Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
      2 /* -----------------------------------------------------------------------
      3  *
      4  * umac.c -- C Implementation UMAC Message Authentication
      5  *
      6  * Version 0.93b of rfc4418.txt -- 2006 July 18
      7  *
      8  * For a full description of UMAC message authentication see the UMAC
      9  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
     10  * Please report bugs and suggestions to the UMAC webpage.
     11  *
     12  * Copyright (c) 1999-2006 Ted Krovetz
     13  *
     14  * Permission to use, copy, modify, and distribute this software and
     15  * its documentation for any purpose and with or without fee, is hereby
     16  * granted provided that the above copyright notice appears in all copies
     17  * and in supporting documentation, and that the name of the copyright
     18  * holder not be used in advertising or publicity pertaining to
     19  * distribution of the software without specific, written prior permission.
     20  *
     21  * Comments should be directed to Ted Krovetz (tdk (at) acm.org)
     22  *
     23  * ---------------------------------------------------------------------- */
     24 
     25  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
     26   *
     27   * 1) This version does not work properly on messages larger than 16MB
     28   *
     29   * 2) If you set the switch to use SSE2, then all data must be 16-byte
     30   *    aligned
     31   *
     32   * 3) When calling the function umac(), it is assumed that msg is in
     33   * a writable buffer of length divisible by 32 bytes. The message itself
     34   * does not have to fill the entire buffer, but bytes beyond msg may be
     35   * zeroed.
     36   *
     37   * 4) Three free AES implementations are supported by this implementation of
     38   * UMAC. Paulo Barreto's version is in the public domain and can be found
     39   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
     40   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
     41   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
     42   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
     43   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
     44   * the third.
     45   *
     46   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
     47   * produced under gcc with optimizations set -O3 or higher. Dunno why.
     48   *
     49   /////////////////////////////////////////////////////////////////////// */
     50 
     51 /* ---------------------------------------------------------------------- */
     52 /* --- User Switches ---------------------------------------------------- */
     53 /* ---------------------------------------------------------------------- */
     54 
     55 #ifndef UMAC_OUTPUT_LEN
     56 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
     57 #endif
     58 
     59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
     60     UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
     61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
     62 #endif
     63 
     64 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
     65 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
     66 /* #define SSE2                0  Is SSE2 is available?                   */
     67 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
     68 /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
     69 
     70 /* ---------------------------------------------------------------------- */
     71 /* -- Global Includes --------------------------------------------------- */
     72 /* ---------------------------------------------------------------------- */
     73 
     74 #include "includes.h"
     75 #include <sys/types.h>
     76 #include <string.h>
     77 #include <stdio.h>
     78 #include <stdlib.h>
     79 #include <stddef.h>
     80 
     81 #include "xmalloc.h"
     82 #include "umac.h"
     83 #include "misc.h"
     84 
     85 /* ---------------------------------------------------------------------- */
     86 /* --- Primitive Data Types ---                                           */
     87 /* ---------------------------------------------------------------------- */
     88 
     89 /* The following assumptions may need change on your system */
     90 typedef u_int8_t	UINT8;  /* 1 byte   */
     91 typedef u_int16_t	UINT16; /* 2 byte   */
     92 typedef u_int32_t	UINT32; /* 4 byte   */
     93 typedef u_int64_t	UINT64; /* 8 bytes  */
     94 typedef unsigned int	UWORD;  /* Register */
     95 
     96 /* ---------------------------------------------------------------------- */
     97 /* --- Constants -------------------------------------------------------- */
     98 /* ---------------------------------------------------------------------- */
     99 
    100 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
    101 
    102 /* Message "words" are read from memory in an endian-specific manner.     */
    103 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
    104 /* be set true if the host computer is little-endian.                     */
    105 
    106 #if BYTE_ORDER == LITTLE_ENDIAN
    107 #define __LITTLE_ENDIAN__ 1
    108 #else
    109 #define __LITTLE_ENDIAN__ 0
    110 #endif
    111 
    112 /* ---------------------------------------------------------------------- */
    113 /* ---------------------------------------------------------------------- */
    114 /* ----- Architecture Specific ------------------------------------------ */
    115 /* ---------------------------------------------------------------------- */
    116 /* ---------------------------------------------------------------------- */
    117 
    118 
    119 /* ---------------------------------------------------------------------- */
    120 /* ---------------------------------------------------------------------- */
    121 /* ----- Primitive Routines --------------------------------------------- */
    122 /* ---------------------------------------------------------------------- */
    123 /* ---------------------------------------------------------------------- */
    124 
    125 
    126 /* ---------------------------------------------------------------------- */
    127 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
    128 /* ---------------------------------------------------------------------- */
    129 
    130 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
    131 
    132 /* ---------------------------------------------------------------------- */
    133 /* --- Endian Conversion --- Forcing assembly on some platforms           */
    134 /* ---------------------------------------------------------------------- */
    135 
    136 #if (__LITTLE_ENDIAN__)
    137 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
    138 #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
    139 #else
    140 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
    141 #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
    142 #endif
    143 
    144 #define LOAD_UINT32_LITTLE(p)		(get_u32_le(p))
    145 #define STORE_UINT32_BIG(p,v)		put_u32(p, v)
    146 
    147 /* ---------------------------------------------------------------------- */
    148 /* ---------------------------------------------------------------------- */
    149 /* ----- Begin KDF & PDF Section ---------------------------------------- */
    150 /* ---------------------------------------------------------------------- */
    151 /* ---------------------------------------------------------------------- */
    152 
    153 /* UMAC uses AES with 16 byte block and key lengths */
    154 #define AES_BLOCK_LEN  16
    155 
    156 /* OpenSSL's AES */
    157 #ifdef WITH_OPENSSL
    158 #include "openbsd-compat/openssl-compat.h"
    159 #ifndef USE_BUILTIN_RIJNDAEL
    160 # include <openssl/aes.h>
    161 #endif
    162 typedef AES_KEY aes_int_key[1];
    163 #define aes_encryption(in,out,int_key)                  \
    164   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
    165 #define aes_key_setup(key,int_key)                      \
    166   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
    167 #else
    168 #include "rijndael.h"
    169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
    170 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
    171 #define aes_encryption(in,out,int_key) \
    172   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
    173 #define aes_key_setup(key,int_key) \
    174   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
    175   UMAC_KEY_LEN*8)
    176 #endif
    177 
    178 /* The user-supplied UMAC key is stretched using AES in a counter
    179  * mode to supply all random bits needed by UMAC. The kdf function takes
    180  * an AES internal key representation 'key' and writes a stream of
    181  * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
    182  * 'ndx' causes a distinct byte stream.
    183  */
    184 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
    185 {
    186     UINT8 in_buf[AES_BLOCK_LEN] = {0};
    187     UINT8 out_buf[AES_BLOCK_LEN];
    188     UINT8 *dst_buf = (UINT8 *)bufp;
    189     int i;
    190 
    191     /* Setup the initial value */
    192     in_buf[AES_BLOCK_LEN-9] = ndx;
    193     in_buf[AES_BLOCK_LEN-1] = i = 1;
    194 
    195     while (nbytes >= AES_BLOCK_LEN) {
    196         aes_encryption(in_buf, out_buf, key);
    197         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
    198         in_buf[AES_BLOCK_LEN-1] = ++i;
    199         nbytes -= AES_BLOCK_LEN;
    200         dst_buf += AES_BLOCK_LEN;
    201     }
    202     if (nbytes) {
    203         aes_encryption(in_buf, out_buf, key);
    204         memcpy(dst_buf,out_buf,nbytes);
    205     }
    206 }
    207 
    208 /* The final UHASH result is XOR'd with the output of a pseudorandom
    209  * function. Here, we use AES to generate random output and
    210  * xor the appropriate bytes depending on the last bits of nonce.
    211  * This scheme is optimized for sequential, increasing big-endian nonces.
    212  */
    213 
    214 typedef struct {
    215     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
    216     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
    217     aes_int_key prf_key;         /* Expanded AES key for PDF          */
    218 } pdf_ctx;
    219 
    220 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
    221 {
    222     UINT8 buf[UMAC_KEY_LEN];
    223 
    224     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
    225     aes_key_setup(buf, pc->prf_key);
    226 
    227     /* Initialize pdf and cache */
    228     memset(pc->nonce, 0, sizeof(pc->nonce));
    229     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
    230 }
    231 
    232 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
    233 {
    234     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
    235      * of the AES output. If last time around we returned the ndx-1st
    236      * element, then we may have the result in the cache already.
    237      */
    238 
    239 #if (UMAC_OUTPUT_LEN == 4)
    240 #define LOW_BIT_MASK 3
    241 #elif (UMAC_OUTPUT_LEN == 8)
    242 #define LOW_BIT_MASK 1
    243 #elif (UMAC_OUTPUT_LEN > 8)
    244 #define LOW_BIT_MASK 0
    245 #endif
    246     union {
    247         UINT8 tmp_nonce_lo[4];
    248         UINT32 align;
    249     } t;
    250 #if LOW_BIT_MASK != 0
    251     int ndx = nonce[7] & LOW_BIT_MASK;
    252 #endif
    253     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
    254     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
    255 
    256     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
    257          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
    258     {
    259         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
    260         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
    261         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
    262     }
    263 
    264 #if (UMAC_OUTPUT_LEN == 4)
    265     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
    266 #elif (UMAC_OUTPUT_LEN == 8)
    267     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
    268 #elif (UMAC_OUTPUT_LEN == 12)
    269     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
    270     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
    271 #elif (UMAC_OUTPUT_LEN == 16)
    272     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
    273     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
    274 #endif
    275 }
    276 
    277 /* ---------------------------------------------------------------------- */
    278 /* ---------------------------------------------------------------------- */
    279 /* ----- Begin NH Hash Section ------------------------------------------ */
    280 /* ---------------------------------------------------------------------- */
    281 /* ---------------------------------------------------------------------- */
    282 
    283 /* The NH-based hash functions used in UMAC are described in the UMAC paper
    284  * and specification, both of which can be found at the UMAC website.
    285  * The interface to this implementation has two
    286  * versions, one expects the entire message being hashed to be passed
    287  * in a single buffer and returns the hash result immediately. The second
    288  * allows the message to be passed in a sequence of buffers. In the
    289  * muliple-buffer interface, the client calls the routine nh_update() as
    290  * many times as necessary. When there is no more data to be fed to the
    291  * hash, the client calls nh_final() which calculates the hash output.
    292  * Before beginning another hash calculation the nh_reset() routine
    293  * must be called. The single-buffer routine, nh(), is equivalent to
    294  * the sequence of calls nh_update() and nh_final(); however it is
    295  * optimized and should be prefered whenever the multiple-buffer interface
    296  * is not necessary. When using either interface, it is the client's
    297  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
    298  *
    299  * The routine nh_init() initializes the nh_ctx data structure and
    300  * must be called once, before any other PDF routine.
    301  */
    302 
    303  /* The "nh_aux" routines do the actual NH hashing work. They
    304   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
    305   * produce output for all STREAMS NH iterations in one call,
    306   * allowing the parallel implementation of the streams.
    307   */
    308 
    309 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
    310 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
    311 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
    312 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
    313 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
    314 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
    315 
    316 typedef struct {
    317     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
    318     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
    319     int next_data_empty;    /* Bookeeping variable for data buffer.       */
    320     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
    321     UINT64 state[STREAMS];               /* on-line state     */
    322 } nh_ctx;
    323 
    324 
    325 #if (UMAC_OUTPUT_LEN == 4)
    326 
    327 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
    328 /* NH hashing primitive. Previous (partial) hash result is loaded and
    329 * then stored via hp pointer. The length of the data pointed at by "dp",
    330 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
    331 * is expected to be endian compensated in memory at key setup.
    332 */
    333 {
    334     UINT64 h;
    335     UWORD c = dlen / 32;
    336     UINT32 *k = (UINT32 *)kp;
    337     const UINT32 *d = (const UINT32 *)dp;
    338     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    339     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
    340 
    341     h = *((UINT64 *)hp);
    342     do {
    343         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
    344         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
    345         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
    346         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
    347         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    348         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    349         h += MUL64((k0 + d0), (k4 + d4));
    350         h += MUL64((k1 + d1), (k5 + d5));
    351         h += MUL64((k2 + d2), (k6 + d6));
    352         h += MUL64((k3 + d3), (k7 + d7));
    353 
    354         d += 8;
    355         k += 8;
    356     } while (--c);
    357   *((UINT64 *)hp) = h;
    358 }
    359 
    360 #elif (UMAC_OUTPUT_LEN == 8)
    361 
    362 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
    363 /* Same as previous nh_aux, but two streams are handled in one pass,
    364  * reading and writing 16 bytes of hash-state per call.
    365  */
    366 {
    367   UINT64 h1,h2;
    368   UWORD c = dlen / 32;
    369   UINT32 *k = (UINT32 *)kp;
    370   const UINT32 *d = (const UINT32 *)dp;
    371   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    372   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
    373         k8,k9,k10,k11;
    374 
    375   h1 = *((UINT64 *)hp);
    376   h2 = *((UINT64 *)hp + 1);
    377   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    378   do {
    379     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
    380     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
    381     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
    382     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
    383     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    384     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
    385 
    386     h1 += MUL64((k0 + d0), (k4 + d4));
    387     h2 += MUL64((k4 + d0), (k8 + d4));
    388 
    389     h1 += MUL64((k1 + d1), (k5 + d5));
    390     h2 += MUL64((k5 + d1), (k9 + d5));
    391 
    392     h1 += MUL64((k2 + d2), (k6 + d6));
    393     h2 += MUL64((k6 + d2), (k10 + d6));
    394 
    395     h1 += MUL64((k3 + d3), (k7 + d7));
    396     h2 += MUL64((k7 + d3), (k11 + d7));
    397 
    398     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
    399 
    400     d += 8;
    401     k += 8;
    402   } while (--c);
    403   ((UINT64 *)hp)[0] = h1;
    404   ((UINT64 *)hp)[1] = h2;
    405 }
    406 
    407 #elif (UMAC_OUTPUT_LEN == 12)
    408 
    409 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
    410 /* Same as previous nh_aux, but two streams are handled in one pass,
    411  * reading and writing 24 bytes of hash-state per call.
    412 */
    413 {
    414     UINT64 h1,h2,h3;
    415     UWORD c = dlen / 32;
    416     UINT32 *k = (UINT32 *)kp;
    417     const UINT32 *d = (const UINT32 *)dp;
    418     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    419     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
    420         k8,k9,k10,k11,k12,k13,k14,k15;
    421 
    422     h1 = *((UINT64 *)hp);
    423     h2 = *((UINT64 *)hp + 1);
    424     h3 = *((UINT64 *)hp + 2);
    425     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    426     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    427     do {
    428         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
    429         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
    430         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
    431         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
    432         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
    433         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
    434 
    435         h1 += MUL64((k0 + d0), (k4 + d4));
    436         h2 += MUL64((k4 + d0), (k8 + d4));
    437         h3 += MUL64((k8 + d0), (k12 + d4));
    438 
    439         h1 += MUL64((k1 + d1), (k5 + d5));
    440         h2 += MUL64((k5 + d1), (k9 + d5));
    441         h3 += MUL64((k9 + d1), (k13 + d5));
    442 
    443         h1 += MUL64((k2 + d2), (k6 + d6));
    444         h2 += MUL64((k6 + d2), (k10 + d6));
    445         h3 += MUL64((k10 + d2), (k14 + d6));
    446 
    447         h1 += MUL64((k3 + d3), (k7 + d7));
    448         h2 += MUL64((k7 + d3), (k11 + d7));
    449         h3 += MUL64((k11 + d3), (k15 + d7));
    450 
    451         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
    452         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
    453 
    454         d += 8;
    455         k += 8;
    456     } while (--c);
    457     ((UINT64 *)hp)[0] = h1;
    458     ((UINT64 *)hp)[1] = h2;
    459     ((UINT64 *)hp)[2] = h3;
    460 }
    461 
    462 #elif (UMAC_OUTPUT_LEN == 16)
    463 
    464 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
    465 /* Same as previous nh_aux, but two streams are handled in one pass,
    466  * reading and writing 24 bytes of hash-state per call.
    467 */
    468 {
    469     UINT64 h1,h2,h3,h4;
    470     UWORD c = dlen / 32;
    471     UINT32 *k = (UINT32 *)kp;
    472     const UINT32 *d = (const UINT32 *)dp;
    473     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    474     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
    475         k8,k9,k10,k11,k12,k13,k14,k15,
    476         k16,k17,k18,k19;
    477 
    478     h1 = *((UINT64 *)hp);
    479     h2 = *((UINT64 *)hp + 1);
    480     h3 = *((UINT64 *)hp + 2);
    481     h4 = *((UINT64 *)hp + 3);
    482     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    483     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    484     do {
    485         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
    486         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
    487         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
    488         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
    489         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
    490         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
    491         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
    492 
    493         h1 += MUL64((k0 + d0), (k4 + d4));
    494         h2 += MUL64((k4 + d0), (k8 + d4));
    495         h3 += MUL64((k8 + d0), (k12 + d4));
    496         h4 += MUL64((k12 + d0), (k16 + d4));
    497 
    498         h1 += MUL64((k1 + d1), (k5 + d5));
    499         h2 += MUL64((k5 + d1), (k9 + d5));
    500         h3 += MUL64((k9 + d1), (k13 + d5));
    501         h4 += MUL64((k13 + d1), (k17 + d5));
    502 
    503         h1 += MUL64((k2 + d2), (k6 + d6));
    504         h2 += MUL64((k6 + d2), (k10 + d6));
    505         h3 += MUL64((k10 + d2), (k14 + d6));
    506         h4 += MUL64((k14 + d2), (k18 + d6));
    507 
    508         h1 += MUL64((k3 + d3), (k7 + d7));
    509         h2 += MUL64((k7 + d3), (k11 + d7));
    510         h3 += MUL64((k11 + d3), (k15 + d7));
    511         h4 += MUL64((k15 + d3), (k19 + d7));
    512 
    513         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
    514         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
    515         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
    516 
    517         d += 8;
    518         k += 8;
    519     } while (--c);
    520     ((UINT64 *)hp)[0] = h1;
    521     ((UINT64 *)hp)[1] = h2;
    522     ((UINT64 *)hp)[2] = h3;
    523     ((UINT64 *)hp)[3] = h4;
    524 }
    525 
    526 /* ---------------------------------------------------------------------- */
    527 #endif  /* UMAC_OUTPUT_LENGTH */
    528 /* ---------------------------------------------------------------------- */
    529 
    530 
    531 /* ---------------------------------------------------------------------- */
    532 
    533 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
    534 /* This function is a wrapper for the primitive NH hash functions. It takes
    535  * as argument "hc" the current hash context and a buffer which must be a
    536  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
    537  * appropriately according to how much message has been hashed already.
    538  */
    539 {
    540     UINT8 *key;
    541 
    542     key = hc->nh_key + hc->bytes_hashed;
    543     nh_aux(key, buf, hc->state, nbytes);
    544 }
    545 
    546 /* ---------------------------------------------------------------------- */
    547 
    548 #if (__LITTLE_ENDIAN__)
    549 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
    550 /* We endian convert the keys on little-endian computers to               */
    551 /* compensate for the lack of big-endian memory reads during hashing.     */
    552 {
    553     UWORD iters = num_bytes / bpw;
    554     if (bpw == 4) {
    555         UINT32 *p = (UINT32 *)buf;
    556         do {
    557             *p = LOAD_UINT32_REVERSED(p);
    558             p++;
    559         } while (--iters);
    560     } else if (bpw == 8) {
    561         UINT32 *p = (UINT32 *)buf;
    562         UINT32 t;
    563         do {
    564             t = LOAD_UINT32_REVERSED(p+1);
    565             p[1] = LOAD_UINT32_REVERSED(p);
    566             p[0] = t;
    567             p += 2;
    568         } while (--iters);
    569     }
    570 }
    571 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
    572 #else
    573 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
    574 #endif
    575 
    576 /* ---------------------------------------------------------------------- */
    577 
    578 static void nh_reset(nh_ctx *hc)
    579 /* Reset nh_ctx to ready for hashing of new data */
    580 {
    581     hc->bytes_hashed = 0;
    582     hc->next_data_empty = 0;
    583     hc->state[0] = 0;
    584 #if (UMAC_OUTPUT_LEN >= 8)
    585     hc->state[1] = 0;
    586 #endif
    587 #if (UMAC_OUTPUT_LEN >= 12)
    588     hc->state[2] = 0;
    589 #endif
    590 #if (UMAC_OUTPUT_LEN == 16)
    591     hc->state[3] = 0;
    592 #endif
    593 
    594 }
    595 
    596 /* ---------------------------------------------------------------------- */
    597 
    598 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
    599 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
    600 {
    601     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
    602     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
    603     nh_reset(hc);
    604 }
    605 
    606 /* ---------------------------------------------------------------------- */
    607 
    608 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
    609 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
    610 /* even multiple of HASH_BUF_BYTES.                                       */
    611 {
    612     UINT32 i,j;
    613 
    614     j = hc->next_data_empty;
    615     if ((j + nbytes) >= HASH_BUF_BYTES) {
    616         if (j) {
    617             i = HASH_BUF_BYTES - j;
    618             memcpy(hc->data+j, buf, i);
    619             nh_transform(hc,hc->data,HASH_BUF_BYTES);
    620             nbytes -= i;
    621             buf += i;
    622             hc->bytes_hashed += HASH_BUF_BYTES;
    623         }
    624         if (nbytes >= HASH_BUF_BYTES) {
    625             i = nbytes & ~(HASH_BUF_BYTES - 1);
    626             nh_transform(hc, buf, i);
    627             nbytes -= i;
    628             buf += i;
    629             hc->bytes_hashed += i;
    630         }
    631         j = 0;
    632     }
    633     memcpy(hc->data + j, buf, nbytes);
    634     hc->next_data_empty = j + nbytes;
    635 }
    636 
    637 /* ---------------------------------------------------------------------- */
    638 
    639 static void zero_pad(UINT8 *p, int nbytes)
    640 {
    641 /* Write "nbytes" of zeroes, beginning at "p" */
    642     if (nbytes >= (int)sizeof(UWORD)) {
    643         while ((ptrdiff_t)p % sizeof(UWORD)) {
    644             *p = 0;
    645             nbytes--;
    646             p++;
    647         }
    648         while (nbytes >= (int)sizeof(UWORD)) {
    649             *(UWORD *)p = 0;
    650             nbytes -= sizeof(UWORD);
    651             p += sizeof(UWORD);
    652         }
    653     }
    654     while (nbytes) {
    655         *p = 0;
    656         nbytes--;
    657         p++;
    658     }
    659 }
    660 
    661 /* ---------------------------------------------------------------------- */
    662 
    663 static void nh_final(nh_ctx *hc, UINT8 *result)
    664 /* After passing some number of data buffers to nh_update() for integration
    665  * into an NH context, nh_final is called to produce a hash result. If any
    666  * bytes are in the buffer hc->data, incorporate them into the
    667  * NH context. Finally, add into the NH accumulation "state" the total number
    668  * of bits hashed. The resulting numbers are written to the buffer "result".
    669  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
    670  */
    671 {
    672     int nh_len, nbits;
    673 
    674     if (hc->next_data_empty != 0) {
    675         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
    676                                                 ~(L1_PAD_BOUNDARY - 1));
    677         zero_pad(hc->data + hc->next_data_empty,
    678                                           nh_len - hc->next_data_empty);
    679         nh_transform(hc, hc->data, nh_len);
    680         hc->bytes_hashed += hc->next_data_empty;
    681     } else if (hc->bytes_hashed == 0) {
    682     	nh_len = L1_PAD_BOUNDARY;
    683         zero_pad(hc->data, L1_PAD_BOUNDARY);
    684         nh_transform(hc, hc->data, nh_len);
    685     }
    686 
    687     nbits = (hc->bytes_hashed << 3);
    688     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
    689 #if (UMAC_OUTPUT_LEN >= 8)
    690     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
    691 #endif
    692 #if (UMAC_OUTPUT_LEN >= 12)
    693     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
    694 #endif
    695 #if (UMAC_OUTPUT_LEN == 16)
    696     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
    697 #endif
    698     nh_reset(hc);
    699 }
    700 
    701 /* ---------------------------------------------------------------------- */
    702 
    703 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
    704                UINT32 unpadded_len, UINT8 *result)
    705 /* All-in-one nh_update() and nh_final() equivalent.
    706  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
    707  * well aligned
    708  */
    709 {
    710     UINT32 nbits;
    711 
    712     /* Initialize the hash state */
    713     nbits = (unpadded_len << 3);
    714 
    715     ((UINT64 *)result)[0] = nbits;
    716 #if (UMAC_OUTPUT_LEN >= 8)
    717     ((UINT64 *)result)[1] = nbits;
    718 #endif
    719 #if (UMAC_OUTPUT_LEN >= 12)
    720     ((UINT64 *)result)[2] = nbits;
    721 #endif
    722 #if (UMAC_OUTPUT_LEN == 16)
    723     ((UINT64 *)result)[3] = nbits;
    724 #endif
    725 
    726     nh_aux(hc->nh_key, buf, result, padded_len);
    727 }
    728 
    729 /* ---------------------------------------------------------------------- */
    730 /* ---------------------------------------------------------------------- */
    731 /* ----- Begin UHASH Section -------------------------------------------- */
    732 /* ---------------------------------------------------------------------- */
    733 /* ---------------------------------------------------------------------- */
    734 
    735 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
    736  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
    737  * unless the initial data to be hashed is short. After the polynomial-
    738  * layer, an inner-product hash is used to produce the final UHASH output.
    739  *
    740  * UHASH provides two interfaces, one all-at-once and another where data
    741  * buffers are presented sequentially. In the sequential interface, the
    742  * UHASH client calls the routine uhash_update() as many times as necessary.
    743  * When there is no more data to be fed to UHASH, the client calls
    744  * uhash_final() which
    745  * calculates the UHASH output. Before beginning another UHASH calculation
    746  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
    747  * uhash(), is equivalent to the sequence of calls uhash_update() and
    748  * uhash_final(); however it is optimized and should be
    749  * used whenever the sequential interface is not necessary.
    750  *
    751  * The routine uhash_init() initializes the uhash_ctx data structure and
    752  * must be called once, before any other UHASH routine.
    753  */
    754 
    755 /* ---------------------------------------------------------------------- */
    756 /* ----- Constants and uhash_ctx ---------------------------------------- */
    757 /* ---------------------------------------------------------------------- */
    758 
    759 /* ---------------------------------------------------------------------- */
    760 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
    761 /* ---------------------------------------------------------------------- */
    762 
    763 /* Primes and masks */
    764 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
    765 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
    766 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
    767 
    768 
    769 /* ---------------------------------------------------------------------- */
    770 
    771 typedef struct uhash_ctx {
    772     nh_ctx hash;                          /* Hash context for L1 NH hash  */
    773     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
    774     UINT64 poly_accum[STREAMS];           /* poly hash result             */
    775     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
    776     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
    777     UINT32 msg_len;                       /* Total length of data passed  */
    778                                           /* to uhash */
    779 } uhash_ctx;
    780 typedef struct uhash_ctx *uhash_ctx_t;
    781 
    782 /* ---------------------------------------------------------------------- */
    783 
    784 
    785 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
    786  * word at a time. As described in the specification, poly32 and poly64
    787  * require keys from special domains. The following implementations exploit
    788  * the special domains to avoid overflow. The results are not guaranteed to
    789  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
    790  * patches any errant values.
    791  */
    792 
    793 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
    794 {
    795     UINT32 key_hi = (UINT32)(key >> 32),
    796            key_lo = (UINT32)key,
    797            cur_hi = (UINT32)(cur >> 32),
    798            cur_lo = (UINT32)cur,
    799            x_lo,
    800            x_hi;
    801     UINT64 X,T,res;
    802 
    803     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
    804     x_lo = (UINT32)X;
    805     x_hi = (UINT32)(X >> 32);
    806 
    807     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
    808 
    809     T = ((UINT64)x_lo << 32);
    810     res += T;
    811     if (res < T)
    812         res += 59;
    813 
    814     res += data;
    815     if (res < data)
    816         res += 59;
    817 
    818     return res;
    819 }
    820 
    821 
    822 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
    823  * implementation does not handle all ramp levels. Because we don't handle
    824  * the ramp up to p128 modulus in this implementation, we are limited to
    825  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
    826  * bytes input to UMAC per tag, ie. 16MB).
    827  */
    828 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
    829 {
    830     int i;
    831     UINT64 *data=(UINT64*)data_in;
    832 
    833     for (i = 0; i < STREAMS; i++) {
    834         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
    835             hc->poly_accum[i] = poly64(hc->poly_accum[i],
    836                                        hc->poly_key_8[i], p64 - 1);
    837             hc->poly_accum[i] = poly64(hc->poly_accum[i],
    838                                        hc->poly_key_8[i], (data[i] - 59));
    839         } else {
    840             hc->poly_accum[i] = poly64(hc->poly_accum[i],
    841                                        hc->poly_key_8[i], data[i]);
    842         }
    843     }
    844 }
    845 
    846 
    847 /* ---------------------------------------------------------------------- */
    848 
    849 
    850 /* The final step in UHASH is an inner-product hash. The poly hash
    851  * produces a result not neccesarily WORD_LEN bytes long. The inner-
    852  * product hash breaks the polyhash output into 16-bit chunks and
    853  * multiplies each with a 36 bit key.
    854  */
    855 
    856 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
    857 {
    858     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
    859     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
    860     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
    861     t = t + ipkp[3] * (UINT64)(UINT16)(data);
    862 
    863     return t;
    864 }
    865 
    866 static UINT32 ip_reduce_p36(UINT64 t)
    867 {
    868 /* Divisionless modular reduction */
    869     UINT64 ret;
    870 
    871     ret = (t & m36) + 5 * (t >> 36);
    872     if (ret >= p36)
    873         ret -= p36;
    874 
    875     /* return least significant 32 bits */
    876     return (UINT32)(ret);
    877 }
    878 
    879 
    880 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
    881  * the polyhash stage is skipped and ip_short is applied directly to the
    882  * NH output.
    883  */
    884 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
    885 {
    886     UINT64 t;
    887     UINT64 *nhp = (UINT64 *)nh_res;
    888 
    889     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
    890     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
    891 #if (UMAC_OUTPUT_LEN >= 8)
    892     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
    893     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
    894 #endif
    895 #if (UMAC_OUTPUT_LEN >= 12)
    896     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
    897     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
    898 #endif
    899 #if (UMAC_OUTPUT_LEN == 16)
    900     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
    901     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
    902 #endif
    903 }
    904 
    905 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
    906  * the polyhash stage is not skipped and ip_long is applied to the
    907  * polyhash output.
    908  */
    909 static void ip_long(uhash_ctx_t ahc, u_char *res)
    910 {
    911     int i;
    912     UINT64 t;
    913 
    914     for (i = 0; i < STREAMS; i++) {
    915         /* fix polyhash output not in Z_p64 */
    916         if (ahc->poly_accum[i] >= p64)
    917             ahc->poly_accum[i] -= p64;
    918         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
    919         STORE_UINT32_BIG((UINT32 *)res+i,
    920                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
    921     }
    922 }
    923 
    924 
    925 /* ---------------------------------------------------------------------- */
    926 
    927 /* ---------------------------------------------------------------------- */
    928 
    929 /* Reset uhash context for next hash session */
    930 static int uhash_reset(uhash_ctx_t pc)
    931 {
    932     nh_reset(&pc->hash);
    933     pc->msg_len = 0;
    934     pc->poly_accum[0] = 1;
    935 #if (UMAC_OUTPUT_LEN >= 8)
    936     pc->poly_accum[1] = 1;
    937 #endif
    938 #if (UMAC_OUTPUT_LEN >= 12)
    939     pc->poly_accum[2] = 1;
    940 #endif
    941 #if (UMAC_OUTPUT_LEN == 16)
    942     pc->poly_accum[3] = 1;
    943 #endif
    944     return 1;
    945 }
    946 
    947 /* ---------------------------------------------------------------------- */
    948 
    949 /* Given a pointer to the internal key needed by kdf() and a uhash context,
    950  * initialize the NH context and generate keys needed for poly and inner-
    951  * product hashing. All keys are endian adjusted in memory so that native
    952  * loads cause correct keys to be in registers during calculation.
    953  */
    954 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
    955 {
    956     int i;
    957     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
    958 
    959     /* Zero the entire uhash context */
    960     memset(ahc, 0, sizeof(uhash_ctx));
    961 
    962     /* Initialize the L1 hash */
    963     nh_init(&ahc->hash, prf_key);
    964 
    965     /* Setup L2 hash variables */
    966     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
    967     for (i = 0; i < STREAMS; i++) {
    968         /* Fill keys from the buffer, skipping bytes in the buffer not
    969          * used by this implementation. Endian reverse the keys if on a
    970          * little-endian computer.
    971          */
    972         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
    973         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
    974         /* Mask the 64-bit keys to their special domain */
    975         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
    976         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
    977     }
    978 
    979     /* Setup L3-1 hash variables */
    980     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
    981     for (i = 0; i < STREAMS; i++)
    982           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
    983                                                  4*sizeof(UINT64));
    984     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
    985                                                   sizeof(ahc->ip_keys));
    986     for (i = 0; i < STREAMS*4; i++)
    987         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
    988 
    989     /* Setup L3-2 hash variables    */
    990     /* Fill buffer with index 4 key */
    991     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
    992     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
    993                          STREAMS * sizeof(UINT32));
    994 }
    995 
    996 /* ---------------------------------------------------------------------- */
    997 
    998 #if 0
    999 static uhash_ctx_t uhash_alloc(u_char key[])
   1000 {
   1001 /* Allocate memory and force to a 16-byte boundary. */
   1002     uhash_ctx_t ctx;
   1003     u_char bytes_to_add;
   1004     aes_int_key prf_key;
   1005 
   1006     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
   1007     if (ctx) {
   1008         if (ALLOC_BOUNDARY) {
   1009             bytes_to_add = ALLOC_BOUNDARY -
   1010                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
   1011             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
   1012             *((u_char *)ctx - 1) = bytes_to_add;
   1013         }
   1014         aes_key_setup(key,prf_key);
   1015         uhash_init(ctx, prf_key);
   1016     }
   1017     return (ctx);
   1018 }
   1019 #endif
   1020 
   1021 /* ---------------------------------------------------------------------- */
   1022 
   1023 #if 0
   1024 static int uhash_free(uhash_ctx_t ctx)
   1025 {
   1026 /* Free memory allocated by uhash_alloc */
   1027     u_char bytes_to_sub;
   1028 
   1029     if (ctx) {
   1030         if (ALLOC_BOUNDARY) {
   1031             bytes_to_sub = *((u_char *)ctx - 1);
   1032             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
   1033         }
   1034         free(ctx);
   1035     }
   1036     return (1);
   1037 }
   1038 #endif
   1039 /* ---------------------------------------------------------------------- */
   1040 
   1041 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
   1042 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
   1043  * hash each one with NH, calling the polyhash on each NH output.
   1044  */
   1045 {
   1046     UWORD bytes_hashed, bytes_remaining;
   1047     UINT64 result_buf[STREAMS];
   1048     UINT8 *nh_result = (UINT8 *)&result_buf;
   1049 
   1050     if (ctx->msg_len + len <= L1_KEY_LEN) {
   1051         nh_update(&ctx->hash, (const UINT8 *)input, len);
   1052         ctx->msg_len += len;
   1053     } else {
   1054 
   1055          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
   1056          if (ctx->msg_len == L1_KEY_LEN)
   1057              bytes_hashed = L1_KEY_LEN;
   1058 
   1059          if (bytes_hashed + len >= L1_KEY_LEN) {
   1060 
   1061              /* If some bytes have been passed to the hash function      */
   1062              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
   1063              /* bytes to complete the current nh_block.                  */
   1064              if (bytes_hashed) {
   1065                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
   1066                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
   1067                  nh_final(&ctx->hash, nh_result);
   1068                  ctx->msg_len += bytes_remaining;
   1069                  poly_hash(ctx,(UINT32 *)nh_result);
   1070                  len -= bytes_remaining;
   1071                  input += bytes_remaining;
   1072              }
   1073 
   1074              /* Hash directly from input stream if enough bytes */
   1075              while (len >= L1_KEY_LEN) {
   1076                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
   1077                                    L1_KEY_LEN, nh_result);
   1078                  ctx->msg_len += L1_KEY_LEN;
   1079                  len -= L1_KEY_LEN;
   1080                  input += L1_KEY_LEN;
   1081                  poly_hash(ctx,(UINT32 *)nh_result);
   1082              }
   1083          }
   1084 
   1085          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
   1086          if (len) {
   1087              nh_update(&ctx->hash, (const UINT8 *)input, len);
   1088              ctx->msg_len += len;
   1089          }
   1090      }
   1091 
   1092     return (1);
   1093 }
   1094 
   1095 /* ---------------------------------------------------------------------- */
   1096 
   1097 static int uhash_final(uhash_ctx_t ctx, u_char *res)
   1098 /* Incorporate any pending data, pad, and generate tag */
   1099 {
   1100     UINT64 result_buf[STREAMS];
   1101     UINT8 *nh_result = (UINT8 *)&result_buf;
   1102 
   1103     if (ctx->msg_len > L1_KEY_LEN) {
   1104         if (ctx->msg_len % L1_KEY_LEN) {
   1105             nh_final(&ctx->hash, nh_result);
   1106             poly_hash(ctx,(UINT32 *)nh_result);
   1107         }
   1108         ip_long(ctx, res);
   1109     } else {
   1110         nh_final(&ctx->hash, nh_result);
   1111         ip_short(ctx,nh_result, res);
   1112     }
   1113     uhash_reset(ctx);
   1114     return (1);
   1115 }
   1116 
   1117 /* ---------------------------------------------------------------------- */
   1118 
   1119 #if 0
   1120 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
   1121 /* assumes that msg is in a writable buffer of length divisible by */
   1122 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
   1123 {
   1124     UINT8 nh_result[STREAMS*sizeof(UINT64)];
   1125     UINT32 nh_len;
   1126     int extra_zeroes_needed;
   1127 
   1128     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
   1129      * the polyhash.
   1130      */
   1131     if (len <= L1_KEY_LEN) {
   1132     	if (len == 0)                  /* If zero length messages will not */
   1133     		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
   1134     	else
   1135         	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
   1136         extra_zeroes_needed = nh_len - len;
   1137         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
   1138         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
   1139         ip_short(ahc,nh_result, res);
   1140     } else {
   1141         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
   1142          * output to poly_hash().
   1143          */
   1144         do {
   1145             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
   1146             poly_hash(ahc,(UINT32 *)nh_result);
   1147             len -= L1_KEY_LEN;
   1148             msg += L1_KEY_LEN;
   1149         } while (len >= L1_KEY_LEN);
   1150         if (len) {
   1151             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
   1152             extra_zeroes_needed = nh_len - len;
   1153             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
   1154             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
   1155             poly_hash(ahc,(UINT32 *)nh_result);
   1156         }
   1157 
   1158         ip_long(ahc, res);
   1159     }
   1160 
   1161     uhash_reset(ahc);
   1162     return 1;
   1163 }
   1164 #endif
   1165 
   1166 /* ---------------------------------------------------------------------- */
   1167 /* ---------------------------------------------------------------------- */
   1168 /* ----- Begin UMAC Section --------------------------------------------- */
   1169 /* ---------------------------------------------------------------------- */
   1170 /* ---------------------------------------------------------------------- */
   1171 
   1172 /* The UMAC interface has two interfaces, an all-at-once interface where
   1173  * the entire message to be authenticated is passed to UMAC in one buffer,
   1174  * and a sequential interface where the message is presented a little at a
   1175  * time. The all-at-once is more optimaized than the sequential version and
   1176  * should be preferred when the sequential interface is not required.
   1177  */
   1178 struct umac_ctx {
   1179     uhash_ctx hash;          /* Hash function for message compression    */
   1180     pdf_ctx pdf;             /* PDF for hashed output                    */
   1181     void *free_ptr;          /* Address to free this struct via          */
   1182 } umac_ctx;
   1183 
   1184 /* ---------------------------------------------------------------------- */
   1185 
   1186 #if 0
   1187 int umac_reset(struct umac_ctx *ctx)
   1188 /* Reset the hash function to begin a new authentication.        */
   1189 {
   1190     uhash_reset(&ctx->hash);
   1191     return (1);
   1192 }
   1193 #endif
   1194 
   1195 /* ---------------------------------------------------------------------- */
   1196 
   1197 int umac_delete(struct umac_ctx *ctx)
   1198 /* Deallocate the ctx structure */
   1199 {
   1200     if (ctx) {
   1201         if (ALLOC_BOUNDARY)
   1202             ctx = (struct umac_ctx *)ctx->free_ptr;
   1203         free(ctx);
   1204     }
   1205     return (1);
   1206 }
   1207 
   1208 /* ---------------------------------------------------------------------- */
   1209 
   1210 struct umac_ctx *umac_new(const u_char key[])
   1211 /* Dynamically allocate a umac_ctx struct, initialize variables,
   1212  * generate subkeys from key. Align to 16-byte boundary.
   1213  */
   1214 {
   1215     struct umac_ctx *ctx, *octx;
   1216     size_t bytes_to_add;
   1217     aes_int_key prf_key;
   1218 
   1219     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
   1220     if (ctx) {
   1221         if (ALLOC_BOUNDARY) {
   1222             bytes_to_add = ALLOC_BOUNDARY -
   1223                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
   1224             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
   1225         }
   1226         ctx->free_ptr = octx;
   1227         aes_key_setup(key, prf_key);
   1228         pdf_init(&ctx->pdf, prf_key);
   1229         uhash_init(&ctx->hash, prf_key);
   1230     }
   1231 
   1232     return (ctx);
   1233 }
   1234 
   1235 /* ---------------------------------------------------------------------- */
   1236 
   1237 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
   1238 /* Incorporate any pending data, pad, and generate tag */
   1239 {
   1240     uhash_final(&ctx->hash, (u_char *)tag);
   1241     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
   1242 
   1243     return (1);
   1244 }
   1245 
   1246 /* ---------------------------------------------------------------------- */
   1247 
   1248 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
   1249 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
   1250 /* hash each one, calling the PDF on the hashed output whenever the hash- */
   1251 /* output buffer is full.                                                 */
   1252 {
   1253     uhash_update(&ctx->hash, input, len);
   1254     return (1);
   1255 }
   1256 
   1257 /* ---------------------------------------------------------------------- */
   1258 
   1259 #if 0
   1260 int umac(struct umac_ctx *ctx, u_char *input,
   1261          long len, u_char tag[],
   1262          u_char nonce[8])
   1263 /* All-in-one version simply calls umac_update() and umac_final().        */
   1264 {
   1265     uhash(&ctx->hash, input, len, (u_char *)tag);
   1266     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
   1267 
   1268     return (1);
   1269 }
   1270 #endif
   1271 
   1272 /* ---------------------------------------------------------------------- */
   1273 /* ---------------------------------------------------------------------- */
   1274 /* ----- End UMAC Section ----------------------------------------------- */
   1275 /* ---------------------------------------------------------------------- */
   1276 /* ---------------------------------------------------------------------- */
   1277