Home | History | Annotate | Download | only in codegen
      1 /*
      2  * Copyright 2011 Christoph Bumiller
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice shall be included in
     12  * all copies or substantial portions of the Software.
     13  *
     14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20  * OTHER DEALINGS IN THE SOFTWARE.
     21  */
     22 
     23 #include "codegen/nv50_ir_target_nvc0.h"
     24 
     25 namespace nv50_ir {
     26 
     27 Target *getTargetNVC0(unsigned int chipset)
     28 {
     29    return new TargetNVC0(chipset);
     30 }
     31 
     32 TargetNVC0::TargetNVC0(unsigned int card) :
     33    Target(card < 0x110, false, card >= 0xe4)
     34 {
     35    chipset = card;
     36    initOpInfo();
     37 }
     38 
     39 // BULTINS / LIBRARY FUNCTIONS:
     40 
     41 // lazyness -> will just hardcode everything for the time being
     42 
     43 #include "lib/gf100.asm.h"
     44 #include "lib/gk104.asm.h"
     45 #include "lib/gk110.asm.h"
     46 
     47 void
     48 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
     49 {
     50    switch (chipset & ~0xf) {
     51    case 0xe0:
     52       if (chipset < NVISA_GK20A_CHIPSET) {
     53          *code = (const uint32_t *)&gk104_builtin_code[0];
     54          *size = sizeof(gk104_builtin_code);
     55          break;
     56       }
     57       /* fall-through for GK20A */
     58    case 0xf0:
     59    case 0x100:
     60       *code = (const uint32_t *)&gk110_builtin_code[0];
     61       *size = sizeof(gk110_builtin_code);
     62       break;
     63    default:
     64       *code = (const uint32_t *)&gf100_builtin_code[0];
     65       *size = sizeof(gf100_builtin_code);
     66       break;
     67    }
     68 }
     69 
     70 uint32_t
     71 TargetNVC0::getBuiltinOffset(int builtin) const
     72 {
     73    assert(builtin < NVC0_BUILTIN_COUNT);
     74 
     75    switch (chipset & ~0xf) {
     76    case 0xe0:
     77       if (chipset < NVISA_GK20A_CHIPSET)
     78          return gk104_builtin_offsets[builtin];
     79       /* fall-through for GK20A */
     80    case 0xf0:
     81    case 0x100:
     82       return gk110_builtin_offsets[builtin];
     83    default:
     84       return gf100_builtin_offsets[builtin];
     85    }
     86 }
     87 
     88 struct opProperties
     89 {
     90    operation op;
     91    unsigned int mNeg   : 4;
     92    unsigned int mAbs   : 4;
     93    unsigned int mNot   : 4;
     94    unsigned int mSat   : 4;
     95    unsigned int fConst : 3;
     96    unsigned int fImmd  : 4; // last bit indicates if full immediate is suppoted
     97 };
     98 
     99 static const struct opProperties _initProps[] =
    100 {
    101    //           neg  abs  not  sat  c[]  imm
    102    { OP_ADD,    0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
    103    { OP_SUB,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
    104    { OP_MUL,    0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
    105    { OP_MAX,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    106    { OP_MIN,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    107    { OP_MAD,    0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
    108    { OP_FMA,    0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // keep the same as OP_MAD
    109    { OP_SHLADD, 0x5, 0x0, 0x0, 0x0, 0x4, 0x6 },
    110    { OP_MADSP,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
    111    { OP_ABS,    0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
    112    { OP_NEG,    0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
    113    { OP_CVT,    0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
    114    { OP_CEIL,   0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
    115    { OP_FLOOR,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
    116    { OP_TRUNC,  0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
    117    { OP_AND,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
    118    { OP_OR,     0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
    119    { OP_XOR,    0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
    120    { OP_SHL,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
    121    { OP_SHR,    0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
    122    { OP_SET,    0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    123    { OP_SLCT,   0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
    124    { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
    125    { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
    126    { OP_COS,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    127    { OP_SIN,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    128    { OP_EX2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    129    { OP_LG2,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    130    { OP_RCP,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    131    { OP_RSQ,    0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
    132    { OP_DFDX,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
    133    { OP_DFDY,   0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
    134    { OP_CALL,   0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
    135    { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
    136    { OP_INSBF,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
    137    { OP_EXTBF,  0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
    138    { OP_BFIND,  0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
    139    { OP_PERMT,  0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
    140    { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    141    { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    142    { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
    143    // saturate only:
    144    { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
    145    { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
    146    // nve4 ops:
    147    { OP_SULDB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
    148    { OP_SUSTB,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
    149    { OP_SUSTP,   0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
    150    { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
    151    { OP_SUBFM,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
    152    { OP_SUEAU,   0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
    153 };
    154 
    155 void TargetNVC0::initOpInfo()
    156 {
    157    unsigned int i, j;
    158 
    159    static const uint32_t commutative[(OP_LAST + 31) / 32] =
    160    {
    161       // ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN, SET_AND, SET_OR, SET_XOR,
    162       // SET, SELP, SLCT
    163       0x0ce0ca00, 0x0000007e, 0x00000000, 0x00000000
    164    };
    165 
    166    static const uint32_t shortForm[(OP_LAST + 31) / 32] =
    167    {
    168       // ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN
    169       0x0ce0ca00, 0x00000000, 0x00000000, 0x00000000
    170    };
    171 
    172    static const operation noDest[] =
    173    {
    174       OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
    175       OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
    176       OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
    177       OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
    178       OP_SUREDB, OP_BAR
    179    };
    180 
    181    static const operation noPred[] =
    182    {
    183       OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
    184       OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
    185    };
    186 
    187    for (i = 0; i < DATA_FILE_COUNT; ++i)
    188       nativeFileMap[i] = (DataFile)i;
    189    nativeFileMap[FILE_ADDRESS] = FILE_GPR;
    190 
    191    for (i = 0; i < OP_LAST; ++i) {
    192       opInfo[i].variants = NULL;
    193       opInfo[i].op = (operation)i;
    194       opInfo[i].srcTypes = 1 << (int)TYPE_F32;
    195       opInfo[i].dstTypes = 1 << (int)TYPE_F32;
    196       opInfo[i].immdBits = 0;
    197       opInfo[i].srcNr = operationSrcNr[i];
    198 
    199       for (j = 0; j < opInfo[i].srcNr; ++j) {
    200          opInfo[i].srcMods[j] = 0;
    201          opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
    202       }
    203       opInfo[i].dstMods = 0;
    204       opInfo[i].dstFiles = 1 << (int)FILE_GPR;
    205 
    206       opInfo[i].hasDest = 1;
    207       opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
    208       opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
    209       opInfo[i].pseudo = (i < OP_MOV);
    210       opInfo[i].predicate = !opInfo[i].pseudo;
    211       opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
    212       opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
    213    }
    214    for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
    215       opInfo[noDest[i]].hasDest = 0;
    216    for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
    217       opInfo[noPred[i]].predicate = 0;
    218 
    219    for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
    220       const struct opProperties *prop = &_initProps[i];
    221 
    222       for (int s = 0; s < 3; ++s) {
    223          if (prop->mNeg & (1 << s))
    224             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
    225          if (prop->mAbs & (1 << s))
    226             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
    227          if (prop->mNot & (1 << s))
    228             opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
    229          if (prop->fConst & (1 << s))
    230             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
    231          if (prop->fImmd & (1 << s))
    232             opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
    233          if (prop->fImmd & 8)
    234             opInfo[prop->op].immdBits = 0xffffffff;
    235       }
    236       if (prop->mSat & 8)
    237          opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
    238    }
    239 }
    240 
    241 unsigned int
    242 TargetNVC0::getFileSize(DataFile file) const
    243 {
    244    const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
    245    const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
    246    switch (file) {
    247    case FILE_NULL:          return 0;
    248    case FILE_GPR:           return MIN2(gprs, smregs / threads);
    249    case FILE_PREDICATE:     return 7;
    250    case FILE_FLAGS:         return 1;
    251    case FILE_ADDRESS:       return 0;
    252    case FILE_IMMEDIATE:     return 0;
    253    case FILE_MEMORY_CONST:  return 65536;
    254    case FILE_SHADER_INPUT:  return 0x400;
    255    case FILE_SHADER_OUTPUT: return 0x400;
    256    case FILE_MEMORY_BUFFER: return 0xffffffff;
    257    case FILE_MEMORY_GLOBAL: return 0xffffffff;
    258    case FILE_MEMORY_SHARED: return 16 << 10;
    259    case FILE_MEMORY_LOCAL:  return 48 << 10;
    260    case FILE_SYSTEM_VALUE:  return 32;
    261    default:
    262       assert(!"invalid file");
    263       return 0;
    264    }
    265 }
    266 
    267 unsigned int
    268 TargetNVC0::getFileUnit(DataFile file) const
    269 {
    270    if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
    271       return 2;
    272    return 0;
    273 }
    274 
    275 uint32_t
    276 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
    277 {
    278    const int idx = sym->reg.data.sv.index;
    279    const SVSemantic sv = sym->reg.data.sv.sv;
    280 
    281    const bool isInput = shaderFile == FILE_SHADER_INPUT;
    282    const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
    283 
    284    switch (sv) {
    285    case SV_POSITION:       return 0x070 + idx * 4;
    286    case SV_INSTANCE_ID:    return 0x2f8;
    287    case SV_VERTEX_ID:      return 0x2fc;
    288    case SV_PRIMITIVE_ID:   return isInput ? 0x060 : 0x040;
    289    case SV_LAYER:          return 0x064;
    290    case SV_VIEWPORT_INDEX: return 0x068;
    291    case SV_POINT_SIZE:     return 0x06c;
    292    case SV_CLIP_DISTANCE:  return 0x2c0 + idx * 4;
    293    case SV_POINT_COORD:    return 0x2e0 + idx * 4;
    294    case SV_FACE:           return 0x3fc;
    295    case SV_TESS_OUTER:     return 0x000 + idx * 4;
    296    case SV_TESS_INNER:     return 0x010 + idx * 4;
    297    case SV_TESS_COORD:     return 0x2f0 + idx * 4;
    298    case SV_NTID:           return kepler ? (0x00 + idx * 4) : ~0;
    299    case SV_NCTAID:         return kepler ? (0x0c + idx * 4) : ~0;
    300    case SV_GRIDID:         return kepler ? 0x18 : ~0;
    301    case SV_WORK_DIM:       return 0x1c;
    302    case SV_SAMPLE_INDEX:   return 0;
    303    case SV_SAMPLE_POS:     return 0;
    304    case SV_SAMPLE_MASK:    return 0;
    305    case SV_BASEVERTEX:     return 0;
    306    case SV_BASEINSTANCE:   return 0;
    307    case SV_DRAWID:         return 0;
    308    default:
    309       return 0xffffffff;
    310    }
    311 }
    312 
    313 bool
    314 TargetNVC0::insnCanLoad(const Instruction *i, int s,
    315                         const Instruction *ld) const
    316 {
    317    DataFile sf = ld->src(0).getFile();
    318 
    319    // immediate 0 can be represented by GPR $r63/$r255
    320    if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
    321       return (!i->isPseudo() &&
    322               !i->asTex() &&
    323               i->op != OP_EXPORT && i->op != OP_STORE);
    324 
    325    if (s >= opInfo[i->op].srcNr)
    326       return false;
    327    if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
    328       return false;
    329 
    330    // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
    331    if (ld->src(0).isIndirect(0))
    332       return false;
    333 
    334    for (int k = 0; i->srcExists(k); ++k) {
    335       if (i->src(k).getFile() == FILE_IMMEDIATE) {
    336          if (k == 2 && i->op == OP_SUCLAMP) // special case
    337             continue;
    338          if (k == 1 && i->op == OP_SHLADD) // special case
    339             continue;
    340          if (i->getSrc(k)->reg.data.u64 != 0)
    341             return false;
    342       } else
    343       if (i->src(k).getFile() != FILE_GPR &&
    344           i->src(k).getFile() != FILE_PREDICATE) {
    345          return false;
    346       }
    347    }
    348 
    349    // not all instructions support full 32 bit immediates
    350    if (sf == FILE_IMMEDIATE) {
    351       Storage &reg = ld->getSrc(0)->asImm()->reg;
    352 
    353       if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
    354          switch (i->sType) {
    355          case TYPE_F64:
    356             if (reg.data.u64 & 0x00000fffffffffffULL)
    357                return false;
    358             break;
    359          case TYPE_F32:
    360             if (reg.data.u32 & 0xfff)
    361                return false;
    362             break;
    363          case TYPE_S32:
    364          case TYPE_U32:
    365             // with u32, 0xfffff counts as 0xffffffff as well
    366             if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
    367                return false;
    368             break;
    369          case TYPE_U8:
    370          case TYPE_S8:
    371          case TYPE_U16:
    372          case TYPE_S16:
    373          case TYPE_F16:
    374             break;
    375          default:
    376             return false;
    377          }
    378       } else
    379       if (i->op == OP_MAD || i->op == OP_FMA) {
    380          // requires src == dst, cannot decide before RA
    381          // (except if we implement more constraints)
    382          if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
    383             return false;
    384       } else
    385       if (i->op == OP_ADD && i->sType == TYPE_F32) {
    386          // add f32 LIMM cannot saturate
    387          if (i->saturate && (reg.data.u32 & 0xfff))
    388             return false;
    389       }
    390    }
    391 
    392    return true;
    393 }
    394 
    395 bool
    396 TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
    397 {
    398    const ValueRef& ref = insn->src(s);
    399    if (ref.getFile() == FILE_MEMORY_CONST &&
    400        (insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
    401       return offset >= -0x8000 && offset < 0x8000;
    402    return true;
    403 }
    404 
    405 bool
    406 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
    407 {
    408    if (ty == TYPE_NONE)
    409       return false;
    410    if (file == FILE_MEMORY_CONST) {
    411       if (getChipset() >= NVISA_GM107_CHIPSET)
    412          return typeSizeof(ty) <= 4;
    413       else
    414       if (getChipset() >= NVISA_GK104_CHIPSET) // wrong encoding ?
    415          return typeSizeof(ty) <= 8;
    416    }
    417    if (ty == TYPE_B96)
    418       return false;
    419    return true;
    420 }
    421 
    422 bool
    423 TargetNVC0::isOpSupported(operation op, DataType ty) const
    424 {
    425    if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
    426       return false;
    427    if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
    428       return false;
    429    return true;
    430 }
    431 
    432 bool
    433 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
    434 {
    435    if (!isFloatType(insn->dType)) {
    436       switch (insn->op) {
    437       case OP_ABS:
    438       case OP_NEG:
    439       case OP_CVT:
    440       case OP_CEIL:
    441       case OP_FLOOR:
    442       case OP_TRUNC:
    443       case OP_AND:
    444       case OP_OR:
    445       case OP_XOR:
    446       case OP_POPCNT:
    447       case OP_BFIND:
    448          break;
    449       case OP_SET:
    450          if (insn->sType != TYPE_F32)
    451             return false;
    452          break;
    453       case OP_ADD:
    454          if (mod.abs())
    455             return false;
    456          if (insn->src(s ? 0 : 1).mod.neg())
    457             return false;
    458          break;
    459       case OP_SUB:
    460          if (s == 0)
    461             return insn->src(1).mod.neg() ? false : true;
    462          break;
    463       case OP_SHLADD:
    464          if (s == 1)
    465             return false;
    466          if (insn->src(s ? 0 : 2).mod.neg())
    467             return false;
    468          break;
    469       default:
    470          return false;
    471       }
    472    }
    473    if (s >= opInfo[insn->op].srcNr || s >= 3)
    474       return false;
    475    return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
    476 }
    477 
    478 bool
    479 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
    480 {
    481    if (insn->getPredicate())
    482       return false;
    483    return opInfo[insn->op].predicate;
    484 }
    485 
    486 bool
    487 TargetNVC0::isSatSupported(const Instruction *insn) const
    488 {
    489    if (insn->op == OP_CVT)
    490       return true;
    491    if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
    492       return false;
    493 
    494    if (insn->dType == TYPE_U32)
    495       return (insn->op == OP_ADD) || (insn->op == OP_MAD);
    496 
    497    // add f32 LIMM cannot saturate
    498    if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
    499       if (insn->getSrc(1)->asImm() &&
    500           insn->getSrc(1)->reg.data.u32 & 0xfff)
    501          return false;
    502    }
    503 
    504    return insn->dType == TYPE_F32;
    505 }
    506 
    507 bool
    508 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
    509 {
    510    if (op != OP_MUL)
    511       return false;
    512    f = fabsf(f);
    513    e = static_cast<int>(log2f(f));
    514    if (e < -3 || e > 3)
    515       return false;
    516    return f == exp2f(static_cast<float>(e));
    517 }
    518 
    519 // TODO: better values
    520 // this could be more precise, e.g. depending on the issue-to-read/write delay
    521 // of the depending instruction, but it's good enough
    522 int TargetNVC0::getLatency(const Instruction *i) const
    523 {
    524    if (chipset >= 0xe4) {
    525       if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
    526          return 20;
    527       switch (i->op) {
    528       case OP_LINTERP:
    529       case OP_PINTERP:
    530          return 15;
    531       case OP_LOAD:
    532          if (i->src(0).getFile() == FILE_MEMORY_CONST)
    533             return 9;
    534          // fall through
    535       case OP_VFETCH:
    536          return 24;
    537       default:
    538          if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
    539             return 17;
    540          if (i->op == OP_MUL && i->dType != TYPE_F32)
    541             return 15;
    542          return 9;
    543       }
    544    } else {
    545       if (i->op == OP_LOAD) {
    546          if (i->cache == CACHE_CV)
    547             return 700;
    548          return 48;
    549       }
    550       return 24;
    551    }
    552    return 32;
    553 }
    554 
    555 // These are "inverse" throughput values, i.e. the number of cycles required
    556 // to issue a specific instruction for a full warp (32 threads).
    557 //
    558 // Assuming we have more than 1 warp in flight, a higher issue latency results
    559 // in a lower result latency since the MP will have spent more time with other
    560 // warps.
    561 // This also helps to determine the number of cycles between instructions in
    562 // a single warp.
    563 //
    564 int TargetNVC0::getThroughput(const Instruction *i) const
    565 {
    566    // TODO: better values
    567    if (i->dType == TYPE_F32) {
    568       switch (i->op) {
    569       case OP_ADD:
    570       case OP_MUL:
    571       case OP_MAD:
    572       case OP_FMA:
    573          return 1;
    574       case OP_CVT:
    575       case OP_CEIL:
    576       case OP_FLOOR:
    577       case OP_TRUNC:
    578       case OP_SET:
    579       case OP_SLCT:
    580       case OP_MIN:
    581       case OP_MAX:
    582          return 2;
    583       case OP_RCP:
    584       case OP_RSQ:
    585       case OP_LG2:
    586       case OP_SIN:
    587       case OP_COS:
    588       case OP_PRESIN:
    589       case OP_PREEX2:
    590       default:
    591          return 8;
    592       }
    593    } else
    594    if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
    595       switch (i->op) {
    596       case OP_ADD:
    597       case OP_AND:
    598       case OP_OR:
    599       case OP_XOR:
    600       case OP_NOT:
    601          return 1;
    602       case OP_MUL:
    603       case OP_MAD:
    604       case OP_CVT:
    605       case OP_SET:
    606       case OP_SLCT:
    607       case OP_SHL:
    608       case OP_SHR:
    609       case OP_NEG:
    610       case OP_ABS:
    611       case OP_MIN:
    612       case OP_MAX:
    613       default:
    614          return 2;
    615       }
    616    } else
    617    if (i->dType == TYPE_F64) {
    618       return 2;
    619    } else {
    620       return 1;
    621    }
    622 }
    623 
    624 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
    625 {
    626    const OpClass clA = operationClass[a->op];
    627    const OpClass clB = operationClass[b->op];
    628 
    629    if (getChipset() >= 0xe4) {
    630       // not texturing
    631       // not if the 2nd instruction isn't necessarily executed
    632       if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
    633          return false;
    634 
    635       // Check that a and b don't write to the same sources, nor that b reads
    636       // anything that a writes.
    637       if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
    638          return false;
    639 
    640       // anything with MOV
    641       if (a->op == OP_MOV || b->op == OP_MOV)
    642          return true;
    643       if (clA == clB) {
    644          switch (clA) {
    645          // there might be more
    646          case OPCLASS_COMPARE:
    647             if ((a->op == OP_MIN || a->op == OP_MAX) &&
    648                 (b->op == OP_MIN || b->op == OP_MAX))
    649                break;
    650             return false;
    651          case OPCLASS_ARITH:
    652             break;
    653          default:
    654             return false;
    655          }
    656          // only F32 arith or integer additions
    657          return (a->dType == TYPE_F32 || a->op == OP_ADD ||
    658                  b->dType == TYPE_F32 || b->op == OP_ADD);
    659       }
    660       // nothing with TEXBAR
    661       if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
    662          return false;
    663       // no loads and stores accessing the same space
    664       if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
    665           (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
    666          if (a->src(0).getFile() == b->src(0).getFile())
    667             return false;
    668       // no > 32-bit ops
    669       if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
    670           typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
    671          return false;
    672       return true;
    673    } else {
    674       return false; // info not needed (yet)
    675    }
    676 }
    677 
    678 } // namespace nv50_ir
    679