Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/IPO/SCCP.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/PointerIntPair.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/GlobalsModRef.h"
     29 #include "llvm/Analysis/TargetLibraryInfo.h"
     30 #include "llvm/IR/CallSite.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/InstVisitor.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/Pass.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Transforms/IPO.h"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/Transforms/Scalar/SCCP.h"
     43 #include "llvm/Transforms/Utils/Local.h"
     44 #include <algorithm>
     45 using namespace llvm;
     46 
     47 #define DEBUG_TYPE "sccp"
     48 
     49 STATISTIC(NumInstRemoved, "Number of instructions removed");
     50 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     51 
     52 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     53 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     54 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     55 
     56 namespace {
     57 /// LatticeVal class - This class represents the different lattice values that
     58 /// an LLVM value may occupy.  It is a simple class with value semantics.
     59 ///
     60 class LatticeVal {
     61   enum LatticeValueTy {
     62     /// unknown - This LLVM Value has no known value yet.
     63     unknown,
     64 
     65     /// constant - This LLVM Value has a specific constant value.
     66     constant,
     67 
     68     /// forcedconstant - This LLVM Value was thought to be undef until
     69     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     70     /// with another (different) constant, it goes to overdefined, instead of
     71     /// asserting.
     72     forcedconstant,
     73 
     74     /// overdefined - This instruction is not known to be constant, and we know
     75     /// it has a value.
     76     overdefined
     77   };
     78 
     79   /// Val: This stores the current lattice value along with the Constant* for
     80   /// the constant if this is a 'constant' or 'forcedconstant' value.
     81   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     82 
     83   LatticeValueTy getLatticeValue() const {
     84     return Val.getInt();
     85   }
     86 
     87 public:
     88   LatticeVal() : Val(nullptr, unknown) {}
     89 
     90   bool isUnknown() const { return getLatticeValue() == unknown; }
     91   bool isConstant() const {
     92     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     93   }
     94   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     95 
     96   Constant *getConstant() const {
     97     assert(isConstant() && "Cannot get the constant of a non-constant!");
     98     return Val.getPointer();
     99   }
    100 
    101   /// markOverdefined - Return true if this is a change in status.
    102   bool markOverdefined() {
    103     if (isOverdefined())
    104       return false;
    105 
    106     Val.setInt(overdefined);
    107     return true;
    108   }
    109 
    110   /// markConstant - Return true if this is a change in status.
    111   bool markConstant(Constant *V) {
    112     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    113       assert(getConstant() == V && "Marking constant with different value");
    114       return false;
    115     }
    116 
    117     if (isUnknown()) {
    118       Val.setInt(constant);
    119       assert(V && "Marking constant with NULL");
    120       Val.setPointer(V);
    121     } else {
    122       assert(getLatticeValue() == forcedconstant &&
    123              "Cannot move from overdefined to constant!");
    124       // Stay at forcedconstant if the constant is the same.
    125       if (V == getConstant()) return false;
    126 
    127       // Otherwise, we go to overdefined.  Assumptions made based on the
    128       // forced value are possibly wrong.  Assuming this is another constant
    129       // could expose a contradiction.
    130       Val.setInt(overdefined);
    131     }
    132     return true;
    133   }
    134 
    135   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    136   /// otherwise return null.
    137   ConstantInt *getConstantInt() const {
    138     if (isConstant())
    139       return dyn_cast<ConstantInt>(getConstant());
    140     return nullptr;
    141   }
    142 
    143   void markForcedConstant(Constant *V) {
    144     assert(isUnknown() && "Can't force a defined value!");
    145     Val.setInt(forcedconstant);
    146     Val.setPointer(V);
    147   }
    148 };
    149 } // end anonymous namespace.
    150 
    151 
    152 namespace {
    153 
    154 //===----------------------------------------------------------------------===//
    155 //
    156 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    157 /// Constant Propagation.
    158 ///
    159 class SCCPSolver : public InstVisitor<SCCPSolver> {
    160   const DataLayout &DL;
    161   const TargetLibraryInfo *TLI;
    162   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    163   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    164 
    165   /// StructValueState - This maintains ValueState for values that have
    166   /// StructType, for example for formal arguments, calls, insertelement, etc.
    167   ///
    168   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    169 
    170   /// GlobalValue - If we are tracking any values for the contents of a global
    171   /// variable, we keep a mapping from the constant accessor to the element of
    172   /// the global, to the currently known value.  If the value becomes
    173   /// overdefined, it's entry is simply removed from this map.
    174   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    175 
    176   /// TrackedRetVals - If we are tracking arguments into and the return
    177   /// value out of a function, it will have an entry in this map, indicating
    178   /// what the known return value for the function is.
    179   DenseMap<Function*, LatticeVal> TrackedRetVals;
    180 
    181   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    182   /// that return multiple values.
    183   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    184 
    185   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    186   /// represented here for efficient lookup.
    187   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    188 
    189   /// TrackingIncomingArguments - This is the set of functions for whose
    190   /// arguments we make optimistic assumptions about and try to prove as
    191   /// constants.
    192   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    193 
    194   /// The reason for two worklists is that overdefined is the lowest state
    195   /// on the lattice, and moving things to overdefined as fast as possible
    196   /// makes SCCP converge much faster.
    197   ///
    198   /// By having a separate worklist, we accomplish this because everything
    199   /// possibly overdefined will become overdefined at the soonest possible
    200   /// point.
    201   SmallVector<Value*, 64> OverdefinedInstWorkList;
    202   SmallVector<Value*, 64> InstWorkList;
    203 
    204 
    205   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    206 
    207   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    208   /// PHI nodes retriggered.
    209   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    210   DenseSet<Edge> KnownFeasibleEdges;
    211 public:
    212   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
    213       : DL(DL), TLI(tli) {}
    214 
    215   /// MarkBlockExecutable - This method can be used by clients to mark all of
    216   /// the blocks that are known to be intrinsically live in the processed unit.
    217   ///
    218   /// This returns true if the block was not considered live before.
    219   bool MarkBlockExecutable(BasicBlock *BB) {
    220     if (!BBExecutable.insert(BB).second)
    221       return false;
    222     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    223     BBWorkList.push_back(BB);  // Add the block to the work list!
    224     return true;
    225   }
    226 
    227   /// TrackValueOfGlobalVariable - Clients can use this method to
    228   /// inform the SCCPSolver that it should track loads and stores to the
    229   /// specified global variable if it can.  This is only legal to call if
    230   /// performing Interprocedural SCCP.
    231   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    232     // We only track the contents of scalar globals.
    233     if (GV->getValueType()->isSingleValueType()) {
    234       LatticeVal &IV = TrackedGlobals[GV];
    235       if (!isa<UndefValue>(GV->getInitializer()))
    236         IV.markConstant(GV->getInitializer());
    237     }
    238   }
    239 
    240   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    241   /// and out of the specified function (which cannot have its address taken),
    242   /// this method must be called.
    243   void AddTrackedFunction(Function *F) {
    244     // Add an entry, F -> undef.
    245     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    246       MRVFunctionsTracked.insert(F);
    247       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    248         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    249                                                      LatticeVal()));
    250     } else
    251       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    252   }
    253 
    254   void AddArgumentTrackedFunction(Function *F) {
    255     TrackingIncomingArguments.insert(F);
    256   }
    257 
    258   /// Solve - Solve for constants and executable blocks.
    259   ///
    260   void Solve();
    261 
    262   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    263   /// that branches on undef values cannot reach any of their successors.
    264   /// However, this is not a safe assumption.  After we solve dataflow, this
    265   /// method should be use to handle this.  If this returns true, the solver
    266   /// should be rerun.
    267   bool ResolvedUndefsIn(Function &F);
    268 
    269   bool isBlockExecutable(BasicBlock *BB) const {
    270     return BBExecutable.count(BB);
    271   }
    272 
    273   std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
    274     std::vector<LatticeVal> StructValues;
    275     StructType *STy = dyn_cast<StructType>(V->getType());
    276     assert(STy && "getStructLatticeValueFor() can be called only on structs");
    277     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    278       auto I = StructValueState.find(std::make_pair(V, i));
    279       assert(I != StructValueState.end() && "Value not in valuemap!");
    280       StructValues.push_back(I->second);
    281     }
    282     return StructValues;
    283   }
    284 
    285   LatticeVal getLatticeValueFor(Value *V) const {
    286     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    287     assert(I != ValueState.end() && "V is not in valuemap!");
    288     return I->second;
    289   }
    290 
    291   /// getTrackedRetVals - Get the inferred return value map.
    292   ///
    293   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    294     return TrackedRetVals;
    295   }
    296 
    297   /// getTrackedGlobals - Get and return the set of inferred initializers for
    298   /// global variables.
    299   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    300     return TrackedGlobals;
    301   }
    302 
    303   void markOverdefined(Value *V) {
    304     assert(!V->getType()->isStructTy() && "Should use other method");
    305     markOverdefined(ValueState[V], V);
    306   }
    307 
    308   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    309   /// works with both scalars and structs.
    310   void markAnythingOverdefined(Value *V) {
    311     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    312       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    313         markOverdefined(getStructValueState(V, i), V);
    314     else
    315       markOverdefined(V);
    316   }
    317 
    318 private:
    319   // pushToWorkList - Helper for markConstant/markForcedConstant
    320   void pushToWorkList(LatticeVal &IV, Value *V) {
    321     if (IV.isOverdefined())
    322       return OverdefinedInstWorkList.push_back(V);
    323     InstWorkList.push_back(V);
    324   }
    325 
    326   // markConstant - Make a value be marked as "constant".  If the value
    327   // is not already a constant, add it to the instruction work list so that
    328   // the users of the instruction are updated later.
    329   //
    330   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    331     if (!IV.markConstant(C)) return;
    332     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    333     pushToWorkList(IV, V);
    334   }
    335 
    336   void markConstant(Value *V, Constant *C) {
    337     assert(!V->getType()->isStructTy() && "Should use other method");
    338     markConstant(ValueState[V], V, C);
    339   }
    340 
    341   void markForcedConstant(Value *V, Constant *C) {
    342     assert(!V->getType()->isStructTy() && "Should use other method");
    343     LatticeVal &IV = ValueState[V];
    344     IV.markForcedConstant(C);
    345     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    346     pushToWorkList(IV, V);
    347   }
    348 
    349 
    350   // markOverdefined - Make a value be marked as "overdefined". If the
    351   // value is not already overdefined, add it to the overdefined instruction
    352   // work list so that the users of the instruction are updated later.
    353   void markOverdefined(LatticeVal &IV, Value *V) {
    354     if (!IV.markOverdefined()) return;
    355 
    356     DEBUG(dbgs() << "markOverdefined: ";
    357           if (Function *F = dyn_cast<Function>(V))
    358             dbgs() << "Function '" << F->getName() << "'\n";
    359           else
    360             dbgs() << *V << '\n');
    361     // Only instructions go on the work list
    362     OverdefinedInstWorkList.push_back(V);
    363   }
    364 
    365   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    366     if (IV.isOverdefined() || MergeWithV.isUnknown())
    367       return;  // Noop.
    368     if (MergeWithV.isOverdefined())
    369       return markOverdefined(IV, V);
    370     if (IV.isUnknown())
    371       return markConstant(IV, V, MergeWithV.getConstant());
    372     if (IV.getConstant() != MergeWithV.getConstant())
    373       return markOverdefined(IV, V);
    374   }
    375 
    376   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    377     assert(!V->getType()->isStructTy() && "Should use other method");
    378     mergeInValue(ValueState[V], V, MergeWithV);
    379   }
    380 
    381 
    382   /// getValueState - Return the LatticeVal object that corresponds to the
    383   /// value.  This function handles the case when the value hasn't been seen yet
    384   /// by properly seeding constants etc.
    385   LatticeVal &getValueState(Value *V) {
    386     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    387 
    388     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    389       ValueState.insert(std::make_pair(V, LatticeVal()));
    390     LatticeVal &LV = I.first->second;
    391 
    392     if (!I.second)
    393       return LV;  // Common case, already in the map.
    394 
    395     if (Constant *C = dyn_cast<Constant>(V)) {
    396       // Undef values remain unknown.
    397       if (!isa<UndefValue>(V))
    398         LV.markConstant(C);          // Constants are constant
    399     }
    400 
    401     // All others are underdefined by default.
    402     return LV;
    403   }
    404 
    405   /// getStructValueState - Return the LatticeVal object that corresponds to the
    406   /// value/field pair.  This function handles the case when the value hasn't
    407   /// been seen yet by properly seeding constants etc.
    408   LatticeVal &getStructValueState(Value *V, unsigned i) {
    409     assert(V->getType()->isStructTy() && "Should use getValueState");
    410     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    411            "Invalid element #");
    412 
    413     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    414               bool> I = StructValueState.insert(
    415                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    416     LatticeVal &LV = I.first->second;
    417 
    418     if (!I.second)
    419       return LV;  // Common case, already in the map.
    420 
    421     if (Constant *C = dyn_cast<Constant>(V)) {
    422       Constant *Elt = C->getAggregateElement(i);
    423 
    424       if (!Elt)
    425         LV.markOverdefined();      // Unknown sort of constant.
    426       else if (isa<UndefValue>(Elt))
    427         ; // Undef values remain unknown.
    428       else
    429         LV.markConstant(Elt);      // Constants are constant.
    430     }
    431 
    432     // All others are underdefined by default.
    433     return LV;
    434   }
    435 
    436 
    437   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    438   /// work list if it is not already executable.
    439   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    440     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    441       return;  // This edge is already known to be executable!
    442 
    443     if (!MarkBlockExecutable(Dest)) {
    444       // If the destination is already executable, we just made an *edge*
    445       // feasible that wasn't before.  Revisit the PHI nodes in the block
    446       // because they have potentially new operands.
    447       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    448             << " -> " << Dest->getName() << '\n');
    449 
    450       PHINode *PN;
    451       for (BasicBlock::iterator I = Dest->begin();
    452            (PN = dyn_cast<PHINode>(I)); ++I)
    453         visitPHINode(*PN);
    454     }
    455   }
    456 
    457   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    458   // successors are reachable from a given terminator instruction.
    459   //
    460   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
    461 
    462   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    463   // block to the 'To' basic block is currently feasible.
    464   //
    465   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    466 
    467   // OperandChangedState - This method is invoked on all of the users of an
    468   // instruction that was just changed state somehow.  Based on this
    469   // information, we need to update the specified user of this instruction.
    470   //
    471   void OperandChangedState(Instruction *I) {
    472     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    473       visit(*I);
    474   }
    475 
    476 private:
    477   friend class InstVisitor<SCCPSolver>;
    478 
    479   // visit implementations - Something changed in this instruction.  Either an
    480   // operand made a transition, or the instruction is newly executable.  Change
    481   // the value type of I to reflect these changes if appropriate.
    482   void visitPHINode(PHINode &I);
    483 
    484   // Terminators
    485   void visitReturnInst(ReturnInst &I);
    486   void visitTerminatorInst(TerminatorInst &TI);
    487 
    488   void visitCastInst(CastInst &I);
    489   void visitSelectInst(SelectInst &I);
    490   void visitBinaryOperator(Instruction &I);
    491   void visitCmpInst(CmpInst &I);
    492   void visitExtractElementInst(ExtractElementInst &I);
    493   void visitInsertElementInst(InsertElementInst &I);
    494   void visitShuffleVectorInst(ShuffleVectorInst &I);
    495   void visitExtractValueInst(ExtractValueInst &EVI);
    496   void visitInsertValueInst(InsertValueInst &IVI);
    497   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    498   void visitFuncletPadInst(FuncletPadInst &FPI) {
    499     markAnythingOverdefined(&FPI);
    500   }
    501   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
    502     markAnythingOverdefined(&CPI);
    503     visitTerminatorInst(CPI);
    504   }
    505 
    506   // Instructions that cannot be folded away.
    507   void visitStoreInst     (StoreInst &I);
    508   void visitLoadInst      (LoadInst &I);
    509   void visitGetElementPtrInst(GetElementPtrInst &I);
    510   void visitCallInst      (CallInst &I) {
    511     visitCallSite(&I);
    512   }
    513   void visitInvokeInst    (InvokeInst &II) {
    514     visitCallSite(&II);
    515     visitTerminatorInst(II);
    516   }
    517   void visitCallSite      (CallSite CS);
    518   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    519   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    520   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    521   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
    522     markAnythingOverdefined(&I);
    523   }
    524   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    525   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    526   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    527 
    528   void visitInstruction(Instruction &I) {
    529     // If a new instruction is added to LLVM that we don't handle.
    530     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
    531     markAnythingOverdefined(&I);   // Just in case
    532   }
    533 };
    534 
    535 } // end anonymous namespace
    536 
    537 
    538 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    539 // successors are reachable from a given terminator instruction.
    540 //
    541 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    542                                        SmallVectorImpl<bool> &Succs) {
    543   Succs.resize(TI.getNumSuccessors());
    544   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    545     if (BI->isUnconditional()) {
    546       Succs[0] = true;
    547       return;
    548     }
    549 
    550     LatticeVal BCValue = getValueState(BI->getCondition());
    551     ConstantInt *CI = BCValue.getConstantInt();
    552     if (!CI) {
    553       // Overdefined condition variables, and branches on unfoldable constant
    554       // conditions, mean the branch could go either way.
    555       if (!BCValue.isUnknown())
    556         Succs[0] = Succs[1] = true;
    557       return;
    558     }
    559 
    560     // Constant condition variables mean the branch can only go a single way.
    561     Succs[CI->isZero()] = true;
    562     return;
    563   }
    564 
    565   // Unwinding instructions successors are always executable.
    566   if (TI.isExceptional()) {
    567     Succs.assign(TI.getNumSuccessors(), true);
    568     return;
    569   }
    570 
    571   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    572     if (!SI->getNumCases()) {
    573       Succs[0] = true;
    574       return;
    575     }
    576     LatticeVal SCValue = getValueState(SI->getCondition());
    577     ConstantInt *CI = SCValue.getConstantInt();
    578 
    579     if (!CI) {   // Overdefined or unknown condition?
    580       // All destinations are executable!
    581       if (!SCValue.isUnknown())
    582         Succs.assign(TI.getNumSuccessors(), true);
    583       return;
    584     }
    585 
    586     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    587     return;
    588   }
    589 
    590   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    591   if (isa<IndirectBrInst>(&TI)) {
    592     // Just mark all destinations executable!
    593     Succs.assign(TI.getNumSuccessors(), true);
    594     return;
    595   }
    596 
    597 #ifndef NDEBUG
    598   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    599 #endif
    600   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    601 }
    602 
    603 
    604 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    605 // block to the 'To' basic block is currently feasible.
    606 //
    607 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    608   assert(BBExecutable.count(To) && "Dest should always be alive!");
    609 
    610   // Make sure the source basic block is executable!!
    611   if (!BBExecutable.count(From)) return false;
    612 
    613   // Check to make sure this edge itself is actually feasible now.
    614   TerminatorInst *TI = From->getTerminator();
    615   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    616     if (BI->isUnconditional())
    617       return true;
    618 
    619     LatticeVal BCValue = getValueState(BI->getCondition());
    620 
    621     // Overdefined condition variables mean the branch could go either way,
    622     // undef conditions mean that neither edge is feasible yet.
    623     ConstantInt *CI = BCValue.getConstantInt();
    624     if (!CI)
    625       return !BCValue.isUnknown();
    626 
    627     // Constant condition variables mean the branch can only go a single way.
    628     return BI->getSuccessor(CI->isZero()) == To;
    629   }
    630 
    631   // Unwinding instructions successors are always executable.
    632   if (TI->isExceptional())
    633     return true;
    634 
    635   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    636     if (SI->getNumCases() < 1)
    637       return true;
    638 
    639     LatticeVal SCValue = getValueState(SI->getCondition());
    640     ConstantInt *CI = SCValue.getConstantInt();
    641 
    642     if (!CI)
    643       return !SCValue.isUnknown();
    644 
    645     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    646   }
    647 
    648   // Just mark all destinations executable!
    649   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    650   if (isa<IndirectBrInst>(TI))
    651     return true;
    652 
    653 #ifndef NDEBUG
    654   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    655 #endif
    656   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    657 }
    658 
    659 // visit Implementations - Something changed in this instruction, either an
    660 // operand made a transition, or the instruction is newly executable.  Change
    661 // the value type of I to reflect these changes if appropriate.  This method
    662 // makes sure to do the following actions:
    663 //
    664 // 1. If a phi node merges two constants in, and has conflicting value coming
    665 //    from different branches, or if the PHI node merges in an overdefined
    666 //    value, then the PHI node becomes overdefined.
    667 // 2. If a phi node merges only constants in, and they all agree on value, the
    668 //    PHI node becomes a constant value equal to that.
    669 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    670 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    671 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    672 // 6. If a conditional branch has a value that is constant, make the selected
    673 //    destination executable
    674 // 7. If a conditional branch has a value that is overdefined, make all
    675 //    successors executable.
    676 //
    677 void SCCPSolver::visitPHINode(PHINode &PN) {
    678   // If this PN returns a struct, just mark the result overdefined.
    679   // TODO: We could do a lot better than this if code actually uses this.
    680   if (PN.getType()->isStructTy())
    681     return markAnythingOverdefined(&PN);
    682 
    683   if (getValueState(&PN).isOverdefined())
    684     return;  // Quick exit
    685 
    686   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    687   // and slow us down a lot.  Just mark them overdefined.
    688   if (PN.getNumIncomingValues() > 64)
    689     return markOverdefined(&PN);
    690 
    691   // Look at all of the executable operands of the PHI node.  If any of them
    692   // are overdefined, the PHI becomes overdefined as well.  If they are all
    693   // constant, and they agree with each other, the PHI becomes the identical
    694   // constant.  If they are constant and don't agree, the PHI is overdefined.
    695   // If there are no executable operands, the PHI remains unknown.
    696   //
    697   Constant *OperandVal = nullptr;
    698   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    699     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    700     if (IV.isUnknown()) continue;  // Doesn't influence PHI node.
    701 
    702     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    703       continue;
    704 
    705     if (IV.isOverdefined())    // PHI node becomes overdefined!
    706       return markOverdefined(&PN);
    707 
    708     if (!OperandVal) {   // Grab the first value.
    709       OperandVal = IV.getConstant();
    710       continue;
    711     }
    712 
    713     // There is already a reachable operand.  If we conflict with it,
    714     // then the PHI node becomes overdefined.  If we agree with it, we
    715     // can continue on.
    716 
    717     // Check to see if there are two different constants merging, if so, the PHI
    718     // node is overdefined.
    719     if (IV.getConstant() != OperandVal)
    720       return markOverdefined(&PN);
    721   }
    722 
    723   // If we exited the loop, this means that the PHI node only has constant
    724   // arguments that agree with each other(and OperandVal is the constant) or
    725   // OperandVal is null because there are no defined incoming arguments.  If
    726   // this is the case, the PHI remains unknown.
    727   //
    728   if (OperandVal)
    729     markConstant(&PN, OperandVal);      // Acquire operand value
    730 }
    731 
    732 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    733   if (I.getNumOperands() == 0) return;  // ret void
    734 
    735   Function *F = I.getParent()->getParent();
    736   Value *ResultOp = I.getOperand(0);
    737 
    738   // If we are tracking the return value of this function, merge it in.
    739   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    740     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    741       TrackedRetVals.find(F);
    742     if (TFRVI != TrackedRetVals.end()) {
    743       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    744       return;
    745     }
    746   }
    747 
    748   // Handle functions that return multiple values.
    749   if (!TrackedMultipleRetVals.empty()) {
    750     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    751       if (MRVFunctionsTracked.count(F))
    752         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    753           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    754                        getStructValueState(ResultOp, i));
    755 
    756   }
    757 }
    758 
    759 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    760   SmallVector<bool, 16> SuccFeasible;
    761   getFeasibleSuccessors(TI, SuccFeasible);
    762 
    763   BasicBlock *BB = TI.getParent();
    764 
    765   // Mark all feasible successors executable.
    766   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    767     if (SuccFeasible[i])
    768       markEdgeExecutable(BB, TI.getSuccessor(i));
    769 }
    770 
    771 void SCCPSolver::visitCastInst(CastInst &I) {
    772   LatticeVal OpSt = getValueState(I.getOperand(0));
    773   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    774     markOverdefined(&I);
    775   else if (OpSt.isConstant()) {
    776     // Fold the constant as we build.
    777     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
    778                                           I.getType(), DL);
    779     if (isa<UndefValue>(C))
    780       return;
    781     // Propagate constant value
    782     markConstant(&I, C);
    783   }
    784 }
    785 
    786 
    787 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    788   // If this returns a struct, mark all elements over defined, we don't track
    789   // structs in structs.
    790   if (EVI.getType()->isStructTy())
    791     return markAnythingOverdefined(&EVI);
    792 
    793   // If this is extracting from more than one level of struct, we don't know.
    794   if (EVI.getNumIndices() != 1)
    795     return markOverdefined(&EVI);
    796 
    797   Value *AggVal = EVI.getAggregateOperand();
    798   if (AggVal->getType()->isStructTy()) {
    799     unsigned i = *EVI.idx_begin();
    800     LatticeVal EltVal = getStructValueState(AggVal, i);
    801     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    802   } else {
    803     // Otherwise, must be extracting from an array.
    804     return markOverdefined(&EVI);
    805   }
    806 }
    807 
    808 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    809   StructType *STy = dyn_cast<StructType>(IVI.getType());
    810   if (!STy)
    811     return markOverdefined(&IVI);
    812 
    813   // If this has more than one index, we can't handle it, drive all results to
    814   // undef.
    815   if (IVI.getNumIndices() != 1)
    816     return markAnythingOverdefined(&IVI);
    817 
    818   Value *Aggr = IVI.getAggregateOperand();
    819   unsigned Idx = *IVI.idx_begin();
    820 
    821   // Compute the result based on what we're inserting.
    822   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    823     // This passes through all values that aren't the inserted element.
    824     if (i != Idx) {
    825       LatticeVal EltVal = getStructValueState(Aggr, i);
    826       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    827       continue;
    828     }
    829 
    830     Value *Val = IVI.getInsertedValueOperand();
    831     if (Val->getType()->isStructTy())
    832       // We don't track structs in structs.
    833       markOverdefined(getStructValueState(&IVI, i), &IVI);
    834     else {
    835       LatticeVal InVal = getValueState(Val);
    836       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    837     }
    838   }
    839 }
    840 
    841 void SCCPSolver::visitSelectInst(SelectInst &I) {
    842   // If this select returns a struct, just mark the result overdefined.
    843   // TODO: We could do a lot better than this if code actually uses this.
    844   if (I.getType()->isStructTy())
    845     return markAnythingOverdefined(&I);
    846 
    847   LatticeVal CondValue = getValueState(I.getCondition());
    848   if (CondValue.isUnknown())
    849     return;
    850 
    851   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    852     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    853     mergeInValue(&I, getValueState(OpVal));
    854     return;
    855   }
    856 
    857   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    858   // See if we can produce something better than overdefined based on the T/F
    859   // value.
    860   LatticeVal TVal = getValueState(I.getTrueValue());
    861   LatticeVal FVal = getValueState(I.getFalseValue());
    862 
    863   // select ?, C, C -> C.
    864   if (TVal.isConstant() && FVal.isConstant() &&
    865       TVal.getConstant() == FVal.getConstant())
    866     return markConstant(&I, FVal.getConstant());
    867 
    868   if (TVal.isUnknown())   // select ?, undef, X -> X.
    869     return mergeInValue(&I, FVal);
    870   if (FVal.isUnknown())   // select ?, X, undef -> X.
    871     return mergeInValue(&I, TVal);
    872   markOverdefined(&I);
    873 }
    874 
    875 // Handle Binary Operators.
    876 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    877   LatticeVal V1State = getValueState(I.getOperand(0));
    878   LatticeVal V2State = getValueState(I.getOperand(1));
    879 
    880   LatticeVal &IV = ValueState[&I];
    881   if (IV.isOverdefined()) return;
    882 
    883   if (V1State.isConstant() && V2State.isConstant()) {
    884     Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    885                                     V2State.getConstant());
    886     // X op Y -> undef.
    887     if (isa<UndefValue>(C))
    888       return;
    889     return markConstant(IV, &I, C);
    890   }
    891 
    892   // If something is undef, wait for it to resolve.
    893   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    894     return;
    895 
    896   // Otherwise, one of our operands is overdefined.  Try to produce something
    897   // better than overdefined with some tricks.
    898 
    899   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    900   // operand is overdefined.
    901   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    902     LatticeVal *NonOverdefVal = nullptr;
    903     if (!V1State.isOverdefined())
    904       NonOverdefVal = &V1State;
    905     else if (!V2State.isOverdefined())
    906       NonOverdefVal = &V2State;
    907 
    908     if (NonOverdefVal) {
    909       if (NonOverdefVal->isUnknown()) {
    910         // Could annihilate value.
    911         if (I.getOpcode() == Instruction::And)
    912           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    913         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    914           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    915         else
    916           markConstant(IV, &I,
    917                        Constant::getAllOnesValue(I.getType()));
    918         return;
    919       }
    920 
    921       if (I.getOpcode() == Instruction::And) {
    922         // X and 0 = 0
    923         if (NonOverdefVal->getConstant()->isNullValue())
    924           return markConstant(IV, &I, NonOverdefVal->getConstant());
    925       } else {
    926         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    927           if (CI->isAllOnesValue())     // X or -1 = -1
    928             return markConstant(IV, &I, NonOverdefVal->getConstant());
    929       }
    930     }
    931   }
    932 
    933 
    934   markOverdefined(&I);
    935 }
    936 
    937 // Handle ICmpInst instruction.
    938 void SCCPSolver::visitCmpInst(CmpInst &I) {
    939   LatticeVal V1State = getValueState(I.getOperand(0));
    940   LatticeVal V2State = getValueState(I.getOperand(1));
    941 
    942   LatticeVal &IV = ValueState[&I];
    943   if (IV.isOverdefined()) return;
    944 
    945   if (V1State.isConstant() && V2State.isConstant()) {
    946     Constant *C = ConstantExpr::getCompare(
    947         I.getPredicate(), V1State.getConstant(), V2State.getConstant());
    948     if (isa<UndefValue>(C))
    949       return;
    950     return markConstant(IV, &I, C);
    951   }
    952 
    953   // If operands are still unknown, wait for it to resolve.
    954   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    955     return;
    956 
    957   markOverdefined(&I);
    958 }
    959 
    960 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    961   // TODO : SCCP does not handle vectors properly.
    962   return markOverdefined(&I);
    963 }
    964 
    965 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    966   // TODO : SCCP does not handle vectors properly.
    967   return markOverdefined(&I);
    968 }
    969 
    970 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    971   // TODO : SCCP does not handle vectors properly.
    972   return markOverdefined(&I);
    973 }
    974 
    975 // Handle getelementptr instructions.  If all operands are constants then we
    976 // can turn this into a getelementptr ConstantExpr.
    977 //
    978 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
    979   if (ValueState[&I].isOverdefined()) return;
    980 
    981   SmallVector<Constant*, 8> Operands;
    982   Operands.reserve(I.getNumOperands());
    983 
    984   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    985     LatticeVal State = getValueState(I.getOperand(i));
    986     if (State.isUnknown())
    987       return;  // Operands are not resolved yet.
    988 
    989     if (State.isOverdefined())
    990       return markOverdefined(&I);
    991 
    992     assert(State.isConstant() && "Unknown state!");
    993     Operands.push_back(State.getConstant());
    994   }
    995 
    996   Constant *Ptr = Operands[0];
    997   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
    998   Constant *C =
    999       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
   1000   if (isa<UndefValue>(C))
   1001       return;
   1002   markConstant(&I, C);
   1003 }
   1004 
   1005 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1006   // If this store is of a struct, ignore it.
   1007   if (SI.getOperand(0)->getType()->isStructTy())
   1008     return;
   1009 
   1010   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1011     return;
   1012 
   1013   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1014   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1015   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1016 
   1017   // Get the value we are storing into the global, then merge it.
   1018   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1019   if (I->second.isOverdefined())
   1020     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1021 }
   1022 
   1023 
   1024 // Handle load instructions.  If the operand is a constant pointer to a constant
   1025 // global, we can replace the load with the loaded constant value!
   1026 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1027   // If this load is of a struct, just mark the result overdefined.
   1028   if (I.getType()->isStructTy())
   1029     return markAnythingOverdefined(&I);
   1030 
   1031   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1032   if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet!
   1033 
   1034   LatticeVal &IV = ValueState[&I];
   1035   if (IV.isOverdefined()) return;
   1036 
   1037   if (!PtrVal.isConstant() || I.isVolatile())
   1038     return markOverdefined(IV, &I);
   1039 
   1040   Constant *Ptr = PtrVal.getConstant();
   1041 
   1042   // load null is undefined.
   1043   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1044     return;
   1045 
   1046   // Transform load (constant global) into the value loaded.
   1047   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1048     if (!TrackedGlobals.empty()) {
   1049       // If we are tracking this global, merge in the known value for it.
   1050       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1051         TrackedGlobals.find(GV);
   1052       if (It != TrackedGlobals.end()) {
   1053         mergeInValue(IV, &I, It->second);
   1054         return;
   1055       }
   1056     }
   1057   }
   1058 
   1059   // Transform load from a constant into a constant if possible.
   1060   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
   1061     if (isa<UndefValue>(C))
   1062       return;
   1063     return markConstant(IV, &I, C);
   1064   }
   1065 
   1066   // Otherwise we cannot say for certain what value this load will produce.
   1067   // Bail out.
   1068   markOverdefined(IV, &I);
   1069 }
   1070 
   1071 void SCCPSolver::visitCallSite(CallSite CS) {
   1072   Function *F = CS.getCalledFunction();
   1073   Instruction *I = CS.getInstruction();
   1074 
   1075   // The common case is that we aren't tracking the callee, either because we
   1076   // are not doing interprocedural analysis or the callee is indirect, or is
   1077   // external.  Handle these cases first.
   1078   if (!F || F->isDeclaration()) {
   1079 CallOverdefined:
   1080     // Void return and not tracking callee, just bail.
   1081     if (I->getType()->isVoidTy()) return;
   1082 
   1083     // Otherwise, if we have a single return value case, and if the function is
   1084     // a declaration, maybe we can constant fold it.
   1085     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1086         canConstantFoldCallTo(F)) {
   1087 
   1088       SmallVector<Constant*, 8> Operands;
   1089       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1090            AI != E; ++AI) {
   1091         LatticeVal State = getValueState(*AI);
   1092 
   1093         if (State.isUnknown())
   1094           return;  // Operands are not resolved yet.
   1095         if (State.isOverdefined())
   1096           return markOverdefined(I);
   1097         assert(State.isConstant() && "Unknown state!");
   1098         Operands.push_back(State.getConstant());
   1099       }
   1100 
   1101       if (getValueState(I).isOverdefined())
   1102         return;
   1103 
   1104       // If we can constant fold this, mark the result of the call as a
   1105       // constant.
   1106       if (Constant *C = ConstantFoldCall(F, Operands, TLI)) {
   1107         // call -> undef.
   1108         if (isa<UndefValue>(C))
   1109           return;
   1110         return markConstant(I, C);
   1111       }
   1112     }
   1113 
   1114     // Otherwise, we don't know anything about this call, mark it overdefined.
   1115     return markAnythingOverdefined(I);
   1116   }
   1117 
   1118   // If this is a local function that doesn't have its address taken, mark its
   1119   // entry block executable and merge in the actual arguments to the call into
   1120   // the formal arguments of the function.
   1121   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1122     MarkBlockExecutable(&F->front());
   1123 
   1124     // Propagate information from this call site into the callee.
   1125     CallSite::arg_iterator CAI = CS.arg_begin();
   1126     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1127          AI != E; ++AI, ++CAI) {
   1128       // If this argument is byval, and if the function is not readonly, there
   1129       // will be an implicit copy formed of the input aggregate.
   1130       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1131         markOverdefined(&*AI);
   1132         continue;
   1133       }
   1134 
   1135       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1136         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1137           LatticeVal CallArg = getStructValueState(*CAI, i);
   1138           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
   1139         }
   1140       } else {
   1141         mergeInValue(&*AI, getValueState(*CAI));
   1142       }
   1143     }
   1144   }
   1145 
   1146   // If this is a single/zero retval case, see if we're tracking the function.
   1147   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1148     if (!MRVFunctionsTracked.count(F))
   1149       goto CallOverdefined;  // Not tracking this callee.
   1150 
   1151     // If we are tracking this callee, propagate the result of the function
   1152     // into this call site.
   1153     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1154       mergeInValue(getStructValueState(I, i), I,
   1155                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1156   } else {
   1157     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1158     if (TFRVI == TrackedRetVals.end())
   1159       goto CallOverdefined;  // Not tracking this callee.
   1160 
   1161     // If so, propagate the return value of the callee into this call result.
   1162     mergeInValue(I, TFRVI->second);
   1163   }
   1164 }
   1165 
   1166 void SCCPSolver::Solve() {
   1167   // Process the work lists until they are empty!
   1168   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1169          !OverdefinedInstWorkList.empty()) {
   1170     // Process the overdefined instruction's work list first, which drives other
   1171     // things to overdefined more quickly.
   1172     while (!OverdefinedInstWorkList.empty()) {
   1173       Value *I = OverdefinedInstWorkList.pop_back_val();
   1174 
   1175       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1176 
   1177       // "I" got into the work list because it either made the transition from
   1178       // bottom to constant, or to overdefined.
   1179       //
   1180       // Anything on this worklist that is overdefined need not be visited
   1181       // since all of its users will have already been marked as overdefined
   1182       // Update all of the users of this instruction's value.
   1183       //
   1184       for (User *U : I->users())
   1185         if (Instruction *UI = dyn_cast<Instruction>(U))
   1186           OperandChangedState(UI);
   1187     }
   1188 
   1189     // Process the instruction work list.
   1190     while (!InstWorkList.empty()) {
   1191       Value *I = InstWorkList.pop_back_val();
   1192 
   1193       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1194 
   1195       // "I" got into the work list because it made the transition from undef to
   1196       // constant.
   1197       //
   1198       // Anything on this worklist that is overdefined need not be visited
   1199       // since all of its users will have already been marked as overdefined.
   1200       // Update all of the users of this instruction's value.
   1201       //
   1202       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1203         for (User *U : I->users())
   1204           if (Instruction *UI = dyn_cast<Instruction>(U))
   1205             OperandChangedState(UI);
   1206     }
   1207 
   1208     // Process the basic block work list.
   1209     while (!BBWorkList.empty()) {
   1210       BasicBlock *BB = BBWorkList.back();
   1211       BBWorkList.pop_back();
   1212 
   1213       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1214 
   1215       // Notify all instructions in this basic block that they are newly
   1216       // executable.
   1217       visit(BB);
   1218     }
   1219   }
   1220 }
   1221 
   1222 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1223 /// that branches on undef values cannot reach any of their successors.
   1224 /// However, this is not a safe assumption.  After we solve dataflow, this
   1225 /// method should be use to handle this.  If this returns true, the solver
   1226 /// should be rerun.
   1227 ///
   1228 /// This method handles this by finding an unresolved branch and marking it one
   1229 /// of the edges from the block as being feasible, even though the condition
   1230 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1231 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1232 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1233 /// constraints on the condition of the branch, as that would impact other users
   1234 /// of the value.
   1235 ///
   1236 /// This scan also checks for values that use undefs, whose results are actually
   1237 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1238 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1239 /// even if X isn't defined.
   1240 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1241   for (BasicBlock &BB : F) {
   1242     if (!BBExecutable.count(&BB))
   1243       continue;
   1244 
   1245     for (Instruction &I : BB) {
   1246       // Look for instructions which produce undef values.
   1247       if (I.getType()->isVoidTy()) continue;
   1248 
   1249       if (StructType *STy = dyn_cast<StructType>(I.getType())) {
   1250         // Only a few things that can be structs matter for undef.
   1251 
   1252         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1253         if (CallSite CS = CallSite(&I))
   1254           if (Function *F = CS.getCalledFunction())
   1255             if (MRVFunctionsTracked.count(F))
   1256               continue;
   1257 
   1258         // extractvalue and insertvalue don't need to be marked; they are
   1259         // tracked as precisely as their operands.
   1260         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1261           continue;
   1262 
   1263         // Send the results of everything else to overdefined.  We could be
   1264         // more precise than this but it isn't worth bothering.
   1265         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1266           LatticeVal &LV = getStructValueState(&I, i);
   1267           if (LV.isUnknown())
   1268             markOverdefined(LV, &I);
   1269         }
   1270         continue;
   1271       }
   1272 
   1273       LatticeVal &LV = getValueState(&I);
   1274       if (!LV.isUnknown()) continue;
   1275 
   1276       // extractvalue is safe; check here because the argument is a struct.
   1277       if (isa<ExtractValueInst>(I))
   1278         continue;
   1279 
   1280       // Compute the operand LatticeVals, for convenience below.
   1281       // Anything taking a struct is conservatively assumed to require
   1282       // overdefined markings.
   1283       if (I.getOperand(0)->getType()->isStructTy()) {
   1284         markOverdefined(&I);
   1285         return true;
   1286       }
   1287       LatticeVal Op0LV = getValueState(I.getOperand(0));
   1288       LatticeVal Op1LV;
   1289       if (I.getNumOperands() == 2) {
   1290         if (I.getOperand(1)->getType()->isStructTy()) {
   1291           markOverdefined(&I);
   1292           return true;
   1293         }
   1294 
   1295         Op1LV = getValueState(I.getOperand(1));
   1296       }
   1297       // If this is an instructions whose result is defined even if the input is
   1298       // not fully defined, propagate the information.
   1299       Type *ITy = I.getType();
   1300       switch (I.getOpcode()) {
   1301       case Instruction::Add:
   1302       case Instruction::Sub:
   1303       case Instruction::Trunc:
   1304       case Instruction::FPTrunc:
   1305       case Instruction::BitCast:
   1306         break; // Any undef -> undef
   1307       case Instruction::FSub:
   1308       case Instruction::FAdd:
   1309       case Instruction::FMul:
   1310       case Instruction::FDiv:
   1311       case Instruction::FRem:
   1312         // Floating-point binary operation: be conservative.
   1313         if (Op0LV.isUnknown() && Op1LV.isUnknown())
   1314           markForcedConstant(&I, Constant::getNullValue(ITy));
   1315         else
   1316           markOverdefined(&I);
   1317         return true;
   1318       case Instruction::ZExt:
   1319       case Instruction::SExt:
   1320       case Instruction::FPToUI:
   1321       case Instruction::FPToSI:
   1322       case Instruction::FPExt:
   1323       case Instruction::PtrToInt:
   1324       case Instruction::IntToPtr:
   1325       case Instruction::SIToFP:
   1326       case Instruction::UIToFP:
   1327         // undef -> 0; some outputs are impossible
   1328         markForcedConstant(&I, Constant::getNullValue(ITy));
   1329         return true;
   1330       case Instruction::Mul:
   1331       case Instruction::And:
   1332         // Both operands undef -> undef
   1333         if (Op0LV.isUnknown() && Op1LV.isUnknown())
   1334           break;
   1335         // undef * X -> 0.   X could be zero.
   1336         // undef & X -> 0.   X could be zero.
   1337         markForcedConstant(&I, Constant::getNullValue(ITy));
   1338         return true;
   1339 
   1340       case Instruction::Or:
   1341         // Both operands undef -> undef
   1342         if (Op0LV.isUnknown() && Op1LV.isUnknown())
   1343           break;
   1344         // undef | X -> -1.   X could be -1.
   1345         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
   1346         return true;
   1347 
   1348       case Instruction::Xor:
   1349         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1350         // necessary, but we try to be nice to people who expect this
   1351         // behavior in simple cases
   1352         if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
   1353           markForcedConstant(&I, Constant::getNullValue(ITy));
   1354           return true;
   1355         }
   1356         // undef ^ X -> undef
   1357         break;
   1358 
   1359       case Instruction::SDiv:
   1360       case Instruction::UDiv:
   1361       case Instruction::SRem:
   1362       case Instruction::URem:
   1363         // X / undef -> undef.  No change.
   1364         // X % undef -> undef.  No change.
   1365         if (Op1LV.isUnknown()) break;
   1366 
   1367         // X / 0 -> undef.  No change.
   1368         // X % 0 -> undef.  No change.
   1369         if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
   1370           break;
   1371 
   1372         // undef / X -> 0.   X could be maxint.
   1373         // undef % X -> 0.   X could be 1.
   1374         markForcedConstant(&I, Constant::getNullValue(ITy));
   1375         return true;
   1376 
   1377       case Instruction::AShr:
   1378         // X >>a undef -> undef.
   1379         if (Op1LV.isUnknown()) break;
   1380 
   1381         // Shifting by the bitwidth or more is undefined.
   1382         if (Op1LV.isConstant()) {
   1383           if (auto *ShiftAmt = Op1LV.getConstantInt())
   1384             if (ShiftAmt->getLimitedValue() >=
   1385                 ShiftAmt->getType()->getScalarSizeInBits())
   1386               break;
   1387         }
   1388 
   1389         // undef >>a X -> all ones
   1390         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
   1391         return true;
   1392       case Instruction::LShr:
   1393       case Instruction::Shl:
   1394         // X << undef -> undef.
   1395         // X >> undef -> undef.
   1396         if (Op1LV.isUnknown()) break;
   1397 
   1398         // Shifting by the bitwidth or more is undefined.
   1399         if (Op1LV.isConstant()) {
   1400           if (auto *ShiftAmt = Op1LV.getConstantInt())
   1401             if (ShiftAmt->getLimitedValue() >=
   1402                 ShiftAmt->getType()->getScalarSizeInBits())
   1403               break;
   1404         }
   1405 
   1406         // undef << X -> 0
   1407         // undef >> X -> 0
   1408         markForcedConstant(&I, Constant::getNullValue(ITy));
   1409         return true;
   1410       case Instruction::Select:
   1411         Op1LV = getValueState(I.getOperand(1));
   1412         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1413         if (Op0LV.isUnknown()) {
   1414           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1415             Op1LV = getValueState(I.getOperand(2));
   1416         } else if (Op1LV.isUnknown()) {
   1417           // c ? undef : undef -> undef.  No change.
   1418           Op1LV = getValueState(I.getOperand(2));
   1419           if (Op1LV.isUnknown())
   1420             break;
   1421           // Otherwise, c ? undef : x -> x.
   1422         } else {
   1423           // Leave Op1LV as Operand(1)'s LatticeValue.
   1424         }
   1425 
   1426         if (Op1LV.isConstant())
   1427           markForcedConstant(&I, Op1LV.getConstant());
   1428         else
   1429           markOverdefined(&I);
   1430         return true;
   1431       case Instruction::Load:
   1432         // A load here means one of two things: a load of undef from a global,
   1433         // a load from an unknown pointer.  Either way, having it return undef
   1434         // is okay.
   1435         break;
   1436       case Instruction::ICmp:
   1437         // X == undef -> undef.  Other comparisons get more complicated.
   1438         if (cast<ICmpInst>(&I)->isEquality())
   1439           break;
   1440         markOverdefined(&I);
   1441         return true;
   1442       case Instruction::Call:
   1443       case Instruction::Invoke: {
   1444         // There are two reasons a call can have an undef result
   1445         // 1. It could be tracked.
   1446         // 2. It could be constant-foldable.
   1447         // Because of the way we solve return values, tracked calls must
   1448         // never be marked overdefined in ResolvedUndefsIn.
   1449         if (Function *F = CallSite(&I).getCalledFunction())
   1450           if (TrackedRetVals.count(F))
   1451             break;
   1452 
   1453         // If the call is constant-foldable, we mark it overdefined because
   1454         // we do not know what return values are valid.
   1455         markOverdefined(&I);
   1456         return true;
   1457       }
   1458       default:
   1459         // If we don't know what should happen here, conservatively mark it
   1460         // overdefined.
   1461         markOverdefined(&I);
   1462         return true;
   1463       }
   1464     }
   1465 
   1466     // Check to see if we have a branch or switch on an undefined value.  If so
   1467     // we force the branch to go one way or the other to make the successor
   1468     // values live.  It doesn't really matter which way we force it.
   1469     TerminatorInst *TI = BB.getTerminator();
   1470     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1471       if (!BI->isConditional()) continue;
   1472       if (!getValueState(BI->getCondition()).isUnknown())
   1473         continue;
   1474 
   1475       // If the input to SCCP is actually branch on undef, fix the undef to
   1476       // false.
   1477       if (isa<UndefValue>(BI->getCondition())) {
   1478         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1479         markEdgeExecutable(&BB, TI->getSuccessor(1));
   1480         return true;
   1481       }
   1482 
   1483       // Otherwise, it is a branch on a symbolic value which is currently
   1484       // considered to be undef.  Handle this by forcing the input value to the
   1485       // branch to false.
   1486       markForcedConstant(BI->getCondition(),
   1487                          ConstantInt::getFalse(TI->getContext()));
   1488       return true;
   1489     }
   1490 
   1491     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1492       if (!SI->getNumCases())
   1493         continue;
   1494       if (!getValueState(SI->getCondition()).isUnknown())
   1495         continue;
   1496 
   1497       // If the input to SCCP is actually switch on undef, fix the undef to
   1498       // the first constant.
   1499       if (isa<UndefValue>(SI->getCondition())) {
   1500         SI->setCondition(SI->case_begin().getCaseValue());
   1501         markEdgeExecutable(&BB, SI->case_begin().getCaseSuccessor());
   1502         return true;
   1503       }
   1504 
   1505       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1506       return true;
   1507     }
   1508   }
   1509 
   1510   return false;
   1511 }
   1512 
   1513 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
   1514   Constant *Const = nullptr;
   1515   if (V->getType()->isStructTy()) {
   1516     std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
   1517     if (std::any_of(IVs.begin(), IVs.end(),
   1518                     [](LatticeVal &LV) { return LV.isOverdefined(); }))
   1519       return false;
   1520     std::vector<Constant *> ConstVals;
   1521     StructType *ST = dyn_cast<StructType>(V->getType());
   1522     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
   1523       LatticeVal V = IVs[i];
   1524       ConstVals.push_back(V.isConstant()
   1525                               ? V.getConstant()
   1526                               : UndefValue::get(ST->getElementType(i)));
   1527     }
   1528     Const = ConstantStruct::get(ST, ConstVals);
   1529   } else {
   1530     LatticeVal IV = Solver.getLatticeValueFor(V);
   1531     if (IV.isOverdefined())
   1532       return false;
   1533     Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
   1534   }
   1535   assert(Const && "Constant is nullptr here!");
   1536   DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
   1537 
   1538   // Replaces all of the uses of a variable with uses of the constant.
   1539   V->replaceAllUsesWith(Const);
   1540   return true;
   1541 }
   1542 
   1543 static bool tryToReplaceInstWithConstant(SCCPSolver &Solver, Instruction *Inst,
   1544                                          bool shouldEraseFromParent) {
   1545   if (!tryToReplaceWithConstant(Solver, Inst))
   1546     return false;
   1547 
   1548   // Delete the instruction.
   1549   if (shouldEraseFromParent)
   1550     Inst->eraseFromParent();
   1551   return true;
   1552 }
   1553 
   1554 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
   1555 // and return true if the function was modified.
   1556 //
   1557 static bool runSCCP(Function &F, const DataLayout &DL,
   1558                     const TargetLibraryInfo *TLI) {
   1559   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1560   SCCPSolver Solver(DL, TLI);
   1561 
   1562   // Mark the first block of the function as being executable.
   1563   Solver.MarkBlockExecutable(&F.front());
   1564 
   1565   // Mark all arguments to the function as being overdefined.
   1566   for (Argument &AI : F.args())
   1567     Solver.markAnythingOverdefined(&AI);
   1568 
   1569   // Solve for constants.
   1570   bool ResolvedUndefs = true;
   1571   while (ResolvedUndefs) {
   1572     Solver.Solve();
   1573     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1574     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1575   }
   1576 
   1577   bool MadeChanges = false;
   1578 
   1579   // If we decided that there are basic blocks that are dead in this function,
   1580   // delete their contents now.  Note that we cannot actually delete the blocks,
   1581   // as we cannot modify the CFG of the function.
   1582 
   1583   for (BasicBlock &BB : F) {
   1584     if (!Solver.isBlockExecutable(&BB)) {
   1585       DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
   1586 
   1587       ++NumDeadBlocks;
   1588       NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
   1589 
   1590       MadeChanges = true;
   1591       continue;
   1592     }
   1593 
   1594     // Iterate over all of the instructions in a function, replacing them with
   1595     // constants if we have found them to be of constant values.
   1596     //
   1597     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
   1598       Instruction *Inst = &*BI++;
   1599       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1600         continue;
   1601 
   1602       if (tryToReplaceInstWithConstant(Solver, Inst,
   1603                                        true /* shouldEraseFromParent */)) {
   1604         // Hey, we just changed something!
   1605         MadeChanges = true;
   1606         ++NumInstRemoved;
   1607       }
   1608     }
   1609   }
   1610 
   1611   return MadeChanges;
   1612 }
   1613 
   1614 PreservedAnalyses SCCPPass::run(Function &F, AnalysisManager<Function> &AM) {
   1615   const DataLayout &DL = F.getParent()->getDataLayout();
   1616   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
   1617   if (!runSCCP(F, DL, &TLI))
   1618     return PreservedAnalyses::all();
   1619 
   1620   auto PA = PreservedAnalyses();
   1621   PA.preserve<GlobalsAA>();
   1622   return PA;
   1623 }
   1624 
   1625 namespace {
   1626 //===--------------------------------------------------------------------===//
   1627 //
   1628 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1629 /// Sparse Conditional Constant Propagator.
   1630 ///
   1631 class SCCPLegacyPass : public FunctionPass {
   1632 public:
   1633   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1634     AU.addRequired<TargetLibraryInfoWrapperPass>();
   1635     AU.addPreserved<GlobalsAAWrapperPass>();
   1636   }
   1637   static char ID; // Pass identification, replacement for typeid
   1638   SCCPLegacyPass() : FunctionPass(ID) {
   1639     initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
   1640   }
   1641 
   1642   // runOnFunction - Run the Sparse Conditional Constant Propagation
   1643   // algorithm, and return true if the function was modified.
   1644   //
   1645   bool runOnFunction(Function &F) override {
   1646     if (skipFunction(F))
   1647       return false;
   1648     const DataLayout &DL = F.getParent()->getDataLayout();
   1649     const TargetLibraryInfo *TLI =
   1650         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1651     return runSCCP(F, DL, TLI);
   1652   }
   1653 };
   1654 } // end anonymous namespace
   1655 
   1656 char SCCPLegacyPass::ID = 0;
   1657 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
   1658                       "Sparse Conditional Constant Propagation", false, false)
   1659 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1660 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
   1661                     "Sparse Conditional Constant Propagation", false, false)
   1662 
   1663 // createSCCPPass - This is the public interface to this file.
   1664 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
   1665 
   1666 static bool AddressIsTaken(const GlobalValue *GV) {
   1667   // Delete any dead constantexpr klingons.
   1668   GV->removeDeadConstantUsers();
   1669 
   1670   for (const Use &U : GV->uses()) {
   1671     const User *UR = U.getUser();
   1672     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
   1673       if (SI->getOperand(0) == GV || SI->isVolatile())
   1674         return true;  // Storing addr of GV.
   1675     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
   1676       // Make sure we are calling the function, not passing the address.
   1677       ImmutableCallSite CS(cast<Instruction>(UR));
   1678       if (!CS.isCallee(&U))
   1679         return true;
   1680     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
   1681       if (LI->isVolatile())
   1682         return true;
   1683     } else if (isa<BlockAddress>(UR)) {
   1684       // blockaddress doesn't take the address of the function, it takes addr
   1685       // of label.
   1686     } else {
   1687       return true;
   1688     }
   1689   }
   1690   return false;
   1691 }
   1692 
   1693 static bool runIPSCCP(Module &M, const DataLayout &DL,
   1694                       const TargetLibraryInfo *TLI) {
   1695   SCCPSolver Solver(DL, TLI);
   1696 
   1697   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1698   // that are in the input.  As IPSCCP runs through and simplifies code,
   1699   // functions that were address taken can end up losing their
   1700   // address-taken-ness.  Because of this, we keep track of their addresses from
   1701   // the first pass so we can use them for the later simplification pass.
   1702   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1703 
   1704   // Loop over all functions, marking arguments to those with their addresses
   1705   // taken or that are external as overdefined.
   1706   //
   1707   for (Function &F : M) {
   1708     if (F.isDeclaration())
   1709       continue;
   1710 
   1711     // If this is an exact definition of this function, then we can propagate
   1712     // information about its result into callsites of it.
   1713     if (F.hasExactDefinition())
   1714       Solver.AddTrackedFunction(&F);
   1715 
   1716     // If this function only has direct calls that we can see, we can track its
   1717     // arguments and return value aggressively, and can assume it is not called
   1718     // unless we see evidence to the contrary.
   1719     if (F.hasLocalLinkage()) {
   1720       if (AddressIsTaken(&F))
   1721         AddressTakenFunctions.insert(&F);
   1722       else {
   1723         Solver.AddArgumentTrackedFunction(&F);
   1724         continue;
   1725       }
   1726     }
   1727 
   1728     // Assume the function is called.
   1729     Solver.MarkBlockExecutable(&F.front());
   1730 
   1731     // Assume nothing about the incoming arguments.
   1732     for (Argument &AI : F.args())
   1733       Solver.markAnythingOverdefined(&AI);
   1734   }
   1735 
   1736   // Loop over global variables.  We inform the solver about any internal global
   1737   // variables that do not have their 'addresses taken'.  If they don't have
   1738   // their addresses taken, we can propagate constants through them.
   1739   for (GlobalVariable &G : M.globals())
   1740     if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
   1741       Solver.TrackValueOfGlobalVariable(&G);
   1742 
   1743   // Solve for constants.
   1744   bool ResolvedUndefs = true;
   1745   while (ResolvedUndefs) {
   1746     Solver.Solve();
   1747 
   1748     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1749     ResolvedUndefs = false;
   1750     for (Function &F : M)
   1751       ResolvedUndefs |= Solver.ResolvedUndefsIn(F);
   1752   }
   1753 
   1754   bool MadeChanges = false;
   1755 
   1756   // Iterate over all of the instructions in the module, replacing them with
   1757   // constants if we have found them to be of constant values.
   1758   //
   1759   SmallVector<BasicBlock*, 512> BlocksToErase;
   1760 
   1761   for (Function &F : M) {
   1762     if (F.isDeclaration())
   1763       continue;
   1764 
   1765     if (Solver.isBlockExecutable(&F.front())) {
   1766       for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
   1767            ++AI) {
   1768         if (AI->use_empty())
   1769           continue;
   1770         if (tryToReplaceWithConstant(Solver, &*AI))
   1771           ++IPNumArgsElimed;
   1772       }
   1773     }
   1774 
   1775     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1776       if (!Solver.isBlockExecutable(&*BB)) {
   1777         DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1778 
   1779         ++NumDeadBlocks;
   1780         NumInstRemoved +=
   1781             changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false);
   1782 
   1783         MadeChanges = true;
   1784 
   1785         if (&*BB != &F.front())
   1786           BlocksToErase.push_back(&*BB);
   1787         continue;
   1788       }
   1789 
   1790       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1791         Instruction *Inst = &*BI++;
   1792         if (Inst->getType()->isVoidTy())
   1793           continue;
   1794         if (tryToReplaceInstWithConstant(
   1795                 Solver, Inst,
   1796                 !isa<CallInst>(Inst) &&
   1797                     !isa<TerminatorInst>(Inst) /* shouldEraseFromParent */)) {
   1798           // Hey, we just changed something!
   1799           MadeChanges = true;
   1800           ++IPNumInstRemoved;
   1801         }
   1802       }
   1803     }
   1804 
   1805     // Now that all instructions in the function are constant folded, erase dead
   1806     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1807     // in-edges.
   1808     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1809       // If there are any PHI nodes in this successor, drop entries for BB now.
   1810       BasicBlock *DeadBB = BlocksToErase[i];
   1811       for (Value::user_iterator UI = DeadBB->user_begin(),
   1812                                 UE = DeadBB->user_end();
   1813            UI != UE;) {
   1814         // Grab the user and then increment the iterator early, as the user
   1815         // will be deleted. Step past all adjacent uses from the same user.
   1816         Instruction *I = dyn_cast<Instruction>(*UI);
   1817         do { ++UI; } while (UI != UE && *UI == I);
   1818 
   1819         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1820         if (!I) continue;
   1821 
   1822         bool Folded = ConstantFoldTerminator(I->getParent());
   1823         if (!Folded) {
   1824           // The constant folder may not have been able to fold the terminator
   1825           // if this is a branch or switch on undef.  Fold it manually as a
   1826           // branch to the first successor.
   1827 #ifndef NDEBUG
   1828           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1829             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1830                    "Branch should be foldable!");
   1831           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1832             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1833           } else {
   1834             llvm_unreachable("Didn't fold away reference to block!");
   1835           }
   1836 #endif
   1837 
   1838           // Make this an uncond branch to the first successor.
   1839           TerminatorInst *TI = I->getParent()->getTerminator();
   1840           BranchInst::Create(TI->getSuccessor(0), TI);
   1841 
   1842           // Remove entries in successor phi nodes to remove edges.
   1843           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1844             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1845 
   1846           // Remove the old terminator.
   1847           TI->eraseFromParent();
   1848         }
   1849       }
   1850 
   1851       // Finally, delete the basic block.
   1852       F.getBasicBlockList().erase(DeadBB);
   1853     }
   1854     BlocksToErase.clear();
   1855   }
   1856 
   1857   // If we inferred constant or undef return values for a function, we replaced
   1858   // all call uses with the inferred value.  This means we don't need to bother
   1859   // actually returning anything from the function.  Replace all return
   1860   // instructions with return undef.
   1861   //
   1862   // Do this in two stages: first identify the functions we should process, then
   1863   // actually zap their returns.  This is important because we can only do this
   1864   // if the address of the function isn't taken.  In cases where a return is the
   1865   // last use of a function, the order of processing functions would affect
   1866   // whether other functions are optimizable.
   1867   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1868 
   1869   // TODO: Process multiple value ret instructions also.
   1870   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1871   for (const auto &I : RV) {
   1872     Function *F = I.first;
   1873     if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
   1874       continue;
   1875 
   1876     // We can only do this if we know that nothing else can call the function.
   1877     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1878       continue;
   1879 
   1880     for (BasicBlock &BB : *F)
   1881       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
   1882         if (!isa<UndefValue>(RI->getOperand(0)))
   1883           ReturnsToZap.push_back(RI);
   1884   }
   1885 
   1886   // Zap all returns which we've identified as zap to change.
   1887   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1888     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1889     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1890   }
   1891 
   1892   // If we inferred constant or undef values for globals variables, we can
   1893   // delete the global and any stores that remain to it.
   1894   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1895   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1896          E = TG.end(); I != E; ++I) {
   1897     GlobalVariable *GV = I->first;
   1898     assert(!I->second.isOverdefined() &&
   1899            "Overdefined values should have been taken out of the map!");
   1900     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1901     while (!GV->use_empty()) {
   1902       StoreInst *SI = cast<StoreInst>(GV->user_back());
   1903       SI->eraseFromParent();
   1904     }
   1905     M.getGlobalList().erase(GV);
   1906     ++IPNumGlobalConst;
   1907   }
   1908 
   1909   return MadeChanges;
   1910 }
   1911 
   1912 PreservedAnalyses IPSCCPPass::run(Module &M, AnalysisManager<Module> &AM) {
   1913   const DataLayout &DL = M.getDataLayout();
   1914   auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
   1915   if (!runIPSCCP(M, DL, &TLI))
   1916     return PreservedAnalyses::all();
   1917   return PreservedAnalyses::none();
   1918 }
   1919 
   1920 namespace {
   1921 //===--------------------------------------------------------------------===//
   1922 //
   1923 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1924 /// Constant Propagation.
   1925 ///
   1926 class IPSCCPLegacyPass : public ModulePass {
   1927 public:
   1928   static char ID;
   1929 
   1930   IPSCCPLegacyPass() : ModulePass(ID) {
   1931     initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
   1932   }
   1933 
   1934   bool runOnModule(Module &M) override {
   1935     if (skipModule(M))
   1936       return false;
   1937     const DataLayout &DL = M.getDataLayout();
   1938     const TargetLibraryInfo *TLI =
   1939         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1940     return runIPSCCP(M, DL, TLI);
   1941   }
   1942 
   1943   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1944     AU.addRequired<TargetLibraryInfoWrapperPass>();
   1945   }
   1946 };
   1947 } // end anonymous namespace
   1948 
   1949 char IPSCCPLegacyPass::ID = 0;
   1950 INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp",
   1951                       "Interprocedural Sparse Conditional Constant Propagation",
   1952                       false, false)
   1953 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1954 INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp",
   1955                     "Interprocedural Sparse Conditional Constant Propagation",
   1956                     false, false)
   1957 
   1958 // createIPSCCPPass - This is the public interface to this file.
   1959 ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); }
   1960