Home | History | Annotate | Download | only in openbsd-compat
      1 /*	$OpenBSD: md5.c,v 1.9 2014/01/08 06:14:57 tedu Exp $	*/
      2 
      3 /*
      4  * This code implements the MD5 message-digest algorithm.
      5  * The algorithm is due to Ron Rivest.	This code was
      6  * written by Colin Plumb in 1993, no copyright is claimed.
      7  * This code is in the public domain; do with it what you wish.
      8  *
      9  * Equivalent code is available from RSA Data Security, Inc.
     10  * This code has been tested against that, and is equivalent,
     11  * except that you don't need to include two pages of legalese
     12  * with every copy.
     13  *
     14  * To compute the message digest of a chunk of bytes, declare an
     15  * MD5Context structure, pass it to MD5Init, call MD5Update as
     16  * needed on buffers full of bytes, and then call MD5Final, which
     17  * will fill a supplied 16-byte array with the digest.
     18  */
     19 
     20 #include "includes.h"
     21 
     22 #ifndef WITH_OPENSSL
     23 
     24 #include <sys/types.h>
     25 #include <string.h>
     26 #include "md5.h"
     27 
     28 #define PUT_64BIT_LE(cp, value) do {					\
     29 	(cp)[7] = (value) >> 56;					\
     30 	(cp)[6] = (value) >> 48;					\
     31 	(cp)[5] = (value) >> 40;					\
     32 	(cp)[4] = (value) >> 32;					\
     33 	(cp)[3] = (value) >> 24;					\
     34 	(cp)[2] = (value) >> 16;					\
     35 	(cp)[1] = (value) >> 8;						\
     36 	(cp)[0] = (value); } while (0)
     37 
     38 #define PUT_32BIT_LE(cp, value) do {					\
     39 	(cp)[3] = (value) >> 24;					\
     40 	(cp)[2] = (value) >> 16;					\
     41 	(cp)[1] = (value) >> 8;						\
     42 	(cp)[0] = (value); } while (0)
     43 
     44 static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
     45 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     46 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     47 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     48 };
     49 
     50 /*
     51  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     52  * initialization constants.
     53  */
     54 void
     55 MD5Init(MD5_CTX *ctx)
     56 {
     57 	ctx->count = 0;
     58 	ctx->state[0] = 0x67452301;
     59 	ctx->state[1] = 0xefcdab89;
     60 	ctx->state[2] = 0x98badcfe;
     61 	ctx->state[3] = 0x10325476;
     62 }
     63 
     64 /*
     65  * Update context to reflect the concatenation of another buffer full
     66  * of bytes.
     67  */
     68 void
     69 MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
     70 {
     71 	size_t have, need;
     72 
     73 	/* Check how many bytes we already have and how many more we need. */
     74 	have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
     75 	need = MD5_BLOCK_LENGTH - have;
     76 
     77 	/* Update bitcount */
     78 	ctx->count += (u_int64_t)len << 3;
     79 
     80 	if (len >= need) {
     81 		if (have != 0) {
     82 			memcpy(ctx->buffer + have, input, need);
     83 			MD5Transform(ctx->state, ctx->buffer);
     84 			input += need;
     85 			len -= need;
     86 			have = 0;
     87 		}
     88 
     89 		/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
     90 		while (len >= MD5_BLOCK_LENGTH) {
     91 			MD5Transform(ctx->state, input);
     92 			input += MD5_BLOCK_LENGTH;
     93 			len -= MD5_BLOCK_LENGTH;
     94 		}
     95 	}
     96 
     97 	/* Handle any remaining bytes of data. */
     98 	if (len != 0)
     99 		memcpy(ctx->buffer + have, input, len);
    100 }
    101 
    102 /*
    103  * Pad pad to 64-byte boundary with the bit pattern
    104  * 1 0* (64-bit count of bits processed, MSB-first)
    105  */
    106 void
    107 MD5Pad(MD5_CTX *ctx)
    108 {
    109 	u_int8_t count[8];
    110 	size_t padlen;
    111 
    112 	/* Convert count to 8 bytes in little endian order. */
    113 	PUT_64BIT_LE(count, ctx->count);
    114 
    115 	/* Pad out to 56 mod 64. */
    116 	padlen = MD5_BLOCK_LENGTH -
    117 	    ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
    118 	if (padlen < 1 + 8)
    119 		padlen += MD5_BLOCK_LENGTH;
    120 	MD5Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
    121 	MD5Update(ctx, count, 8);
    122 }
    123 
    124 /*
    125  * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
    126  */
    127 void
    128 MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
    129 {
    130 	int i;
    131 
    132 	MD5Pad(ctx);
    133 	for (i = 0; i < 4; i++)
    134 		PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
    135 	memset(ctx, 0, sizeof(*ctx));
    136 }
    137 
    138 
    139 /* The four core functions - F1 is optimized somewhat */
    140 
    141 /* #define F1(x, y, z) (x & y | ~x & z) */
    142 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    143 #define F2(x, y, z) F1(z, x, y)
    144 #define F3(x, y, z) (x ^ y ^ z)
    145 #define F4(x, y, z) (y ^ (x | ~z))
    146 
    147 /* This is the central step in the MD5 algorithm. */
    148 #define MD5STEP(f, w, x, y, z, data, s) \
    149 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
    150 
    151 /*
    152  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    153  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    154  * the data and converts bytes into longwords for this routine.
    155  */
    156 void
    157 MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
    158 {
    159 	u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
    160 
    161 #if BYTE_ORDER == LITTLE_ENDIAN
    162 	memcpy(in, block, sizeof(in));
    163 #else
    164 	for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
    165 		in[a] = (u_int32_t)(
    166 		    (u_int32_t)(block[a * 4 + 0]) |
    167 		    (u_int32_t)(block[a * 4 + 1]) <<  8 |
    168 		    (u_int32_t)(block[a * 4 + 2]) << 16 |
    169 		    (u_int32_t)(block[a * 4 + 3]) << 24);
    170 	}
    171 #endif
    172 
    173 	a = state[0];
    174 	b = state[1];
    175 	c = state[2];
    176 	d = state[3];
    177 
    178 	MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478,  7);
    179 	MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
    180 	MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
    181 	MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
    182 	MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf,  7);
    183 	MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
    184 	MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
    185 	MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
    186 	MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8,  7);
    187 	MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
    188 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    189 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    190 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122,  7);
    191 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    192 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    193 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    194 
    195 	MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562,  5);
    196 	MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340,  9);
    197 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    198 	MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
    199 	MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d,  5);
    200 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453,  9);
    201 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    202 	MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
    203 	MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6,  5);
    204 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6,  9);
    205 	MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
    206 	MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
    207 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905,  5);
    208 	MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8,  9);
    209 	MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
    210 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    211 
    212 	MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942,  4);
    213 	MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
    214 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    215 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    216 	MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44,  4);
    217 	MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
    218 	MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
    219 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    220 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6,  4);
    221 	MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
    222 	MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
    223 	MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
    224 	MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039,  4);
    225 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    226 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    227 	MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
    228 
    229 	MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244,  6);
    230 	MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
    231 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    232 	MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
    233 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3,  6);
    234 	MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
    235 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    236 	MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
    237 	MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f,  6);
    238 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    239 	MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
    240 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    241 	MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82,  6);
    242 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    243 	MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
    244 	MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
    245 
    246 	state[0] += a;
    247 	state[1] += b;
    248 	state[2] += c;
    249 	state[3] += d;
    250 }
    251 #endif /* !WITH_OPENSSL */
    252