Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2015 by                                                 */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
     31   /*                                                                       */
     32   /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef _STANDALONE_
     95 
     96 
     97   /* The size in bytes of the render pool used by the scan-line converter  */
     98   /* to do all of its work.                                                */
     99 #define FT_RENDER_POOL_SIZE  16384L
    100 
    101 
    102   /* Auxiliary macros for token concatenation. */
    103 #define FT_ERR_XCAT( x, y )  x ## y
    104 #define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
    105 
    106 #define FT_BEGIN_STMNT  do {
    107 #define FT_END_STMNT    } while ( 0 )
    108 
    109 #define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
    110 #define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
    111 
    112 
    113   /*
    114    *  Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
    115    *  algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
    116    *  largest error less than 7% compared to the exact value.
    117    */
    118 #define FT_HYPOT( x, y )                 \
    119           ( x = FT_ABS( x ),             \
    120             y = FT_ABS( y ),             \
    121             x > y ? x + ( 3 * y >> 3 )   \
    122                   : y + ( 3 * x >> 3 ) )
    123 
    124 
    125   /* define this to dump debugging information */
    126 /* #define FT_DEBUG_LEVEL_TRACE */
    127 
    128 
    129 #ifdef FT_DEBUG_LEVEL_TRACE
    130 #include <stdio.h>
    131 #include <stdarg.h>
    132 #endif
    133 
    134 #include <stddef.h>
    135 #include <string.h>
    136 #include <setjmp.h>
    137 #include <limits.h>
    138 #define FT_UINT_MAX  UINT_MAX
    139 #define FT_INT_MAX   INT_MAX
    140 
    141 #define ft_memset   memset
    142 
    143 #define ft_setjmp   setjmp
    144 #define ft_longjmp  longjmp
    145 #define ft_jmp_buf  jmp_buf
    146 
    147 typedef ptrdiff_t  FT_PtrDist;
    148 
    149 
    150 #define ErrRaster_Invalid_Mode      -2
    151 #define ErrRaster_Invalid_Outline   -1
    152 #define ErrRaster_Invalid_Argument  -3
    153 #define ErrRaster_Memory_Overflow   -4
    154 
    155 #define FT_BEGIN_HEADER
    156 #define FT_END_HEADER
    157 
    158 #include "ftimage.h"
    159 #include "ftgrays.h"
    160 
    161 
    162   /* This macro is used to indicate that a function parameter is unused. */
    163   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    164   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    165   /* ANSI compilers (e.g. LCC).                                          */
    166 #define FT_UNUSED( x )  (x) = (x)
    167 
    168 
    169   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    170 
    171 #ifdef FT_DEBUG_LEVEL_TRACE
    172 
    173   void
    174   FT_Message( const char*  fmt,
    175               ... )
    176   {
    177     va_list  ap;
    178 
    179 
    180     va_start( ap, fmt );
    181     vfprintf( stderr, fmt, ap );
    182     va_end( ap );
    183   }
    184 
    185 
    186   /* empty function useful for setting a breakpoint to catch errors */
    187   int
    188   FT_Throw( int          error,
    189             int          line,
    190             const char*  file )
    191   {
    192     FT_UNUSED( error );
    193     FT_UNUSED( line );
    194     FT_UNUSED( file );
    195 
    196     return 0;
    197   }
    198 
    199 
    200   /* we don't handle tracing levels in stand-alone mode; */
    201 #ifndef FT_TRACE5
    202 #define FT_TRACE5( varformat )  FT_Message varformat
    203 #endif
    204 #ifndef FT_TRACE7
    205 #define FT_TRACE7( varformat )  FT_Message varformat
    206 #endif
    207 #ifndef FT_ERROR
    208 #define FT_ERROR( varformat )   FT_Message varformat
    209 #endif
    210 
    211 #define FT_THROW( e )                               \
    212           ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
    213                       __LINE__,                     \
    214                       __FILE__ )                  | \
    215             FT_ERR_CAT( ErrRaster, e )            )
    216 
    217 #else /* !FT_DEBUG_LEVEL_TRACE */
    218 
    219 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    220 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    221 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    222 #define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
    223 
    224 
    225 #endif /* !FT_DEBUG_LEVEL_TRACE */
    226 
    227 
    228 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    229                                  move_to_, line_to_,   \
    230                                  conic_to_, cubic_to_, \
    231                                  shift_, delta_ )      \
    232           static const FT_Outline_Funcs class_ =       \
    233           {                                            \
    234             move_to_,                                  \
    235             line_to_,                                  \
    236             conic_to_,                                 \
    237             cubic_to_,                                 \
    238             shift_,                                    \
    239             delta_                                     \
    240          };
    241 
    242 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    243                                 raster_new_, raster_reset_,       \
    244                                 raster_set_mode_, raster_render_, \
    245                                 raster_done_ )                    \
    246           const FT_Raster_Funcs class_ =                          \
    247           {                                                       \
    248             glyph_format_,                                        \
    249             raster_new_,                                          \
    250             raster_reset_,                                        \
    251             raster_set_mode_,                                     \
    252             raster_render_,                                       \
    253             raster_done_                                          \
    254          };
    255 
    256 
    257 #else /* !_STANDALONE_ */
    258 
    259 
    260 #include <ft2build.h>
    261 #include "ftgrays.h"
    262 #include FT_INTERNAL_OBJECTS_H
    263 #include FT_INTERNAL_DEBUG_H
    264 #include FT_OUTLINE_H
    265 
    266 #include "ftsmerrs.h"
    267 
    268 #include "ftspic.h"
    269 
    270 #define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
    271 #define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
    272 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    273 
    274 
    275 #endif /* !_STANDALONE_ */
    276 
    277 
    278 #ifndef FT_MEM_SET
    279 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    280 #endif
    281 
    282 #ifndef FT_MEM_ZERO
    283 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    284 #endif
    285 
    286   /* as usual, for the speed hungry :-) */
    287 
    288 #undef RAS_ARG
    289 #undef RAS_ARG_
    290 #undef RAS_VAR
    291 #undef RAS_VAR_
    292 
    293 #ifndef FT_STATIC_RASTER
    294 
    295 #define RAS_ARG   gray_PWorker  worker
    296 #define RAS_ARG_  gray_PWorker  worker,
    297 
    298 #define RAS_VAR   worker
    299 #define RAS_VAR_  worker,
    300 
    301 #else /* FT_STATIC_RASTER */
    302 
    303 #define RAS_ARG   /* empty */
    304 #define RAS_ARG_  /* empty */
    305 #define RAS_VAR   /* empty */
    306 #define RAS_VAR_  /* empty */
    307 
    308 #endif /* FT_STATIC_RASTER */
    309 
    310 
    311   /* must be at least 6 bits! */
    312 #define PIXEL_BITS  8
    313 
    314 #undef FLOOR
    315 #undef CEILING
    316 #undef TRUNC
    317 #undef SCALED
    318 
    319 #define ONE_PIXEL       ( 1L << PIXEL_BITS )
    320 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    321 #define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
    322 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    323 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    324 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    325 
    326 #if PIXEL_BITS >= 6
    327 #define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
    328 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    329 #else
    330 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    331 #define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
    332 #endif
    333 
    334 
    335   /* Compute `dividend / divisor' and return both its quotient and     */
    336   /* remainder, cast to a specific type.  This macro also ensures that */
    337   /* the remainder is always positive.                                 */
    338 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    339   FT_BEGIN_STMNT                                                   \
    340     (quotient)  = (type)( (dividend) / (divisor) );                \
    341     (remainder) = (type)( (dividend) % (divisor) );                \
    342     if ( (remainder) < 0 )                                         \
    343     {                                                              \
    344       (quotient)--;                                                \
    345       (remainder) += (type)(divisor);                              \
    346     }                                                              \
    347   FT_END_STMNT
    348 
    349 #ifdef  __arm__
    350   /* Work around a bug specific to GCC which make the compiler fail to */
    351   /* optimize a division and modulo operation on the same parameters   */
    352   /* into a single call to `__aeabi_idivmod'.  See                     */
    353   /*                                                                   */
    354   /*  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721                */
    355 #undef FT_DIV_MOD
    356 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    357   FT_BEGIN_STMNT                                                   \
    358     (quotient)  = (type)( (dividend) / (divisor) );                \
    359     (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
    360     if ( (remainder) < 0 )                                         \
    361     {                                                              \
    362       (quotient)--;                                                \
    363       (remainder) += (type)(divisor);                              \
    364     }                                                              \
    365   FT_END_STMNT
    366 #endif /* __arm__ */
    367 
    368 
    369   /*************************************************************************/
    370   /*                                                                       */
    371   /*   TYPE DEFINITIONS                                                    */
    372   /*                                                                       */
    373 
    374   /* don't change the following types to FT_Int or FT_Pos, since we might */
    375   /* need to define them to "float" or "double" when experimenting with   */
    376   /* new algorithms                                                       */
    377 
    378   typedef long  TCoord;   /* integer scanline/pixel coordinate */
    379   typedef long  TPos;     /* sub-pixel coordinate              */
    380 
    381   /* determine the type used to store cell areas.  This normally takes at */
    382   /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
    383   /* `long' instead of `int', otherwise bad things happen                 */
    384 
    385 #if PIXEL_BITS <= 7
    386 
    387   typedef int  TArea;
    388 
    389 #else /* PIXEL_BITS >= 8 */
    390 
    391   /* approximately determine the size of integers using an ANSI-C header */
    392 #if FT_UINT_MAX == 0xFFFFU
    393   typedef long  TArea;
    394 #else
    395   typedef int   TArea;
    396 #endif
    397 
    398 #endif /* PIXEL_BITS >= 8 */
    399 
    400 
    401   /* maximum number of gray spans in a call to the span callback */
    402 #define FT_MAX_GRAY_SPANS  32
    403 
    404 
    405   typedef struct TCell_*  PCell;
    406 
    407   typedef struct  TCell_
    408   {
    409     TPos    x;     /* same with gray_TWorker.ex    */
    410     TCoord  cover; /* same with gray_TWorker.cover */
    411     TArea   area;
    412     PCell   next;
    413 
    414   } TCell;
    415 
    416 
    417 #if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
    418   /* We disable the warning `structure was padded due to   */
    419   /* __declspec(align())' in order to compile cleanly with */
    420   /* the maximum level of warnings.                        */
    421 #pragma warning( push )
    422 #pragma warning( disable : 4324 )
    423 #endif /* _MSC_VER */
    424 
    425   typedef struct  gray_TWorker_
    426   {
    427     ft_jmp_buf  jump_buffer;
    428 
    429     TCoord  ex, ey;
    430     TPos    min_ex, max_ex;
    431     TPos    min_ey, max_ey;
    432     TPos    count_ex, count_ey;
    433 
    434     TArea   area;
    435     TCoord  cover;
    436     int     invalid;
    437 
    438     PCell       cells;
    439     FT_PtrDist  max_cells;
    440     FT_PtrDist  num_cells;
    441 
    442     TPos    x,  y;
    443 
    444     FT_Vector   bez_stack[32 * 3 + 1];
    445     int         lev_stack[32];
    446 
    447     FT_Outline  outline;
    448     FT_Bitmap   target;
    449     FT_BBox     clip_box;
    450 
    451     FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
    452     int         num_gray_spans;
    453 
    454     FT_Raster_Span_Func  render_span;
    455     void*                render_span_data;
    456     int                  span_y;
    457 
    458     int  band_size;
    459     int  band_shoot;
    460 
    461     void*       buffer;
    462     long        buffer_size;
    463 
    464     PCell*     ycells;
    465     TPos       ycount;
    466 
    467   } gray_TWorker, *gray_PWorker;
    468 
    469 #if defined( _MSC_VER )
    470 #pragma warning( pop )
    471 #endif
    472 
    473 
    474 #ifndef FT_STATIC_RASTER
    475 #define ras  (*worker)
    476 #else
    477   static gray_TWorker  ras;
    478 #endif
    479 
    480 
    481   typedef struct gray_TRaster_
    482   {
    483     void*         memory;
    484 
    485   } gray_TRaster, *gray_PRaster;
    486 
    487 
    488 
    489   /*************************************************************************/
    490   /*                                                                       */
    491   /* Initialize the cells table.                                           */
    492   /*                                                                       */
    493   static void
    494   gray_init_cells( RAS_ARG_ void*  buffer,
    495                             long   byte_size )
    496   {
    497     ras.buffer      = buffer;
    498     ras.buffer_size = byte_size;
    499 
    500     ras.ycells      = (PCell*) buffer;
    501     ras.cells       = NULL;
    502     ras.max_cells   = 0;
    503     ras.num_cells   = 0;
    504     ras.area        = 0;
    505     ras.cover       = 0;
    506     ras.invalid     = 1;
    507   }
    508 
    509 
    510   /*************************************************************************/
    511   /*                                                                       */
    512   /* Compute the outline bounding box.                                     */
    513   /*                                                                       */
    514   static void
    515   gray_compute_cbox( RAS_ARG )
    516   {
    517     FT_Outline*  outline = &ras.outline;
    518     FT_Vector*   vec     = outline->points;
    519     FT_Vector*   limit   = vec + outline->n_points;
    520 
    521 
    522     if ( outline->n_points <= 0 )
    523     {
    524       ras.min_ex = ras.max_ex = 0;
    525       ras.min_ey = ras.max_ey = 0;
    526       return;
    527     }
    528 
    529     ras.min_ex = ras.max_ex = vec->x;
    530     ras.min_ey = ras.max_ey = vec->y;
    531 
    532     vec++;
    533 
    534     for ( ; vec < limit; vec++ )
    535     {
    536       TPos  x = vec->x;
    537       TPos  y = vec->y;
    538 
    539 
    540       if ( x < ras.min_ex ) ras.min_ex = x;
    541       if ( x > ras.max_ex ) ras.max_ex = x;
    542       if ( y < ras.min_ey ) ras.min_ey = y;
    543       if ( y > ras.max_ey ) ras.max_ey = y;
    544     }
    545 
    546     /* truncate the bounding box to integer pixels */
    547     ras.min_ex = ras.min_ex >> 6;
    548     ras.min_ey = ras.min_ey >> 6;
    549     ras.max_ex = ( ras.max_ex + 63 ) >> 6;
    550     ras.max_ey = ( ras.max_ey + 63 ) >> 6;
    551   }
    552 
    553 
    554   /*************************************************************************/
    555   /*                                                                       */
    556   /* Record the current cell in the table.                                 */
    557   /*                                                                       */
    558   static PCell
    559   gray_find_cell( RAS_ARG )
    560   {
    561     PCell  *pcell, cell;
    562     TPos    x = ras.ex;
    563 
    564 
    565     if ( x > ras.count_ex )
    566       x = ras.count_ex;
    567 
    568     pcell = &ras.ycells[ras.ey];
    569     for (;;)
    570     {
    571       cell = *pcell;
    572       if ( cell == NULL || cell->x > x )
    573         break;
    574 
    575       if ( cell->x == x )
    576         goto Exit;
    577 
    578       pcell = &cell->next;
    579     }
    580 
    581     if ( ras.num_cells >= ras.max_cells )
    582       ft_longjmp( ras.jump_buffer, 1 );
    583 
    584     cell        = ras.cells + ras.num_cells++;
    585     cell->x     = x;
    586     cell->area  = 0;
    587     cell->cover = 0;
    588 
    589     cell->next  = *pcell;
    590     *pcell      = cell;
    591 
    592   Exit:
    593     return cell;
    594   }
    595 
    596 
    597   static void
    598   gray_record_cell( RAS_ARG )
    599   {
    600     if ( ras.area | ras.cover )
    601     {
    602       PCell  cell = gray_find_cell( RAS_VAR );
    603 
    604 
    605       cell->area  += ras.area;
    606       cell->cover += ras.cover;
    607     }
    608   }
    609 
    610 
    611   /*************************************************************************/
    612   /*                                                                       */
    613   /* Set the current cell to a new position.                               */
    614   /*                                                                       */
    615   static void
    616   gray_set_cell( RAS_ARG_ TCoord  ex,
    617                           TCoord  ey )
    618   {
    619     /* Move the cell pointer to a new position.  We set the `invalid'      */
    620     /* flag to indicate that the cell isn't part of those we're interested */
    621     /* in during the render phase.  This means that:                       */
    622     /*                                                                     */
    623     /* . the new vertical position must be within min_ey..max_ey-1.        */
    624     /* . the new horizontal position must be strictly less than max_ex     */
    625     /*                                                                     */
    626     /* Note that if a cell is to the left of the clipping region, it is    */
    627     /* actually set to the (min_ex-1) horizontal position.                 */
    628 
    629     /* All cells that are on the left of the clipping region go to the */
    630     /* min_ex - 1 horizontal position.                                 */
    631     ey -= ras.min_ey;
    632 
    633     if ( ex > ras.max_ex )
    634       ex = ras.max_ex;
    635 
    636     ex -= ras.min_ex;
    637     if ( ex < 0 )
    638       ex = -1;
    639 
    640     /* are we moving to a different cell ? */
    641     if ( ex != ras.ex || ey != ras.ey )
    642     {
    643       /* record the current one if it is valid */
    644       if ( !ras.invalid )
    645         gray_record_cell( RAS_VAR );
    646 
    647       ras.area  = 0;
    648       ras.cover = 0;
    649       ras.ex    = ex;
    650       ras.ey    = ey;
    651     }
    652 
    653     ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey ||
    654                                   ex >= ras.count_ex               );
    655   }
    656 
    657 
    658   /*************************************************************************/
    659   /*                                                                       */
    660   /* Start a new contour at a given cell.                                  */
    661   /*                                                                       */
    662   static void
    663   gray_start_cell( RAS_ARG_ TCoord  ex,
    664                             TCoord  ey )
    665   {
    666     if ( ex > ras.max_ex )
    667       ex = (TCoord)( ras.max_ex );
    668 
    669     if ( ex < ras.min_ex )
    670       ex = (TCoord)( ras.min_ex - 1 );
    671 
    672     ras.area    = 0;
    673     ras.cover   = 0;
    674     ras.ex      = ex - ras.min_ex;
    675     ras.ey      = ey - ras.min_ey;
    676     ras.invalid = 0;
    677 
    678     gray_set_cell( RAS_VAR_ ex, ey );
    679   }
    680 
    681 
    682   /*************************************************************************/
    683   /*                                                                       */
    684   /* Render a scanline as one or more cells.                               */
    685   /*                                                                       */
    686   static void
    687   gray_render_scanline( RAS_ARG_ TCoord  ey,
    688                                  TPos    x1,
    689                                  TCoord  y1,
    690                                  TPos    x2,
    691                                  TCoord  y2 )
    692   {
    693     TCoord  ex1, ex2, fx1, fx2, delta, mod;
    694     long    p, first, dx;
    695     int     incr;
    696 
    697 
    698     dx = x2 - x1;
    699 
    700     ex1 = TRUNC( x1 );
    701     ex2 = TRUNC( x2 );
    702     fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    703     fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    704 
    705     /* trivial case.  Happens often */
    706     if ( y1 == y2 )
    707     {
    708       gray_set_cell( RAS_VAR_ ex2, ey );
    709       return;
    710     }
    711 
    712     /* everything is located in a single cell.  That is easy! */
    713     /*                                                        */
    714     if ( ex1 == ex2 )
    715     {
    716       delta      = y2 - y1;
    717       ras.area  += (TArea)(( fx1 + fx2 ) * delta);
    718       ras.cover += delta;
    719       return;
    720     }
    721 
    722     /* ok, we'll have to render a run of adjacent cells on the same */
    723     /* scanline...                                                  */
    724     /*                                                              */
    725     p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
    726     first = ONE_PIXEL;
    727     incr  = 1;
    728 
    729     if ( dx < 0 )
    730     {
    731       p     = fx1 * ( y2 - y1 );
    732       first = 0;
    733       incr  = -1;
    734       dx    = -dx;
    735     }
    736 
    737     FT_DIV_MOD( TCoord, p, dx, delta, mod );
    738 
    739     ras.area  += (TArea)(( fx1 + first ) * delta);
    740     ras.cover += delta;
    741 
    742     ex1 += incr;
    743     gray_set_cell( RAS_VAR_ ex1, ey );
    744     y1  += delta;
    745 
    746     if ( ex1 != ex2 )
    747     {
    748       TCoord  lift, rem;
    749 
    750 
    751       p = ONE_PIXEL * ( y2 - y1 + delta );
    752       FT_DIV_MOD( TCoord, p, dx, lift, rem );
    753 
    754       mod -= (int)dx;
    755 
    756       do
    757       {
    758         delta = lift;
    759         mod  += rem;
    760         if ( mod >= 0 )
    761         {
    762           mod -= (TCoord)dx;
    763           delta++;
    764         }
    765 
    766         ras.area  += (TArea)(ONE_PIXEL * delta);
    767         ras.cover += delta;
    768         y1        += delta;
    769         ex1       += incr;
    770         gray_set_cell( RAS_VAR_ ex1, ey );
    771       } while ( ex1 != ex2 );
    772     }
    773 
    774     delta      = y2 - y1;
    775     ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
    776     ras.cover += delta;
    777   }
    778 
    779 
    780   /*************************************************************************/
    781   /*                                                                       */
    782   /* Render a given line as a series of scanlines.                         */
    783   /*                                                                       */
    784   static void
    785   gray_render_line( RAS_ARG_ TPos  to_x,
    786                              TPos  to_y )
    787   {
    788     TCoord  ey1, ey2, fy1, fy2, mod;
    789     TPos    dx, dy, x, x2;
    790     long    p, first;
    791     int     delta, rem, lift, incr;
    792 
    793 
    794     ey1 = TRUNC( ras.y );
    795     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    796     fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
    797     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    798 
    799     dx = to_x - ras.x;
    800     dy = to_y - ras.y;
    801 
    802     /* perform vertical clipping */
    803     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
    804          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
    805       goto End;
    806 
    807     /* everything is on a single scanline */
    808     if ( ey1 == ey2 )
    809     {
    810       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    811       goto End;
    812     }
    813 
    814     /* vertical line - avoid calling gray_render_scanline */
    815     incr = 1;
    816 
    817     if ( dx == 0 )
    818     {
    819       TCoord  ex     = TRUNC( ras.x );
    820       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    821       TArea   area;
    822 
    823 
    824       first = ONE_PIXEL;
    825       if ( dy < 0 )
    826       {
    827         first = 0;
    828         incr  = -1;
    829       }
    830 
    831       delta      = (int)( first - fy1 );
    832       ras.area  += (TArea)two_fx * delta;
    833       ras.cover += delta;
    834       ey1       += incr;
    835 
    836       gray_set_cell( RAS_VAR_ ex, ey1 );
    837 
    838       delta = (int)( first + first - ONE_PIXEL );
    839       area  = (TArea)two_fx * delta;
    840       while ( ey1 != ey2 )
    841       {
    842         ras.area  += area;
    843         ras.cover += delta;
    844         ey1       += incr;
    845 
    846         gray_set_cell( RAS_VAR_ ex, ey1 );
    847       }
    848 
    849       delta      = (int)( fy2 - ONE_PIXEL + first );
    850       ras.area  += (TArea)two_fx * delta;
    851       ras.cover += delta;
    852 
    853       goto End;
    854     }
    855 
    856     /* ok, we have to render several scanlines */
    857     p     = ( ONE_PIXEL - fy1 ) * dx;
    858     first = ONE_PIXEL;
    859     incr  = 1;
    860 
    861     if ( dy < 0 )
    862     {
    863       p     = fy1 * dx;
    864       first = 0;
    865       incr  = -1;
    866       dy    = -dy;
    867     }
    868 
    869     FT_DIV_MOD( int, p, dy, delta, mod );
    870 
    871     x = ras.x + delta;
    872     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
    873 
    874     ey1 += incr;
    875     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    876 
    877     if ( ey1 != ey2 )
    878     {
    879       p     = ONE_PIXEL * dx;
    880       FT_DIV_MOD( int, p, dy, lift, rem );
    881       mod -= (int)dy;
    882 
    883       do
    884       {
    885         delta = lift;
    886         mod  += rem;
    887         if ( mod >= 0 )
    888         {
    889           mod -= (int)dy;
    890           delta++;
    891         }
    892 
    893         x2 = x + delta;
    894         gray_render_scanline( RAS_VAR_ ey1, x,
    895                                        (TCoord)( ONE_PIXEL - first ), x2,
    896                                        (TCoord)first );
    897         x = x2;
    898 
    899         ey1 += incr;
    900         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    901       } while ( ey1 != ey2 );
    902     }
    903 
    904     gray_render_scanline( RAS_VAR_ ey1, x,
    905                                    (TCoord)( ONE_PIXEL - first ), to_x,
    906                                    fy2 );
    907 
    908   End:
    909     ras.x       = to_x;
    910     ras.y       = to_y;
    911   }
    912 
    913 
    914   static void
    915   gray_split_conic( FT_Vector*  base )
    916   {
    917     TPos  a, b;
    918 
    919 
    920     base[4].x = base[2].x;
    921     b = base[1].x;
    922     a = base[3].x = ( base[2].x + b ) / 2;
    923     b = base[1].x = ( base[0].x + b ) / 2;
    924     base[2].x = ( a + b ) / 2;
    925 
    926     base[4].y = base[2].y;
    927     b = base[1].y;
    928     a = base[3].y = ( base[2].y + b ) / 2;
    929     b = base[1].y = ( base[0].y + b ) / 2;
    930     base[2].y = ( a + b ) / 2;
    931   }
    932 
    933 
    934   static void
    935   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    936                               const FT_Vector*  to )
    937   {
    938     TPos        dx, dy;
    939     TPos        min, max, y;
    940     int         top, level;
    941     int*        levels;
    942     FT_Vector*  arc;
    943 
    944 
    945     levels = ras.lev_stack;
    946 
    947     arc      = ras.bez_stack;
    948     arc[0].x = UPSCALE( to->x );
    949     arc[0].y = UPSCALE( to->y );
    950     arc[1].x = UPSCALE( control->x );
    951     arc[1].y = UPSCALE( control->y );
    952     arc[2].x = ras.x;
    953     arc[2].y = ras.y;
    954     top      = 0;
    955 
    956     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
    957     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
    958     if ( dx < dy )
    959       dx = dy;
    960 
    961     if ( dx < ONE_PIXEL / 4 )
    962       goto Draw;
    963 
    964     /* short-cut the arc that crosses the current band */
    965     min = max = arc[0].y;
    966 
    967     y = arc[1].y;
    968     if ( y < min ) min = y;
    969     if ( y > max ) max = y;
    970 
    971     y = arc[2].y;
    972     if ( y < min ) min = y;
    973     if ( y > max ) max = y;
    974 
    975     if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
    976       goto Draw;
    977 
    978     level = 0;
    979     do
    980     {
    981       dx >>= 2;
    982       level++;
    983     } while ( dx > ONE_PIXEL / 4 );
    984 
    985     levels[0] = level;
    986 
    987     do
    988     {
    989       level = levels[top];
    990       if ( level > 0 )
    991       {
    992         gray_split_conic( arc );
    993         arc += 2;
    994         top++;
    995         levels[top] = levels[top - 1] = level - 1;
    996         continue;
    997       }
    998 
    999     Draw:
   1000       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1001       top--;
   1002       arc -= 2;
   1003 
   1004     } while ( top >= 0 );
   1005   }
   1006 
   1007 
   1008   static void
   1009   gray_split_cubic( FT_Vector*  base )
   1010   {
   1011     TPos  a, b, c, d;
   1012 
   1013 
   1014     base[6].x = base[3].x;
   1015     c = base[1].x;
   1016     d = base[2].x;
   1017     base[1].x = a = ( base[0].x + c ) / 2;
   1018     base[5].x = b = ( base[3].x + d ) / 2;
   1019     c = ( c + d ) / 2;
   1020     base[2].x = a = ( a + c ) / 2;
   1021     base[4].x = b = ( b + c ) / 2;
   1022     base[3].x = ( a + b ) / 2;
   1023 
   1024     base[6].y = base[3].y;
   1025     c = base[1].y;
   1026     d = base[2].y;
   1027     base[1].y = a = ( base[0].y + c ) / 2;
   1028     base[5].y = b = ( base[3].y + d ) / 2;
   1029     c = ( c + d ) / 2;
   1030     base[2].y = a = ( a + c ) / 2;
   1031     base[4].y = b = ( b + c ) / 2;
   1032     base[3].y = ( a + b ) / 2;
   1033   }
   1034 
   1035 
   1036   static void
   1037   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
   1038                               const FT_Vector*  control2,
   1039                               const FT_Vector*  to )
   1040   {
   1041     FT_Vector*  arc;
   1042     TPos        min, max, y;
   1043 
   1044 
   1045     arc      = ras.bez_stack;
   1046     arc[0].x = UPSCALE( to->x );
   1047     arc[0].y = UPSCALE( to->y );
   1048     arc[1].x = UPSCALE( control2->x );
   1049     arc[1].y = UPSCALE( control2->y );
   1050     arc[2].x = UPSCALE( control1->x );
   1051     arc[2].y = UPSCALE( control1->y );
   1052     arc[3].x = ras.x;
   1053     arc[3].y = ras.y;
   1054 
   1055     /* Short-cut the arc that crosses the current band. */
   1056     min = max = arc[0].y;
   1057 
   1058     y = arc[1].y;
   1059     if ( y < min )
   1060       min = y;
   1061     if ( y > max )
   1062       max = y;
   1063 
   1064     y = arc[2].y;
   1065     if ( y < min )
   1066       min = y;
   1067     if ( y > max )
   1068       max = y;
   1069 
   1070     y = arc[3].y;
   1071     if ( y < min )
   1072       min = y;
   1073     if ( y > max )
   1074       max = y;
   1075 
   1076     if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
   1077       goto Draw;
   1078 
   1079     for (;;)
   1080     {
   1081       /* Decide whether to split or draw. See `Rapid Termination          */
   1082       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
   1083       /* F. Hain, at                                                      */
   1084       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
   1085 
   1086       {
   1087         TPos  dx, dy, dx_, dy_;
   1088         TPos  dx1, dy1, dx2, dy2;
   1089         TPos  L, s, s_limit;
   1090 
   1091 
   1092         /* dx and dy are x and y components of the P0-P3 chord vector. */
   1093         dx = dx_ = arc[3].x - arc[0].x;
   1094         dy = dy_ = arc[3].y - arc[0].y;
   1095 
   1096         L = FT_HYPOT( dx_, dy_ );
   1097 
   1098         /* Avoid possible arithmetic overflow below by splitting. */
   1099         if ( L > 32767 )
   1100           goto Split;
   1101 
   1102         /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
   1103         s_limit = L * (TPos)( ONE_PIXEL / 6 );
   1104 
   1105         /* s is L * the perpendicular distance from P1 to the line P0-P3. */
   1106         dx1 = arc[1].x - arc[0].x;
   1107         dy1 = arc[1].y - arc[0].y;
   1108         s = FT_ABS( dy * dx1 - dx * dy1 );
   1109 
   1110         if ( s > s_limit )
   1111           goto Split;
   1112 
   1113         /* s is L * the perpendicular distance from P2 to the line P0-P3. */
   1114         dx2 = arc[2].x - arc[0].x;
   1115         dy2 = arc[2].y - arc[0].y;
   1116         s = FT_ABS( dy * dx2 - dx * dy2 );
   1117 
   1118         if ( s > s_limit )
   1119           goto Split;
   1120 
   1121         /* Split super curvy segments where the off points are so far
   1122            from the chord that the angles P0-P1-P3 or P0-P2-P3 become
   1123            acute as detected by appropriate dot products. */
   1124         if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
   1125              dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
   1126           goto Split;
   1127 
   1128         /* No reason to split. */
   1129         goto Draw;
   1130       }
   1131 
   1132     Split:
   1133       gray_split_cubic( arc );
   1134       arc += 3;
   1135       continue;
   1136 
   1137     Draw:
   1138       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1139 
   1140       if ( arc == ras.bez_stack )
   1141         return;
   1142 
   1143       arc -= 3;
   1144     }
   1145   }
   1146 
   1147 
   1148   static int
   1149   gray_move_to( const FT_Vector*  to,
   1150                 gray_PWorker      worker )
   1151   {
   1152     TPos  x, y;
   1153 
   1154 
   1155     /* record current cell, if any */
   1156     if ( !ras.invalid )
   1157       gray_record_cell( RAS_VAR );
   1158 
   1159     /* start to a new position */
   1160     x = UPSCALE( to->x );
   1161     y = UPSCALE( to->y );
   1162 
   1163     gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1164 
   1165     worker->x = x;
   1166     worker->y = y;
   1167     return 0;
   1168   }
   1169 
   1170 
   1171   static int
   1172   gray_line_to( const FT_Vector*  to,
   1173                 gray_PWorker      worker )
   1174   {
   1175     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1176     return 0;
   1177   }
   1178 
   1179 
   1180   static int
   1181   gray_conic_to( const FT_Vector*  control,
   1182                  const FT_Vector*  to,
   1183                  gray_PWorker      worker )
   1184   {
   1185     gray_render_conic( RAS_VAR_ control, to );
   1186     return 0;
   1187   }
   1188 
   1189 
   1190   static int
   1191   gray_cubic_to( const FT_Vector*  control1,
   1192                  const FT_Vector*  control2,
   1193                  const FT_Vector*  to,
   1194                  gray_PWorker      worker )
   1195   {
   1196     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1197     return 0;
   1198   }
   1199 
   1200 
   1201   static void
   1202   gray_render_span( int             y,
   1203                     int             count,
   1204                     const FT_Span*  spans,
   1205                     gray_PWorker    worker )
   1206   {
   1207     unsigned char*  p;
   1208     FT_Bitmap*      map = &worker->target;
   1209 
   1210 
   1211     /* first of all, compute the scanline offset */
   1212     p = (unsigned char*)map->buffer - y * map->pitch;
   1213     if ( map->pitch >= 0 )
   1214       p += ( map->rows - 1 ) * (unsigned int)map->pitch;
   1215 
   1216     for ( ; count > 0; count--, spans++ )
   1217     {
   1218       unsigned char  coverage = spans->coverage;
   1219 
   1220 
   1221       if ( coverage )
   1222       {
   1223         /* For small-spans it is faster to do it by ourselves than
   1224          * calling `memset'.  This is mainly due to the cost of the
   1225          * function call.
   1226          */
   1227         if ( spans->len >= 8 )
   1228           FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
   1229         else
   1230         {
   1231           unsigned char*  q = p + spans->x;
   1232 
   1233 
   1234           switch ( spans->len )
   1235           {
   1236           case 7: *q++ = (unsigned char)coverage;
   1237           case 6: *q++ = (unsigned char)coverage;
   1238           case 5: *q++ = (unsigned char)coverage;
   1239           case 4: *q++ = (unsigned char)coverage;
   1240           case 3: *q++ = (unsigned char)coverage;
   1241           case 2: *q++ = (unsigned char)coverage;
   1242           case 1: *q   = (unsigned char)coverage;
   1243           default:
   1244             ;
   1245           }
   1246         }
   1247       }
   1248     }
   1249   }
   1250 
   1251 
   1252   static void
   1253   gray_hline( RAS_ARG_ TCoord  x,
   1254                        TCoord  y,
   1255                        TPos    area,
   1256                        TCoord  acount )
   1257   {
   1258     int  coverage;
   1259 
   1260 
   1261     /* compute the coverage line's coverage, depending on the    */
   1262     /* outline fill rule                                         */
   1263     /*                                                           */
   1264     /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
   1265     /*                                                           */
   1266     coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
   1267                                                     /* use range 0..256 */
   1268     if ( coverage < 0 )
   1269       coverage = -coverage;
   1270 
   1271     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1272     {
   1273       coverage &= 511;
   1274 
   1275       if ( coverage > 256 )
   1276         coverage = 512 - coverage;
   1277       else if ( coverage == 256 )
   1278         coverage = 255;
   1279     }
   1280     else
   1281     {
   1282       /* normal non-zero winding rule */
   1283       if ( coverage >= 256 )
   1284         coverage = 255;
   1285     }
   1286 
   1287     y += (TCoord)ras.min_ey;
   1288     x += (TCoord)ras.min_ex;
   1289 
   1290     /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
   1291     if ( x >= 32767 )
   1292       x = 32767;
   1293 
   1294     /* FT_Span.y is an integer, so limit our coordinates appropriately */
   1295     if ( y >= FT_INT_MAX )
   1296       y = FT_INT_MAX;
   1297 
   1298     if ( coverage )
   1299     {
   1300       FT_Span*  span;
   1301       int       count;
   1302 
   1303 
   1304       /* see whether we can add this span to the current list */
   1305       count = ras.num_gray_spans;
   1306       span  = ras.gray_spans + count - 1;
   1307       if ( count > 0                          &&
   1308            ras.span_y == y                    &&
   1309            (int)span->x + span->len == (int)x &&
   1310            span->coverage == coverage         )
   1311       {
   1312         span->len = (unsigned short)( span->len + acount );
   1313         return;
   1314       }
   1315 
   1316       if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
   1317       {
   1318         if ( ras.render_span && count > 0 )
   1319           ras.render_span( ras.span_y, count, ras.gray_spans,
   1320                            ras.render_span_data );
   1321 
   1322 #ifdef FT_DEBUG_LEVEL_TRACE
   1323 
   1324         if ( count > 0 )
   1325         {
   1326           int  n;
   1327 
   1328 
   1329           FT_TRACE7(( "y = %3d ", ras.span_y ));
   1330           span = ras.gray_spans;
   1331           for ( n = 0; n < count; n++, span++ )
   1332             FT_TRACE7(( "[%d..%d]:%02x ",
   1333                         span->x, span->x + span->len - 1, span->coverage ));
   1334           FT_TRACE7(( "\n" ));
   1335         }
   1336 
   1337 #endif /* FT_DEBUG_LEVEL_TRACE */
   1338 
   1339         ras.num_gray_spans = 0;
   1340         ras.span_y         = (int)y;
   1341 
   1342         span  = ras.gray_spans;
   1343       }
   1344       else
   1345         span++;
   1346 
   1347       /* add a gray span to the current list */
   1348       span->x        = (short)x;
   1349       span->len      = (unsigned short)acount;
   1350       span->coverage = (unsigned char)coverage;
   1351 
   1352       ras.num_gray_spans++;
   1353     }
   1354   }
   1355 
   1356 
   1357 #ifdef FT_DEBUG_LEVEL_TRACE
   1358 
   1359   /* to be called while in the debugger --                                */
   1360   /* this function causes a compiler warning since it is unused otherwise */
   1361   static void
   1362   gray_dump_cells( RAS_ARG )
   1363   {
   1364     int  yindex;
   1365 
   1366 
   1367     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1368     {
   1369       PCell  cell;
   1370 
   1371 
   1372       printf( "%3d:", yindex );
   1373 
   1374       for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
   1375         printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
   1376       printf( "\n" );
   1377     }
   1378   }
   1379 
   1380 #endif /* FT_DEBUG_LEVEL_TRACE */
   1381 
   1382 
   1383   static void
   1384   gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
   1385   {
   1386     int  yindex;
   1387 
   1388     FT_UNUSED( target );
   1389 
   1390 
   1391     if ( ras.num_cells == 0 )
   1392       return;
   1393 
   1394     ras.num_gray_spans = 0;
   1395 
   1396     FT_TRACE7(( "gray_sweep: start\n" ));
   1397 
   1398     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1399     {
   1400       PCell   cell  = ras.ycells[yindex];
   1401       TCoord  cover = 0;
   1402       TCoord  x     = 0;
   1403 
   1404 
   1405       for ( ; cell != NULL; cell = cell->next )
   1406       {
   1407         TPos  area;
   1408 
   1409 
   1410         if ( cell->x > x && cover != 0 )
   1411           gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1412                       cell->x - x );
   1413 
   1414         cover += cell->cover;
   1415         area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
   1416 
   1417         if ( area != 0 && cell->x >= 0 )
   1418           gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
   1419 
   1420         x = cell->x + 1;
   1421       }
   1422 
   1423       if ( cover != 0 )
   1424         gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1425                     ras.count_ex - x );
   1426     }
   1427 
   1428     if ( ras.render_span && ras.num_gray_spans > 0 )
   1429       ras.render_span( ras.span_y, ras.num_gray_spans,
   1430                        ras.gray_spans, ras.render_span_data );
   1431 
   1432 #ifdef FT_DEBUG_LEVEL_TRACE
   1433 
   1434     if ( ras.num_gray_spans > 0 )
   1435     {
   1436       FT_Span*  span;
   1437       int       n;
   1438 
   1439 
   1440       FT_TRACE7(( "y = %3d ", ras.span_y ));
   1441       span = ras.gray_spans;
   1442       for ( n = 0; n < ras.num_gray_spans; n++, span++ )
   1443         FT_TRACE7(( "[%d..%d]:%02x ",
   1444                     span->x, span->x + span->len - 1, span->coverage ));
   1445       FT_TRACE7(( "\n" ));
   1446     }
   1447 
   1448     FT_TRACE7(( "gray_sweep: end\n" ));
   1449 
   1450 #endif /* FT_DEBUG_LEVEL_TRACE */
   1451 
   1452   }
   1453 
   1454 
   1455 #ifdef _STANDALONE_
   1456 
   1457   /*************************************************************************/
   1458   /*                                                                       */
   1459   /*  The following function should only compile in stand-alone mode,      */
   1460   /*  i.e., when building this component without the rest of FreeType.     */
   1461   /*                                                                       */
   1462   /*************************************************************************/
   1463 
   1464   /*************************************************************************/
   1465   /*                                                                       */
   1466   /* <Function>                                                            */
   1467   /*    FT_Outline_Decompose                                               */
   1468   /*                                                                       */
   1469   /* <Description>                                                         */
   1470   /*    Walk over an outline's structure to decompose it into individual   */
   1471   /*    segments and Bzier arcs.  This function is also able to emit      */
   1472   /*    `move to' and `close to' operations to indicate the start and end  */
   1473   /*    of new contours in the outline.                                    */
   1474   /*                                                                       */
   1475   /* <Input>                                                               */
   1476   /*    outline        :: A pointer to the source target.                  */
   1477   /*                                                                       */
   1478   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1479   /*                      called during decomposition to indicate path     */
   1480   /*                      operations.                                      */
   1481   /*                                                                       */
   1482   /* <InOut>                                                               */
   1483   /*    user           :: A typeless pointer which is passed to each       */
   1484   /*                      emitter during the decomposition.  It can be     */
   1485   /*                      used to store the state during the               */
   1486   /*                      decomposition.                                   */
   1487   /*                                                                       */
   1488   /* <Return>                                                              */
   1489   /*    Error code.  0 means success.                                      */
   1490   /*                                                                       */
   1491   static int
   1492   FT_Outline_Decompose( const FT_Outline*        outline,
   1493                         const FT_Outline_Funcs*  func_interface,
   1494                         void*                    user )
   1495   {
   1496 #undef SCALED
   1497 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1498 
   1499     FT_Vector   v_last;
   1500     FT_Vector   v_control;
   1501     FT_Vector   v_start;
   1502 
   1503     FT_Vector*  point;
   1504     FT_Vector*  limit;
   1505     char*       tags;
   1506 
   1507     int         error;
   1508 
   1509     int   n;         /* index of contour in outline     */
   1510     int   first;     /* index of first point in contour */
   1511     char  tag;       /* current point's state           */
   1512 
   1513     int   shift;
   1514     TPos  delta;
   1515 
   1516 
   1517     if ( !outline )
   1518       return FT_THROW( Invalid_Outline );
   1519 
   1520     if ( !func_interface )
   1521       return FT_THROW( Invalid_Argument );
   1522 
   1523     shift = func_interface->shift;
   1524     delta = func_interface->delta;
   1525     first = 0;
   1526 
   1527     for ( n = 0; n < outline->n_contours; n++ )
   1528     {
   1529       int  last;  /* index of last point in contour */
   1530 
   1531 
   1532       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1533 
   1534       last  = outline->contours[n];
   1535       if ( last < 0 )
   1536         goto Invalid_Outline;
   1537       limit = outline->points + last;
   1538 
   1539       v_start   = outline->points[first];
   1540       v_start.x = SCALED( v_start.x );
   1541       v_start.y = SCALED( v_start.y );
   1542 
   1543       v_last   = outline->points[last];
   1544       v_last.x = SCALED( v_last.x );
   1545       v_last.y = SCALED( v_last.y );
   1546 
   1547       v_control = v_start;
   1548 
   1549       point = outline->points + first;
   1550       tags  = outline->tags   + first;
   1551       tag   = FT_CURVE_TAG( tags[0] );
   1552 
   1553       /* A contour cannot start with a cubic control point! */
   1554       if ( tag == FT_CURVE_TAG_CUBIC )
   1555         goto Invalid_Outline;
   1556 
   1557       /* check first point to determine origin */
   1558       if ( tag == FT_CURVE_TAG_CONIC )
   1559       {
   1560         /* first point is conic control.  Yes, this happens. */
   1561         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1562         {
   1563           /* start at last point if it is on the curve */
   1564           v_start = v_last;
   1565           limit--;
   1566         }
   1567         else
   1568         {
   1569           /* if both first and last points are conic,         */
   1570           /* start at their middle and record its position    */
   1571           /* for closure                                      */
   1572           v_start.x = ( v_start.x + v_last.x ) / 2;
   1573           v_start.y = ( v_start.y + v_last.y ) / 2;
   1574 
   1575           v_last = v_start;
   1576         }
   1577         point--;
   1578         tags--;
   1579       }
   1580 
   1581       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1582                   v_start.x / 64.0, v_start.y / 64.0 ));
   1583       error = func_interface->move_to( &v_start, user );
   1584       if ( error )
   1585         goto Exit;
   1586 
   1587       while ( point < limit )
   1588       {
   1589         point++;
   1590         tags++;
   1591 
   1592         tag = FT_CURVE_TAG( tags[0] );
   1593         switch ( tag )
   1594         {
   1595         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1596           {
   1597             FT_Vector  vec;
   1598 
   1599 
   1600             vec.x = SCALED( point->x );
   1601             vec.y = SCALED( point->y );
   1602 
   1603             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1604                         vec.x / 64.0, vec.y / 64.0 ));
   1605             error = func_interface->line_to( &vec, user );
   1606             if ( error )
   1607               goto Exit;
   1608             continue;
   1609           }
   1610 
   1611         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1612           v_control.x = SCALED( point->x );
   1613           v_control.y = SCALED( point->y );
   1614 
   1615         Do_Conic:
   1616           if ( point < limit )
   1617           {
   1618             FT_Vector  vec;
   1619             FT_Vector  v_middle;
   1620 
   1621 
   1622             point++;
   1623             tags++;
   1624             tag = FT_CURVE_TAG( tags[0] );
   1625 
   1626             vec.x = SCALED( point->x );
   1627             vec.y = SCALED( point->y );
   1628 
   1629             if ( tag == FT_CURVE_TAG_ON )
   1630             {
   1631               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1632                           " with control (%.2f, %.2f)\n",
   1633                           vec.x / 64.0, vec.y / 64.0,
   1634                           v_control.x / 64.0, v_control.y / 64.0 ));
   1635               error = func_interface->conic_to( &v_control, &vec, user );
   1636               if ( error )
   1637                 goto Exit;
   1638               continue;
   1639             }
   1640 
   1641             if ( tag != FT_CURVE_TAG_CONIC )
   1642               goto Invalid_Outline;
   1643 
   1644             v_middle.x = ( v_control.x + vec.x ) / 2;
   1645             v_middle.y = ( v_control.y + vec.y ) / 2;
   1646 
   1647             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1648                         " with control (%.2f, %.2f)\n",
   1649                         v_middle.x / 64.0, v_middle.y / 64.0,
   1650                         v_control.x / 64.0, v_control.y / 64.0 ));
   1651             error = func_interface->conic_to( &v_control, &v_middle, user );
   1652             if ( error )
   1653               goto Exit;
   1654 
   1655             v_control = vec;
   1656             goto Do_Conic;
   1657           }
   1658 
   1659           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1660                       " with control (%.2f, %.2f)\n",
   1661                       v_start.x / 64.0, v_start.y / 64.0,
   1662                       v_control.x / 64.0, v_control.y / 64.0 ));
   1663           error = func_interface->conic_to( &v_control, &v_start, user );
   1664           goto Close;
   1665 
   1666         default:  /* FT_CURVE_TAG_CUBIC */
   1667           {
   1668             FT_Vector  vec1, vec2;
   1669 
   1670 
   1671             if ( point + 1 > limit                             ||
   1672                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1673               goto Invalid_Outline;
   1674 
   1675             point += 2;
   1676             tags  += 2;
   1677 
   1678             vec1.x = SCALED( point[-2].x );
   1679             vec1.y = SCALED( point[-2].y );
   1680 
   1681             vec2.x = SCALED( point[-1].x );
   1682             vec2.y = SCALED( point[-1].y );
   1683 
   1684             if ( point <= limit )
   1685             {
   1686               FT_Vector  vec;
   1687 
   1688 
   1689               vec.x = SCALED( point->x );
   1690               vec.y = SCALED( point->y );
   1691 
   1692               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1693                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1694                           vec.x / 64.0, vec.y / 64.0,
   1695                           vec1.x / 64.0, vec1.y / 64.0,
   1696                           vec2.x / 64.0, vec2.y / 64.0 ));
   1697               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1698               if ( error )
   1699                 goto Exit;
   1700               continue;
   1701             }
   1702 
   1703             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1704                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1705                         v_start.x / 64.0, v_start.y / 64.0,
   1706                         vec1.x / 64.0, vec1.y / 64.0,
   1707                         vec2.x / 64.0, vec2.y / 64.0 ));
   1708             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1709             goto Close;
   1710           }
   1711         }
   1712       }
   1713 
   1714       /* close the contour with a line segment */
   1715       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1716                   v_start.x / 64.0, v_start.y / 64.0 ));
   1717       error = func_interface->line_to( &v_start, user );
   1718 
   1719    Close:
   1720       if ( error )
   1721         goto Exit;
   1722 
   1723       first = last + 1;
   1724     }
   1725 
   1726     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1727     return 0;
   1728 
   1729   Exit:
   1730     FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
   1731     return error;
   1732 
   1733   Invalid_Outline:
   1734     return FT_THROW( Invalid_Outline );
   1735   }
   1736 
   1737 #endif /* _STANDALONE_ */
   1738 
   1739 
   1740   typedef struct  gray_TBand_
   1741   {
   1742     TPos  min, max;
   1743 
   1744   } gray_TBand;
   1745 
   1746 
   1747   FT_DEFINE_OUTLINE_FUNCS(
   1748     func_interface,
   1749 
   1750     (FT_Outline_MoveTo_Func) gray_move_to,
   1751     (FT_Outline_LineTo_Func) gray_line_to,
   1752     (FT_Outline_ConicTo_Func)gray_conic_to,
   1753     (FT_Outline_CubicTo_Func)gray_cubic_to,
   1754     0,
   1755     0 )
   1756 
   1757 
   1758   static int
   1759   gray_convert_glyph_inner( RAS_ARG )
   1760   {
   1761 
   1762     volatile int  error = 0;
   1763 
   1764 #ifdef FT_CONFIG_OPTION_PIC
   1765       FT_Outline_Funcs func_interface;
   1766       Init_Class_func_interface(&func_interface);
   1767 #endif
   1768 
   1769     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1770     {
   1771       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1772       if ( !ras.invalid )
   1773         gray_record_cell( RAS_VAR );
   1774     }
   1775     else
   1776       error = FT_THROW( Memory_Overflow );
   1777 
   1778     return error;
   1779   }
   1780 
   1781 
   1782   static int
   1783   gray_convert_glyph( RAS_ARG )
   1784   {
   1785     gray_TBand            bands[40];
   1786     gray_TBand* volatile  band;
   1787     int volatile          n, num_bands;
   1788     TPos volatile         min, max, max_y;
   1789     FT_BBox*              clip;
   1790 
   1791 
   1792     /* Set up state in the raster object */
   1793     gray_compute_cbox( RAS_VAR );
   1794 
   1795     /* clip to target bitmap, exit if nothing to do */
   1796     clip = &ras.clip_box;
   1797 
   1798     if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
   1799          ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
   1800       return 0;
   1801 
   1802     if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
   1803     if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
   1804 
   1805     if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
   1806     if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
   1807 
   1808     ras.count_ex = ras.max_ex - ras.min_ex;
   1809     ras.count_ey = ras.max_ey - ras.min_ey;
   1810 
   1811     /* set up vertical bands */
   1812     num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
   1813     if ( num_bands == 0 )
   1814       num_bands = 1;
   1815     if ( num_bands >= 39 )
   1816       num_bands = 39;
   1817 
   1818     ras.band_shoot = 0;
   1819 
   1820     min   = ras.min_ey;
   1821     max_y = ras.max_ey;
   1822 
   1823     for ( n = 0; n < num_bands; n++, min = max )
   1824     {
   1825       max = min + ras.band_size;
   1826       if ( n == num_bands - 1 || max > max_y )
   1827         max = max_y;
   1828 
   1829       bands[0].min = min;
   1830       bands[0].max = max;
   1831       band         = bands;
   1832 
   1833       do
   1834       {
   1835         TPos  bottom, top, middle;
   1836         int   error;
   1837 
   1838         {
   1839           PCell  cells_max;
   1840           int    yindex;
   1841           long   cell_start, cell_end, cell_mod;
   1842 
   1843 
   1844           ras.ycells = (PCell*)ras.buffer;
   1845           ras.ycount = band->max - band->min;
   1846 
   1847           cell_start = (long)sizeof ( PCell ) * ras.ycount;
   1848           cell_mod   = cell_start % (long)sizeof ( TCell );
   1849           if ( cell_mod > 0 )
   1850             cell_start += (long)sizeof ( TCell ) - cell_mod;
   1851 
   1852           cell_end  = ras.buffer_size;
   1853           cell_end -= cell_end % (long)sizeof ( TCell );
   1854 
   1855           cells_max = (PCell)( (char*)ras.buffer + cell_end );
   1856           ras.cells = (PCell)( (char*)ras.buffer + cell_start );
   1857           if ( ras.cells >= cells_max )
   1858             goto ReduceBands;
   1859 
   1860           ras.max_cells = cells_max - ras.cells;
   1861           if ( ras.max_cells < 2 )
   1862             goto ReduceBands;
   1863 
   1864           for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1865             ras.ycells[yindex] = NULL;
   1866         }
   1867 
   1868         ras.num_cells = 0;
   1869         ras.invalid   = 1;
   1870         ras.min_ey    = band->min;
   1871         ras.max_ey    = band->max;
   1872         ras.count_ey  = band->max - band->min;
   1873 
   1874         error = gray_convert_glyph_inner( RAS_VAR );
   1875 
   1876         if ( !error )
   1877         {
   1878           gray_sweep( RAS_VAR_ &ras.target );
   1879           band--;
   1880           continue;
   1881         }
   1882         else if ( error != ErrRaster_Memory_Overflow )
   1883           return 1;
   1884 
   1885       ReduceBands:
   1886         /* render pool overflow; we will reduce the render band by half */
   1887         bottom = band->min;
   1888         top    = band->max;
   1889         middle = bottom + ( ( top - bottom ) >> 1 );
   1890 
   1891         /* This is too complex for a single scanline; there must */
   1892         /* be some problems.                                     */
   1893         if ( middle == bottom )
   1894         {
   1895 #ifdef FT_DEBUG_LEVEL_TRACE
   1896           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1897 #endif
   1898           return 1;
   1899         }
   1900 
   1901         if ( bottom-top >= ras.band_size )
   1902           ras.band_shoot++;
   1903 
   1904         band[1].min = bottom;
   1905         band[1].max = middle;
   1906         band[0].min = middle;
   1907         band[0].max = top;
   1908         band++;
   1909       } while ( band >= bands );
   1910     }
   1911 
   1912     if ( ras.band_shoot > 8 && ras.band_size > 16 )
   1913       ras.band_size = ras.band_size / 2;
   1914 
   1915     return 0;
   1916   }
   1917 
   1918 
   1919   static int
   1920   gray_raster_render( gray_PRaster             raster,
   1921                       const FT_Raster_Params*  params )
   1922   {
   1923     const FT_Outline*  outline     = (const FT_Outline*)params->source;
   1924     const FT_Bitmap*   target_map  = params->target;
   1925 
   1926     gray_TWorker  worker[1];
   1927 
   1928     TCell  buffer[FT_MAX( FT_RENDER_POOL_SIZE, 2048 ) / sizeof ( TCell )];
   1929     long   buffer_size = sizeof ( buffer );
   1930     int    band_size   = (int)( buffer_size /
   1931                                 (long)( sizeof ( TCell ) * 8 ) );
   1932 
   1933 
   1934     if ( !raster )
   1935       return FT_THROW( Invalid_Argument );
   1936 
   1937     if ( !outline )
   1938       return FT_THROW( Invalid_Outline );
   1939 
   1940     /* return immediately if the outline is empty */
   1941     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1942       return 0;
   1943 
   1944     if ( !outline->contours || !outline->points )
   1945       return FT_THROW( Invalid_Outline );
   1946 
   1947     if ( outline->n_points !=
   1948            outline->contours[outline->n_contours - 1] + 1 )
   1949       return FT_THROW( Invalid_Outline );
   1950 
   1951     /* if direct mode is not set, we must have a target bitmap */
   1952     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1953     {
   1954       if ( !target_map )
   1955         return FT_THROW( Invalid_Argument );
   1956 
   1957       /* nothing to do */
   1958       if ( !target_map->width || !target_map->rows )
   1959         return 0;
   1960 
   1961       if ( !target_map->buffer )
   1962         return FT_THROW( Invalid_Argument );
   1963     }
   1964 
   1965     /* this version does not support monochrome rendering */
   1966     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1967       return FT_THROW( Invalid_Mode );
   1968 
   1969     /* compute clipping box */
   1970     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1971     {
   1972       /* compute clip box from target pixmap */
   1973       ras.clip_box.xMin = 0;
   1974       ras.clip_box.yMin = 0;
   1975       ras.clip_box.xMax = (FT_Pos)target_map->width;
   1976       ras.clip_box.yMax = (FT_Pos)target_map->rows;
   1977     }
   1978     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1979       ras.clip_box = params->clip_box;
   1980     else
   1981     {
   1982       ras.clip_box.xMin = -32768L;
   1983       ras.clip_box.yMin = -32768L;
   1984       ras.clip_box.xMax =  32767L;
   1985       ras.clip_box.yMax =  32767L;
   1986     }
   1987 
   1988     gray_init_cells( RAS_VAR_ buffer, buffer_size );
   1989 
   1990     ras.outline        = *outline;
   1991     ras.num_cells      = 0;
   1992     ras.invalid        = 1;
   1993     ras.band_size      = band_size;
   1994     ras.num_gray_spans = 0;
   1995     ras.span_y         = 0;
   1996 
   1997     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1998     {
   1999       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   2000       ras.render_span_data = params->user;
   2001     }
   2002     else
   2003     {
   2004       ras.target           = *target_map;
   2005       ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
   2006       ras.render_span_data = &ras;
   2007     }
   2008 
   2009     return gray_convert_glyph( RAS_VAR );
   2010   }
   2011 
   2012 
   2013   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   2014   /****                         a static object.                   *****/
   2015 
   2016 #ifdef _STANDALONE_
   2017 
   2018   static int
   2019   gray_raster_new( void*       memory,
   2020                    FT_Raster*  araster )
   2021   {
   2022     static gray_TRaster  the_raster;
   2023 
   2024     FT_UNUSED( memory );
   2025 
   2026 
   2027     *araster = (FT_Raster)&the_raster;
   2028     FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
   2029 
   2030     return 0;
   2031   }
   2032 
   2033 
   2034   static void
   2035   gray_raster_done( FT_Raster  raster )
   2036   {
   2037     /* nothing */
   2038     FT_UNUSED( raster );
   2039   }
   2040 
   2041 #else /* !_STANDALONE_ */
   2042 
   2043   static int
   2044   gray_raster_new( FT_Memory   memory,
   2045                    FT_Raster*  araster )
   2046   {
   2047     FT_Error      error;
   2048     gray_PRaster  raster = NULL;
   2049 
   2050 
   2051     *araster = 0;
   2052     if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
   2053     {
   2054       raster->memory = memory;
   2055       *araster       = (FT_Raster)raster;
   2056     }
   2057 
   2058     return error;
   2059   }
   2060 
   2061 
   2062   static void
   2063   gray_raster_done( FT_Raster  raster )
   2064   {
   2065     FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
   2066 
   2067 
   2068     FT_FREE( raster );
   2069   }
   2070 
   2071 #endif /* !_STANDALONE_ */
   2072 
   2073 
   2074   static void
   2075   gray_raster_reset( FT_Raster  raster,
   2076                      char*      pool_base,
   2077                      long       pool_size )
   2078   {
   2079     FT_UNUSED( raster );
   2080     FT_UNUSED( pool_base );
   2081     FT_UNUSED( pool_size );
   2082   }
   2083 
   2084 
   2085   static int
   2086   gray_raster_set_mode( FT_Raster      raster,
   2087                         unsigned long  mode,
   2088                         void*          args )
   2089   {
   2090     FT_UNUSED( raster );
   2091     FT_UNUSED( mode );
   2092     FT_UNUSED( args );
   2093 
   2094 
   2095     return 0; /* nothing to do */
   2096   }
   2097 
   2098 
   2099   FT_DEFINE_RASTER_FUNCS(
   2100     ft_grays_raster,
   2101 
   2102     FT_GLYPH_FORMAT_OUTLINE,
   2103 
   2104     (FT_Raster_New_Func)     gray_raster_new,
   2105     (FT_Raster_Reset_Func)   gray_raster_reset,
   2106     (FT_Raster_Set_Mode_Func)gray_raster_set_mode,
   2107     (FT_Raster_Render_Func)  gray_raster_render,
   2108     (FT_Raster_Done_Func)    gray_raster_done )
   2109 
   2110 
   2111 /* END */
   2112 
   2113 
   2114 /* Local Variables: */
   2115 /* coding: utf-8    */
   2116 /* End:             */
   2117