1213       M->eraseFromParent();
   1214       ++NumMemCpyInstr;
   1215       return true;
   1216     }
   1217   }
   1218 
   1219   if (SrcDepInfo.isClobber())
   1220     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
   1221       if (performMemCpyToMemSetOptzn(M, MDep)) {
   1222         MD->removeInstruction(M);
   1223         M->eraseFromParent();
   1224         ++NumCpyToSet;
   1225         return true;
   1226       }
   1227 
   1228   return false;
   1229 }
   1230 
   1231 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
   1232 /// not to alias.
   1233 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
   1234   AliasAnalysis &AA = LookupAliasAnalysis();
   1235 
   1236   if (!TLI->has(LibFunc::memmove))
   1237     return false;
   1238 
   1239   // See if the pointers alias.
   1240   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
   1241                     MemoryLocation::getForSource(M)))
   1242     return false;
   1243 
   1244   DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
   1245                << "\n");
   1246 
   1247   // If not, then we know we can transform this.
   1248   Type *ArgTys[3] = { M->getRawDest()->getType(),
   1249                       M->getRawSource()->getType(),
   1250                       M->getLength()->getType() };
   1251   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
   1252                                                  Intrinsic::memcpy, ArgTys));
   1253 
   1254   // MemDep may have over conservative information about this instruction, just
   1255   // conservatively flush it from the cache.
   1256   MD->removeInstruction(M);
   1257 
   1258   ++NumMoveToCpy;
   1259   return true;
   1260 }
   1261 
   1262 /// This is called on every byval argument in call sites.
   1263 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
   1264   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
   1265   // Find out what feeds this byval argument.
   1266   Value *ByValArg = CS.getArgument(ArgNo);
   1267   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
   1268   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
   1269   MemDepResult DepInfo = MD->getPointerDependencyFrom(
   1270       MemoryLocation(ByValArg, ByValSize), true,
   1271       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
   1272   if (!DepInfo.isClobber())
   1273     return false;
   1274 
   1275   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
   1276   // a memcpy, see if we can byval from the source of the memcpy instead of the
   1277   // result.
   1278   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
   1279   if (!MDep || MDep->isVolatile() ||
   1280       ByValArg->stripPointerCasts() != MDep->getDest())
   1281     return false;
   1282 
   1283   // The length of the memcpy must be larger or equal to the size of the byval.
   1284   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
   1285   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
   1286     return false;
   1287 
   1288   // Get the alignment of the byval.  If the call doesn't specify the alignment,
   1289   // then it is some target specific value that we can't know.
   1290   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
   1291   if (ByValAlign == 0) return false;
   1292 
   1293   // If it is greater than the memcpy, then we check to see if we can force the
   1294   // source of the memcpy to the alignment we need.  If we fail, we bail out.
   1295   AssumptionCache &AC = LookupAssumptionCache();
   1296   DominatorTree &DT = LookupDomTree();
   1297   if (MDep->getAlignment() < ByValAlign &&
   1298       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
   1299                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
   1300     return false;
   1301 
   1302   // Verify that the copied-from memory doesn't change in between the memcpy and
   1303   // the byval call.
   1304   //    memcpy(a <- b)
   1305   //    *b = 42;
   1306   //    foo(*a)
   1307   // It would be invalid to transform the second memcpy into foo(*b).
   1308   //
   1309   // NOTE: This is conservative, it will stop on any read from the source loc,
   1310   // not just the defining memcpy.
   1311   MemDepResult SourceDep = MD->getPointerDependencyFrom(
   1312       MemoryLocation::getForSource(MDep), false,
   1313       CS.getInstruction()->getIterator(), MDep->getParent());
   1314   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
   1315     return false;
   1316 
   1317   Value *TmpCast = MDep->getSource();
   1318   if (MDep->getSource()->getType() != ByValArg->getType())
   1319     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
   1320                               "tmpcast", CS.getInstruction());
   1321 
   1322   DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
   1323                << "  " << *MDep << "\n"
   1324                << "  " << *CS.getInstruction() << "\n");
   1325 
   1326   // Otherwise we're good!  Update the byval argument.
   1327   CS.setArgument(ArgNo, TmpCast);
   1328   ++NumMemCpyInstr;
   1329   return true;
   1330 }
   1331 
   1332 /// Executes one iteration of MemCpyOptPass.
   1333 bool MemCpyOptPass::iterateOnFunction(Function &F) {
   1334   bool MadeChange = false;
   1335 
   1336   // Walk all instruction in the function.
   1337   for (BasicBlock &BB : F) {
   1338     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
   1339       // Avoid invalidating the iterator.
   1340       Instruction *I = &*BI++;
   1341 
   1342       bool RepeatInstruction = false;
   1343 
   1344       if (StoreInst *SI = dyn_cast<StoreInst>(I))
   1345         MadeChange |= processStore(SI, BI);
   1346       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
   1347         RepeatInstruction = processMemSet(M, BI);
   1348       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
   1349         RepeatInstruction = processMemCpy(M);
   1350       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
   1351         RepeatInstruction = processMemMove(M);
   1352       else if (auto CS = CallSite(I)) {
   1353         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
   1354           if (CS.isByValArgument(i))
   1355             MadeChange |= processByValArgument(CS, i);
   1356       }
   1357 
   1358       // Reprocess the instruction if desired.
   1359       if (RepeatInstruction) {
   1360         if (BI != BB.begin())
   1361           --BI;
   1362         MadeChange = true;
   1363       }
   1364     }
   1365   }
   1366 
   1367   return MadeChange;
   1368 }
   1369 
   1370 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
   1371 
   1372   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
   1373   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
   1374 
   1375   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
   1376     return AM.getResult<AAManager>(F);
   1377   };
   1378   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
   1379     return AM.getResult<AssumptionAnalysis>(F);
   1380   };
   1381   auto LookupDomTree = [&]() -> DominatorTree & {
   1382     return AM.getResult<DominatorTreeAnalysis>(F);
   1383   };
   1384 
   1385   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
   1386                             LookupAssumptionCache, LookupDomTree);
   1387   if (!MadeChange)
   1388     return PreservedAnalyses::all();
   1389   PreservedAnalyses PA;
   1390   PA.preserve<GlobalsAA>();
   1391   PA.preserve<MemoryDependenceAnalysis>();
   1392   return PA;
   1393 }
   1394 
   1395 bool MemCpyOptPass::runImpl(
   1396     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
   1397     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
   1398     std::function<AssumptionCache &()> LookupAssumptionCache_,
   1399     std::function<DominatorTree &()> LookupDomTree_) {
   1400   bool MadeChange = false;
   1401   MD = MD_;
   1402   TLI = TLI_;
   1403   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
   1404   LookupAssumptionCache = std::move(LookupAssumptionCache_);
   1405   LookupDomTree = std::move(LookupDomTree_);
   1406 
   1407   // If we don't have at least memset and memcpy, there is little point of doing
   1408   // anything here.  These are required by a freestanding implementation, so if
   1409   // even they are disabled, there is no point in trying hard.
   1410   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
   1411     return false;
   1412 
   1413   while (1) {
   1414     if (!iterateOnFunction(F))
   1415       break;
   1416     MadeChange = true;
   1417   }
   1418 
   1419   MD = nullptr;
   1420   return MadeChange;
   1421 }
   1422 
   1423 /// This is the main transformation entry point for a function.
   1424 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
   1425   if (skipFunction(F))
   1426     return false;
   1427 
   1428   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
   1429   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1430 
   1431   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
   1432     return getAnalysis<AAResultsWrapperPass>().getAAResults();
   1433   };
   1434   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
   1435     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   1436   };
   1437   auto LookupDomTree = [this]() -> DominatorTree & {
   1438     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1439   };
   1440 
   1441   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
   1442                       LookupDomTree);
   1443 }
   1444