Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jchuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting output suspension.
     11  * If the data destination module demands suspension, we want to be able to
     12  * back up to the start of the current MCU.  To do this, we copy state
     13  * variables into local working storage, and update them back to the
     14  * permanent JPEG objects only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
     21 
     22 /* Expanded entropy encoder object for Huffman encoding.
     23  *
     24  * The savable_state subrecord contains fields that change within an MCU,
     25  * but must not be updated permanently until we complete the MCU.
     26  */
     27 
     28 typedef struct {
     29   INT32 put_buffer;		/* current bit-accumulation buffer */
     30   int put_bits;			/* # of bits now in it */
     31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     32 } savable_state;
     33 
     34 /* This macro is to work around compilers with missing or broken
     35  * structure assignment.  You'll need to fix this code if you have
     36  * such a compiler and you change MAX_COMPS_IN_SCAN.
     37  */
     38 
     39 #ifndef NO_STRUCT_ASSIGN
     40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     41 #else
     42 #if MAX_COMPS_IN_SCAN == 4
     43 #define ASSIGN_STATE(dest,src)  \
     44 	((dest).put_buffer = (src).put_buffer, \
     45 	 (dest).put_bits = (src).put_bits, \
     46 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     47 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     48 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     49 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     50 #endif
     51 #endif
     52 
     53 
     54 typedef struct {
     55   struct jpeg_entropy_encoder pub; /* public fields */
     56 
     57   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     58 
     59   /* These fields are NOT loaded into local working state. */
     60   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     61   int next_restart_num;		/* next restart number to write (0-7) */
     62 
     63   /* Pointers to derived tables (these workspaces have image lifespan) */
     64   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     65   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     66 
     67 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
     68   long * dc_count_ptrs[NUM_HUFF_TBLS];
     69   long * ac_count_ptrs[NUM_HUFF_TBLS];
     70 #endif
     71 } huff_entropy_encoder;
     72 
     73 typedef huff_entropy_encoder * huff_entropy_ptr;
     74 
     75 /* Working state while writing an MCU.
     76  * This struct contains all the fields that are needed by subroutines.
     77  */
     78 
     79 typedef struct {
     80   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     81   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     82   savable_state cur;		/* Current bit buffer & DC state */
     83   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
     84 } working_state;
     85 
     86 
     87 /* Forward declarations */
     88 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
     89 					JBLOCKROW *MCU_data));
     90 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
     91 #ifdef ENTROPY_OPT_SUPPORTED
     92 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
     93 					  JBLOCKROW *MCU_data));
     94 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
     95 #endif
     96 
     97 
     98 /*
     99  * Initialize for a Huffman-compressed scan.
    100  * If gather_statistics is TRUE, we do not output anything during the scan,
    101  * just count the Huffman symbols used and generate Huffman code tables.
    102  */
    103 
    104 METHODDEF(void)
    105 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    106 {
    107   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    108   int ci, dctbl, actbl;
    109   jpeg_component_info * compptr;
    110 
    111   if (gather_statistics) {
    112 #ifdef ENTROPY_OPT_SUPPORTED
    113     entropy->pub.encode_mcu = encode_mcu_gather;
    114     entropy->pub.finish_pass = finish_pass_gather;
    115 #else
    116     ERREXIT(cinfo, JERR_NOT_COMPILED);
    117 #endif
    118   } else {
    119     entropy->pub.encode_mcu = encode_mcu_huff;
    120     entropy->pub.finish_pass = finish_pass_huff;
    121   }
    122 
    123   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    124     compptr = cinfo->cur_comp_info[ci];
    125     dctbl = compptr->dc_tbl_no;
    126     actbl = compptr->ac_tbl_no;
    127     if (gather_statistics) {
    128 #ifdef ENTROPY_OPT_SUPPORTED
    129       /* Check for invalid table indexes */
    130       /* (make_c_derived_tbl does this in the other path) */
    131       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    132 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    133       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    134 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    135       /* Allocate and zero the statistics tables */
    136       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    137       if (entropy->dc_count_ptrs[dctbl] == NULL)
    138 	entropy->dc_count_ptrs[dctbl] = (long *)
    139 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    140 				      257 * SIZEOF(long));
    141       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
    142       if (entropy->ac_count_ptrs[actbl] == NULL)
    143 	entropy->ac_count_ptrs[actbl] = (long *)
    144 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    145 				      257 * SIZEOF(long));
    146       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
    147 #endif
    148     } else {
    149       /* Compute derived values for Huffman tables */
    150       /* We may do this more than once for a table, but it's not expensive */
    151       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    152 			      & entropy->dc_derived_tbls[dctbl]);
    153       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    154 			      & entropy->ac_derived_tbls[actbl]);
    155     }
    156     /* Initialize DC predictions to 0 */
    157     entropy->saved.last_dc_val[ci] = 0;
    158   }
    159 
    160   /* Initialize bit buffer to empty */
    161   entropy->saved.put_buffer = 0;
    162   entropy->saved.put_bits = 0;
    163 
    164   /* Initialize restart stuff */
    165   entropy->restarts_to_go = cinfo->restart_interval;
    166   entropy->next_restart_num = 0;
    167 }
    168 
    169 
    170 /*
    171  * Compute the derived values for a Huffman table.
    172  * This routine also performs some validation checks on the table.
    173  *
    174  * Note this is also used by jcphuff.c.
    175  */
    176 
    177 GLOBAL(void)
    178 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    179 			 c_derived_tbl ** pdtbl)
    180 {
    181   JHUFF_TBL *htbl;
    182   c_derived_tbl *dtbl;
    183   int p, i, l, lastp, _si, maxsymbol;
    184   char huffsize[257];
    185   unsigned int huffcode[257];
    186   unsigned int code;
    187 
    188   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    189    * paralleling the order of the symbols themselves in htbl->huffval[].
    190    */
    191 
    192   /* Find the input Huffman table */
    193   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    194     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    195   htbl =
    196     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    197   if (htbl == NULL)
    198     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    199 
    200   /* Allocate a workspace if we haven't already done so. */
    201   if (*pdtbl == NULL)
    202     *pdtbl = (c_derived_tbl *)
    203       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    204 				  SIZEOF(c_derived_tbl));
    205   dtbl = *pdtbl;
    206 
    207   /* Figure C.1: make table of Huffman code length for each symbol */
    208 
    209   p = 0;
    210   for (l = 1; l <= 16; l++) {
    211     i = (int) htbl->bits[l];
    212     if (i < 0 || p + i > 256)	/* protect against table overrun */
    213       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    214     while (i--)
    215       huffsize[p++] = (char) l;
    216   }
    217   huffsize[p] = 0;
    218   lastp = p;
    219 
    220   /* Figure C.2: generate the codes themselves */
    221   /* We also validate that the counts represent a legal Huffman code tree. */
    222 
    223   code = 0;
    224   _si = huffsize[0];
    225   p = 0;
    226   while (huffsize[p]) {
    227     while (((int) huffsize[p]) == _si) {
    228       huffcode[p++] = code;
    229       code++;
    230     }
    231     /* code is now 1 more than the last code used for codelength si; but
    232      * it must still fit in si bits, since no code is allowed to be all ones.
    233      */
    234     if (((INT32) code) >= (((INT32) 1) << _si))
    235       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    236     code <<= 1;
    237     _si++;
    238   }
    239 
    240   /* Figure C.3: generate encoding tables */
    241   /* These are code and size indexed by symbol value */
    242 
    243   /* Set all codeless symbols to have code length 0;
    244    * this lets us detect duplicate VAL entries here, and later
    245    * allows emit_bits to detect any attempt to emit such symbols.
    246    */
    247   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    248 
    249   /* This is also a convenient place to check for out-of-range
    250    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    251    * but only 0..15 for DC.  (We could constrain them further
    252    * based on data depth and mode, but this seems enough.)
    253    */
    254   maxsymbol = isDC ? 15 : 255;
    255 
    256   for (p = 0; p < lastp; p++) {
    257     i = htbl->huffval[p];
    258     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    259       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    260     dtbl->ehufco[i] = huffcode[p];
    261     dtbl->ehufsi[i] = huffsize[p];
    262   }
    263 }
    264 
    265 
    266 /* Outputting bytes to the file */
    267 
    268 /* Emit a byte, taking 'action' if must suspend. */
    269 #define emit_byte(state,val,action)  \
    270 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
    271 	  if (--(state)->free_in_buffer == 0)  \
    272 	    if (! dump_buffer(state))  \
    273 	      { action; } }
    274 
    275 
    276 LOCAL(boolean)
    277 dump_buffer (working_state * state)
    278 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    279 {
    280   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    281 
    282   if (! (*dest->empty_output_buffer) (state->cinfo))
    283     return FALSE;
    284   /* After a successful buffer dump, must reset buffer pointers */
    285   state->next_output_byte = dest->next_output_byte;
    286   state->free_in_buffer = dest->free_in_buffer;
    287   return TRUE;
    288 }
    289 
    290 
    291 /* Outputting bits to the file */
    292 
    293 /* Only the right 24 bits of put_buffer are used; the valid bits are
    294  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    295  * in one call, and we never retain more than 7 bits in put_buffer
    296  * between calls, so 24 bits are sufficient.
    297  */
    298 
    299 INLINE
    300 LOCAL(boolean)
    301 emit_bits (working_state * state, unsigned int code, int size)
    302 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
    303 {
    304   /* This routine is heavily used, so it's worth coding tightly. */
    305   register INT32 put_buffer = (INT32) code;
    306   register int put_bits = state->cur.put_bits;
    307 
    308   /* if size is 0, caller used an invalid Huffman table entry */
    309   if (size == 0)
    310     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
    311 
    312   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    313 
    314   put_bits += size;		/* new number of bits in buffer */
    315 
    316   put_buffer <<= 24 - put_bits; /* align incoming bits */
    317 
    318   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
    319 
    320   while (put_bits >= 8) {
    321     int c = (int) ((put_buffer >> 16) & 0xFF);
    322 
    323     emit_byte(state, c, return FALSE);
    324     if (c == 0xFF) {		/* need to stuff a zero byte? */
    325       emit_byte(state, 0, return FALSE);
    326     }
    327     put_buffer <<= 8;
    328     put_bits -= 8;
    329   }
    330 
    331   state->cur.put_buffer = put_buffer; /* update state variables */
    332   state->cur.put_bits = put_bits;
    333 
    334   return TRUE;
    335 }
    336 
    337 
    338 LOCAL(boolean)
    339 flush_bits (working_state * state)
    340 {
    341   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
    342     return FALSE;
    343   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
    344   state->cur.put_bits = 0;
    345   return TRUE;
    346 }
    347 
    348 
    349 /* Encode a single block's worth of coefficients */
    350 
    351 LOCAL(boolean)
    352 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    353 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
    354 {
    355   register int temp, temp2;
    356   register int nbits;
    357   register int k, r, i;
    358 
    359   /* Encode the DC coefficient difference per section F.1.2.1 */
    360 
    361   temp = temp2 = block[0] - last_dc_val;
    362 
    363   if (temp < 0) {
    364     temp = -temp;		/* temp is abs value of input */
    365     /* For a negative input, want temp2 = bitwise complement of abs(input) */
    366     /* This code assumes we are on a two's complement machine */
    367     temp2--;
    368   }
    369 
    370   /* Find the number of bits needed for the magnitude of the coefficient */
    371   nbits = 0;
    372   while (temp) {
    373     nbits++;
    374     temp >>= 1;
    375   }
    376   /* Check for out-of-range coefficient values.
    377    * Since we're encoding a difference, the range limit is twice as much.
    378    */
    379   if (nbits > MAX_COEF_BITS+1)
    380     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    381 
    382   /* Emit the Huffman-coded symbol for the number of bits */
    383   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    384     return FALSE;
    385 
    386   /* Emit that number of bits of the value, if positive, */
    387   /* or the complement of its magnitude, if negative. */
    388   if (nbits)			/* emit_bits rejects calls with size 0 */
    389     if (! emit_bits(state, (unsigned int) temp2, nbits))
    390       return FALSE;
    391 
    392   /* Encode the AC coefficients per section F.1.2.2 */
    393 
    394   r = 0;			/* r = run length of zeros */
    395 
    396   for (k = 1; k < DCTSIZE2; k++) {
    397     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    398       r++;
    399     } else {
    400       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    401       while (r > 15) {
    402 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
    403 	  return FALSE;
    404 	r -= 16;
    405       }
    406 
    407       temp2 = temp;
    408       if (temp < 0) {
    409 	temp = -temp;		/* temp is abs value of input */
    410 	/* This code assumes we are on a two's complement machine */
    411 	temp2--;
    412       }
    413 
    414       /* Find the number of bits needed for the magnitude of the coefficient */
    415       nbits = 1;		/* there must be at least one 1 bit */
    416       while ((temp >>= 1))
    417 	nbits++;
    418       /* Check for out-of-range coefficient values */
    419       if (nbits > MAX_COEF_BITS)
    420 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    421 
    422       /* Emit Huffman symbol for run length / number of bits */
    423       i = (r << 4) + nbits;
    424       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
    425 	return FALSE;
    426 
    427       /* Emit that number of bits of the value, if positive, */
    428       /* or the complement of its magnitude, if negative. */
    429       if (! emit_bits(state, (unsigned int) temp2, nbits))
    430 	return FALSE;
    431 
    432       r = 0;
    433     }
    434   }
    435 
    436   /* If the last coef(s) were zero, emit an end-of-block code */
    437   if (r > 0)
    438     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
    439       return FALSE;
    440 
    441   return TRUE;
    442 }
    443 
    444 
    445 /*
    446  * Emit a restart marker & resynchronize predictions.
    447  */
    448 
    449 LOCAL(boolean)
    450 emit_restart (working_state * state, int restart_num)
    451 {
    452   int ci;
    453 
    454   if (! flush_bits(state))
    455     return FALSE;
    456 
    457   emit_byte(state, 0xFF, return FALSE);
    458   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    459 
    460   /* Re-initialize DC predictions to 0 */
    461   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    462     state->cur.last_dc_val[ci] = 0;
    463 
    464   /* The restart counter is not updated until we successfully write the MCU. */
    465 
    466   return TRUE;
    467 }
    468 
    469 
    470 /*
    471  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    472  */
    473 
    474 METHODDEF(boolean)
    475 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    476 {
    477   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    478   working_state state;
    479   int blkn, ci;
    480   jpeg_component_info * compptr;
    481 
    482   /* Load up working state */
    483   state.next_output_byte = cinfo->dest->next_output_byte;
    484   state.free_in_buffer = cinfo->dest->free_in_buffer;
    485   ASSIGN_STATE(state.cur, entropy->saved);
    486   state.cinfo = cinfo;
    487 
    488   /* Emit restart marker if needed */
    489   if (cinfo->restart_interval) {
    490     if (entropy->restarts_to_go == 0)
    491       if (! emit_restart(&state, entropy->next_restart_num))
    492 	return FALSE;
    493   }
    494 
    495   /* Encode the MCU data blocks */
    496   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    497     ci = cinfo->MCU_membership[blkn];
    498     compptr = cinfo->cur_comp_info[ci];
    499     if (! encode_one_block(&state,
    500 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    501 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    502 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    503       return FALSE;
    504     /* Update last_dc_val */
    505     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    506   }
    507 
    508   /* Completed MCU, so update state */
    509   cinfo->dest->next_output_byte = state.next_output_byte;
    510   cinfo->dest->free_in_buffer = state.free_in_buffer;
    511   ASSIGN_STATE(entropy->saved, state.cur);
    512 
    513   /* Update restart-interval state too */
    514   if (cinfo->restart_interval) {
    515     if (entropy->restarts_to_go == 0) {
    516       entropy->restarts_to_go = cinfo->restart_interval;
    517       entropy->next_restart_num++;
    518       entropy->next_restart_num &= 7;
    519     }
    520     entropy->restarts_to_go--;
    521   }
    522 
    523   return TRUE;
    524 }
    525 
    526 
    527 /*
    528  * Finish up at the end of a Huffman-compressed scan.
    529  */
    530 
    531 METHODDEF(void)
    532 finish_pass_huff (j_compress_ptr cinfo)
    533 {
    534   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    535   working_state state;
    536 
    537   /* Load up working state ... flush_bits needs it */
    538   state.next_output_byte = cinfo->dest->next_output_byte;
    539   state.free_in_buffer = cinfo->dest->free_in_buffer;
    540   ASSIGN_STATE(state.cur, entropy->saved);
    541   state.cinfo = cinfo;
    542 
    543   /* Flush out the last data */
    544   if (! flush_bits(&state))
    545     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    546 
    547   /* Update state */
    548   cinfo->dest->next_output_byte = state.next_output_byte;
    549   cinfo->dest->free_in_buffer = state.free_in_buffer;
    550   ASSIGN_STATE(entropy->saved, state.cur);
    551 }
    552 
    553 
    554 /*
    555  * Huffman coding optimization.
    556  *
    557  * We first scan the supplied data and count the number of uses of each symbol
    558  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    559  * Then we build a Huffman coding tree for the observed counts.
    560  * Symbols which are not needed at all for the particular image are not
    561  * assigned any code, which saves space in the DHT marker as well as in
    562  * the compressed data.
    563  */
    564 
    565 #ifdef ENTROPY_OPT_SUPPORTED
    566 
    567 
    568 /* Process a single block's worth of coefficients */
    569 
    570 LOCAL(void)
    571 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    572 		 long dc_counts[], long ac_counts[])
    573 {
    574   register int temp;
    575   register int nbits;
    576   register int k, r;
    577 
    578   /* Encode the DC coefficient difference per section F.1.2.1 */
    579 
    580   temp = block[0] - last_dc_val;
    581   if (temp < 0)
    582     temp = -temp;
    583 
    584   /* Find the number of bits needed for the magnitude of the coefficient */
    585   nbits = 0;
    586   while (temp) {
    587     nbits++;
    588     temp >>= 1;
    589   }
    590   /* Check for out-of-range coefficient values.
    591    * Since we're encoding a difference, the range limit is twice as much.
    592    */
    593   if (nbits > MAX_COEF_BITS+1)
    594     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    595 
    596   /* Count the Huffman symbol for the number of bits */
    597   dc_counts[nbits]++;
    598 
    599   /* Encode the AC coefficients per section F.1.2.2 */
    600 
    601   r = 0;			/* r = run length of zeros */
    602 
    603   for (k = 1; k < DCTSIZE2; k++) {
    604     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    605       r++;
    606     } else {
    607       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    608       while (r > 15) {
    609 	ac_counts[0xF0]++;
    610 	r -= 16;
    611       }
    612 
    613       /* Find the number of bits needed for the magnitude of the coefficient */
    614       if (temp < 0)
    615 	temp = -temp;
    616 
    617       /* Find the number of bits needed for the magnitude of the coefficient */
    618       nbits = 1;		/* there must be at least one 1 bit */
    619       while ((temp >>= 1))
    620 	nbits++;
    621       /* Check for out-of-range coefficient values */
    622       if (nbits > MAX_COEF_BITS)
    623 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    624 
    625       /* Count Huffman symbol for run length / number of bits */
    626       ac_counts[(r << 4) + nbits]++;
    627 
    628       r = 0;
    629     }
    630   }
    631 
    632   /* If the last coef(s) were zero, emit an end-of-block code */
    633   if (r > 0)
    634     ac_counts[0]++;
    635 }
    636 
    637 
    638 /*
    639  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    640  * No data is actually output, so no suspension return is possible.
    641  */
    642 
    643 METHODDEF(boolean)
    644 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    645 {
    646   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    647   int blkn, ci;
    648   jpeg_component_info * compptr;
    649 
    650   /* Take care of restart intervals if needed */
    651   if (cinfo->restart_interval) {
    652     if (entropy->restarts_to_go == 0) {
    653       /* Re-initialize DC predictions to 0 */
    654       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    655 	entropy->saved.last_dc_val[ci] = 0;
    656       /* Update restart state */
    657       entropy->restarts_to_go = cinfo->restart_interval;
    658     }
    659     entropy->restarts_to_go--;
    660   }
    661 
    662   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    663     ci = cinfo->MCU_membership[blkn];
    664     compptr = cinfo->cur_comp_info[ci];
    665     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    666 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
    667 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    668     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    669   }
    670 
    671   return TRUE;
    672 }
    673 
    674 
    675 /*
    676  * Generate the best Huffman code table for the given counts, fill htbl.
    677  * Note this is also used by jcphuff.c.
    678  *
    679  * The JPEG standard requires that no symbol be assigned a codeword of all
    680  * one bits (so that padding bits added at the end of a compressed segment
    681  * can't look like a valid code).  Because of the canonical ordering of
    682  * codewords, this just means that there must be an unused slot in the
    683  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    684  * reserving such a slot by pretending that symbol 256 is a valid symbol
    685  * with count 1.  In theory that's not optimal; giving it count zero but
    686  * including it in the symbol set anyway should give a better Huffman code.
    687  * But the theoretically better code actually seems to come out worse in
    688  * practice, because it produces more all-ones bytes (which incur stuffed
    689  * zero bytes in the final file).  In any case the difference is tiny.
    690  *
    691  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    692  * If some symbols have a very small but nonzero probability, the Huffman tree
    693  * must be adjusted to meet the code length restriction.  We currently use
    694  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    695  * optimal; it may not choose the best possible limited-length code.  But
    696  * typically only very-low-frequency symbols will be given less-than-optimal
    697  * lengths, so the code is almost optimal.  Experimental comparisons against
    698  * an optimal limited-length-code algorithm indicate that the difference is
    699  * microscopic --- usually less than a hundredth of a percent of total size.
    700  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    701  */
    702 
    703 GLOBAL(void)
    704 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
    705 {
    706 #define MAX_CLEN 32		/* assumed maximum initial code length */
    707   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
    708   int codesize[257];		/* codesize[k] = code length of symbol k */
    709   int others[257];		/* next symbol in current branch of tree */
    710   int c1, c2;
    711   int p, i, j;
    712   long v;
    713 
    714   /* This algorithm is explained in section K.2 of the JPEG standard */
    715 
    716   MEMZERO(bits, SIZEOF(bits));
    717   MEMZERO(codesize, SIZEOF(codesize));
    718   for (i = 0; i < 257; i++)
    719     others[i] = -1;		/* init links to empty */
    720 
    721   freq[256] = 1;		/* make sure 256 has a nonzero count */
    722   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    723    * that no real symbol is given code-value of all ones, because 256
    724    * will be placed last in the largest codeword category.
    725    */
    726 
    727   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    728 
    729   for (;;) {
    730     /* Find the smallest nonzero frequency, set c1 = its symbol */
    731     /* In case of ties, take the larger symbol number */
    732     c1 = -1;
    733     v = 1000000000L;
    734     for (i = 0; i <= 256; i++) {
    735       if (freq[i] && freq[i] <= v) {
    736 	v = freq[i];
    737 	c1 = i;
    738       }
    739     }
    740 
    741     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    742     /* In case of ties, take the larger symbol number */
    743     c2 = -1;
    744     v = 1000000000L;
    745     for (i = 0; i <= 256; i++) {
    746       if (freq[i] && freq[i] <= v && i != c1) {
    747 	v = freq[i];
    748 	c2 = i;
    749       }
    750     }
    751 
    752     /* Done if we've merged everything into one frequency */
    753     if (c2 < 0)
    754       break;
    755 
    756     /* Else merge the two counts/trees */
    757     freq[c1] += freq[c2];
    758     freq[c2] = 0;
    759 
    760     /* Increment the codesize of everything in c1's tree branch */
    761     codesize[c1]++;
    762     while (others[c1] >= 0) {
    763       c1 = others[c1];
    764       codesize[c1]++;
    765     }
    766 
    767     others[c1] = c2;		/* chain c2 onto c1's tree branch */
    768 
    769     /* Increment the codesize of everything in c2's tree branch */
    770     codesize[c2]++;
    771     while (others[c2] >= 0) {
    772       c2 = others[c2];
    773       codesize[c2]++;
    774     }
    775   }
    776 
    777   /* Now count the number of symbols of each code length */
    778   for (i = 0; i <= 256; i++) {
    779     if (codesize[i]) {
    780       /* The JPEG standard seems to think that this can't happen, */
    781       /* but I'm paranoid... */
    782       if (codesize[i] > MAX_CLEN)
    783 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    784 
    785       bits[codesize[i]]++;
    786     }
    787   }
    788 
    789   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    790    * Huffman procedure assigned any such lengths, we must adjust the coding.
    791    * Here is what the JPEG spec says about how this next bit works:
    792    * Since symbols are paired for the longest Huffman code, the symbols are
    793    * removed from this length category two at a time.  The prefix for the pair
    794    * (which is one bit shorter) is allocated to one of the pair; then,
    795    * skipping the BITS entry for that prefix length, a code word from the next
    796    * shortest nonzero BITS entry is converted into a prefix for two code words
    797    * one bit longer.
    798    */
    799 
    800   for (i = MAX_CLEN; i > 16; i--) {
    801     while (bits[i] > 0) {
    802       j = i - 2;		/* find length of new prefix to be used */
    803       while (bits[j] == 0)
    804 	j--;
    805 
    806       bits[i] -= 2;		/* remove two symbols */
    807       bits[i-1]++;		/* one goes in this length */
    808       bits[j+1] += 2;		/* two new symbols in this length */
    809       bits[j]--;		/* symbol of this length is now a prefix */
    810     }
    811   }
    812 
    813   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    814   while (bits[i] == 0)		/* find largest codelength still in use */
    815     i--;
    816   bits[i]--;
    817 
    818   /* Return final symbol counts (only for lengths 0..16) */
    819   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
    820 
    821   /* Return a list of the symbols sorted by code length */
    822   /* It's not real clear to me why we don't need to consider the codelength
    823    * changes made above, but the JPEG spec seems to think this works.
    824    */
    825   p = 0;
    826   for (i = 1; i <= MAX_CLEN; i++) {
    827     for (j = 0; j <= 255; j++) {
    828       if (codesize[j] == i) {
    829 	htbl->huffval[p] = (UINT8) j;
    830 	p++;
    831       }
    832     }
    833   }
    834 
    835   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    836   htbl->sent_table = FALSE;
    837 }
    838 
    839 
    840 /*
    841  * Finish up a statistics-gathering pass and create the new Huffman tables.
    842  */
    843 
    844 METHODDEF(void)
    845 finish_pass_gather (j_compress_ptr cinfo)
    846 {
    847   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    848   int ci, dctbl, actbl;
    849   jpeg_component_info * compptr;
    850   JHUFF_TBL **htblptr;
    851   boolean did_dc[NUM_HUFF_TBLS];
    852   boolean did_ac[NUM_HUFF_TBLS];
    853 
    854   /* It's important not to apply jpeg_gen_optimal_table more than once
    855    * per table, because it clobbers the input frequency counts!
    856    */
    857   MEMZERO(did_dc, SIZEOF(did_dc));
    858   MEMZERO(did_ac, SIZEOF(did_ac));
    859 
    860   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    861     compptr = cinfo->cur_comp_info[ci];
    862     dctbl = compptr->dc_tbl_no;
    863     actbl = compptr->ac_tbl_no;
    864     if (! did_dc[dctbl]) {
    865       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
    866       if (*htblptr == NULL)
    867 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    868       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
    869       did_dc[dctbl] = TRUE;
    870     }
    871     if (! did_ac[actbl]) {
    872       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
    873       if (*htblptr == NULL)
    874 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    875       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
    876       did_ac[actbl] = TRUE;
    877     }
    878   }
    879 }
    880 
    881 
    882 #endif /* ENTROPY_OPT_SUPPORTED */
    883 
    884 
    885 /*
    886  * Module initialization routine for Huffman entropy encoding.
    887  */
    888 
    889 GLOBAL(void)
    890 jinit_huff_encoder (j_compress_ptr cinfo)
    891 {
    892   huff_entropy_ptr entropy;
    893   int i;
    894 
    895   entropy = (huff_entropy_ptr)
    896     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    897 				SIZEOF(huff_entropy_encoder));
    898   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    899   entropy->pub.start_pass = start_pass_huff;
    900 
    901   /* Mark tables unallocated */
    902   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    903     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    904 #ifdef ENTROPY_OPT_SUPPORTED
    905     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
    906 #endif
    907   }
    908 }
    909