Home | History | Annotate | Download | only in tutorial
      1 .. _tut-brieftourtwo:
      2 
      3 *********************************************
      4 Brief Tour of the Standard Library -- Part II
      5 *********************************************
      6 
      7 This second tour covers more advanced modules that support professional
      8 programming needs.  These modules rarely occur in small scripts.
      9 
     10 
     11 .. _tut-output-formatting:
     12 
     13 Output Formatting
     14 =================
     15 
     16 The :mod:`repr` module provides a version of :func:`repr` customized for
     17 abbreviated displays of large or deeply nested containers::
     18 
     19    >>> import repr
     20    >>> repr.repr(set('supercalifragilisticexpialidocious'))
     21    "set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
     22 
     23 The :mod:`pprint` module offers more sophisticated control over printing both
     24 built-in and user defined objects in a way that is readable by the interpreter.
     25 When the result is longer than one line, the "pretty printer" adds line breaks
     26 and indentation to more clearly reveal data structure::
     27 
     28    >>> import pprint
     29    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
     30    ...     'yellow'], 'blue']]]
     31    ...
     32    >>> pprint.pprint(t, width=30)
     33    [[[['black', 'cyan'],
     34       'white',
     35       ['green', 'red']],
     36      [['magenta', 'yellow'],
     37       'blue']]]
     38 
     39 The :mod:`textwrap` module formats paragraphs of text to fit a given screen
     40 width::
     41 
     42    >>> import textwrap
     43    >>> doc = """The wrap() method is just like fill() except that it returns
     44    ... a list of strings instead of one big string with newlines to separate
     45    ... the wrapped lines."""
     46    ...
     47    >>> print textwrap.fill(doc, width=40)
     48    The wrap() method is just like fill()
     49    except that it returns a list of strings
     50    instead of one big string with newlines
     51    to separate the wrapped lines.
     52 
     53 The :mod:`locale` module accesses a database of culture specific data formats.
     54 The grouping attribute of locale's format function provides a direct way of
     55 formatting numbers with group separators::
     56 
     57    >>> import locale
     58    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
     59    'English_United States.1252'
     60    >>> conv = locale.localeconv()          # get a mapping of conventions
     61    >>> x = 1234567.8
     62    >>> locale.format("%d", x, grouping=True)
     63    '1,234,567'
     64    >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
     65    ...                      conv['frac_digits'], x), grouping=True)
     66    '$1,234,567.80'
     67 
     68 
     69 .. _tut-templating:
     70 
     71 Templating
     72 ==========
     73 
     74 The :mod:`string` module includes a versatile :class:`~string.Template` class
     75 with a simplified syntax suitable for editing by end-users.  This allows users
     76 to customize their applications without having to alter the application.
     77 
     78 The format uses placeholder names formed by ``$`` with valid Python identifiers
     79 (alphanumeric characters and underscores).  Surrounding the placeholder with
     80 braces allows it to be followed by more alphanumeric letters with no intervening
     81 spaces.  Writing ``$$`` creates a single escaped ``$``::
     82 
     83    >>> from string import Template
     84    >>> t = Template('${village}folk send $$10 to $cause.')
     85    >>> t.substitute(village='Nottingham', cause='the ditch fund')
     86    'Nottinghamfolk send $10 to the ditch fund.'
     87 
     88 The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a
     89 placeholder is not supplied in a dictionary or a keyword argument.  For
     90 mail-merge style applications, user supplied data may be incomplete and the
     91 :meth:`~string.Template.safe_substitute` method may be more appropriate ---
     92 it will leave placeholders unchanged if data is missing::
     93 
     94    >>> t = Template('Return the $item to $owner.')
     95    >>> d = dict(item='unladen swallow')
     96    >>> t.substitute(d)
     97    Traceback (most recent call last):
     98      ...
     99    KeyError: 'owner'
    100    >>> t.safe_substitute(d)
    101    'Return the unladen swallow to $owner.'
    102 
    103 Template subclasses can specify a custom delimiter.  For example, a batch
    104 renaming utility for a photo browser may elect to use percent signs for
    105 placeholders such as the current date, image sequence number, or file format::
    106 
    107    >>> import time, os.path
    108    >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
    109    >>> class BatchRename(Template):
    110    ...     delimiter = '%'
    111    >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):  ')
    112    Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f
    113 
    114    >>> t = BatchRename(fmt)
    115    >>> date = time.strftime('%d%b%y')
    116    >>> for i, filename in enumerate(photofiles):
    117    ...     base, ext = os.path.splitext(filename)
    118    ...     newname = t.substitute(d=date, n=i, f=ext)
    119    ...     print '{0} --> {1}'.format(filename, newname)
    120 
    121    img_1074.jpg --> Ashley_0.jpg
    122    img_1076.jpg --> Ashley_1.jpg
    123    img_1077.jpg --> Ashley_2.jpg
    124 
    125 Another application for templating is separating program logic from the details
    126 of multiple output formats.  This makes it possible to substitute custom
    127 templates for XML files, plain text reports, and HTML web reports.
    128 
    129 
    130 .. _tut-binary-formats:
    131 
    132 Working with Binary Data Record Layouts
    133 =======================================
    134 
    135 The :mod:`struct` module provides :func:`~struct.pack` and
    136 :func:`~struct.unpack` functions for working with variable length binary
    137 record formats.  The following example shows
    138 how to loop through header information in a ZIP file without using the
    139 :mod:`zipfile` module.  Pack codes ``"H"`` and ``"I"`` represent two and four
    140 byte unsigned numbers respectively.  The ``"<"`` indicates that they are
    141 standard size and in little-endian byte order::
    142 
    143    import struct
    144 
    145    data = open('myfile.zip', 'rb').read()
    146    start = 0
    147    for i in range(3):                      # show the first 3 file headers
    148        start += 14
    149        fields = struct.unpack('<IIIHH', data[start:start+16])
    150        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
    151 
    152        start += 16
    153        filename = data[start:start+filenamesize]
    154        start += filenamesize
    155        extra = data[start:start+extra_size]
    156        print filename, hex(crc32), comp_size, uncomp_size
    157 
    158        start += extra_size + comp_size     # skip to the next header
    159 
    160 
    161 .. _tut-multi-threading:
    162 
    163 Multi-threading
    164 ===============
    165 
    166 Threading is a technique for decoupling tasks which are not sequentially
    167 dependent.  Threads can be used to improve the responsiveness of applications
    168 that accept user input while other tasks run in the background.  A related use
    169 case is running I/O in parallel with computations in another thread.
    170 
    171 The following code shows how the high level :mod:`threading` module can run
    172 tasks in background while the main program continues to run::
    173 
    174    import threading, zipfile
    175 
    176    class AsyncZip(threading.Thread):
    177        def __init__(self, infile, outfile):
    178            threading.Thread.__init__(self)
    179            self.infile = infile
    180            self.outfile = outfile
    181 
    182        def run(self):
    183            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
    184            f.write(self.infile)
    185            f.close()
    186            print 'Finished background zip of: ', self.infile
    187 
    188    background = AsyncZip('mydata.txt', 'myarchive.zip')
    189    background.start()
    190    print 'The main program continues to run in foreground.'
    191 
    192    background.join()    # Wait for the background task to finish
    193    print 'Main program waited until background was done.'
    194 
    195 The principal challenge of multi-threaded applications is coordinating threads
    196 that share data or other resources.  To that end, the threading module provides
    197 a number of synchronization primitives including locks, events, condition
    198 variables, and semaphores.
    199 
    200 While those tools are powerful, minor design errors can result in problems that
    201 are difficult to reproduce.  So, the preferred approach to task coordination is
    202 to concentrate all access to a resource in a single thread and then use the
    203 :mod:`Queue` module to feed that thread with requests from other threads.
    204 Applications using :class:`Queue.Queue` objects for inter-thread communication
    205 and coordination are easier to design, more readable, and more reliable.
    206 
    207 
    208 .. _tut-logging:
    209 
    210 Logging
    211 =======
    212 
    213 The :mod:`logging` module offers a full featured and flexible logging system.
    214 At its simplest, log messages are sent to a file or to ``sys.stderr``::
    215 
    216    import logging
    217    logging.debug('Debugging information')
    218    logging.info('Informational message')
    219    logging.warning('Warning:config file %s not found', 'server.conf')
    220    logging.error('Error occurred')
    221    logging.critical('Critical error -- shutting down')
    222 
    223 This produces the following output:
    224 
    225 .. code-block:: none
    226 
    227    WARNING:root:Warning:config file server.conf not found
    228    ERROR:root:Error occurred
    229    CRITICAL:root:Critical error -- shutting down
    230 
    231 By default, informational and debugging messages are suppressed and the output
    232 is sent to standard error.  Other output options include routing messages
    233 through email, datagrams, sockets, or to an HTTP Server.  New filters can select
    234 different routing based on message priority: :const:`~logging.DEBUG`,
    235 :const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`,
    236 and :const:`~logging.CRITICAL`.
    237 
    238 The logging system can be configured directly from Python or can be loaded from
    239 a user editable configuration file for customized logging without altering the
    240 application.
    241 
    242 
    243 .. _tut-weak-references:
    244 
    245 Weak References
    246 ===============
    247 
    248 Python does automatic memory management (reference counting for most objects and
    249 :term:`garbage collection` to eliminate cycles).  The memory is freed shortly
    250 after the last reference to it has been eliminated.
    251 
    252 This approach works fine for most applications but occasionally there is a need
    253 to track objects only as long as they are being used by something else.
    254 Unfortunately, just tracking them creates a reference that makes them permanent.
    255 The :mod:`weakref` module provides tools for tracking objects without creating a
    256 reference.  When the object is no longer needed, it is automatically removed
    257 from a weakref table and a callback is triggered for weakref objects.  Typical
    258 applications include caching objects that are expensive to create::
    259 
    260    >>> import weakref, gc
    261    >>> class A:
    262    ...     def __init__(self, value):
    263    ...         self.value = value
    264    ...     def __repr__(self):
    265    ...         return str(self.value)
    266    ...
    267    >>> a = A(10)                   # create a reference
    268    >>> d = weakref.WeakValueDictionary()
    269    >>> d['primary'] = a            # does not create a reference
    270    >>> d['primary']                # fetch the object if it is still alive
    271    10
    272    >>> del a                       # remove the one reference
    273    >>> gc.collect()                # run garbage collection right away
    274    0
    275    >>> d['primary']                # entry was automatically removed
    276    Traceback (most recent call last):
    277      File "<stdin>", line 1, in <module>
    278        d['primary']                # entry was automatically removed
    279      File "C:/python26/lib/weakref.py", line 46, in __getitem__
    280        o = self.data[key]()
    281    KeyError: 'primary'
    282 
    283 
    284 .. _tut-list-tools:
    285 
    286 Tools for Working with Lists
    287 ============================
    288 
    289 Many data structure needs can be met with the built-in list type. However,
    290 sometimes there is a need for alternative implementations with different
    291 performance trade-offs.
    292 
    293 The :mod:`array` module provides an :class:`~array.array()` object that is like
    294 a list that stores only homogeneous data and stores it more compactly.  The
    295 following example shows an array of numbers stored as two byte unsigned binary
    296 numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular
    297 lists of Python int objects::
    298 
    299    >>> from array import array
    300    >>> a = array('H', [4000, 10, 700, 22222])
    301    >>> sum(a)
    302    26932
    303    >>> a[1:3]
    304    array('H', [10, 700])
    305 
    306 The :mod:`collections` module provides a :class:`~collections.deque()` object
    307 that is like a list with faster appends and pops from the left side but slower
    308 lookups in the middle. These objects are well suited for implementing queues
    309 and breadth first tree searches::
    310 
    311    >>> from collections import deque
    312    >>> d = deque(["task1", "task2", "task3"])
    313    >>> d.append("task4")
    314    >>> print "Handling", d.popleft()
    315    Handling task1
    316 
    317 ::
    318 
    319    unsearched = deque([starting_node])
    320    def breadth_first_search(unsearched):
    321        node = unsearched.popleft()
    322        for m in gen_moves(node):
    323            if is_goal(m):
    324                return m
    325            unsearched.append(m)
    326 
    327 In addition to alternative list implementations, the library also offers other
    328 tools such as the :mod:`bisect` module with functions for manipulating sorted
    329 lists::
    330 
    331    >>> import bisect
    332    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    333    >>> bisect.insort(scores, (300, 'ruby'))
    334    >>> scores
    335    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
    336 
    337 The :mod:`heapq` module provides functions for implementing heaps based on
    338 regular lists.  The lowest valued entry is always kept at position zero.  This
    339 is useful for applications which repeatedly access the smallest element but do
    340 not want to run a full list sort::
    341 
    342    >>> from heapq import heapify, heappop, heappush
    343    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    344    >>> heapify(data)                      # rearrange the list into heap order
    345    >>> heappush(data, -5)                 # add a new entry
    346    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    347    [-5, 0, 1]
    348 
    349 
    350 .. _tut-decimal-fp:
    351 
    352 Decimal Floating Point Arithmetic
    353 =================================
    354 
    355 The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for
    356 decimal floating point arithmetic.  Compared to the built-in :class:`float`
    357 implementation of binary floating point, the class is especially helpful for
    358 
    359 * financial applications and other uses which require exact decimal
    360   representation,
    361 * control over precision,
    362 * control over rounding to meet legal or regulatory requirements,
    363 * tracking of significant decimal places, or
    364 * applications where the user expects the results to match calculations done by
    365   hand.
    366 
    367 For example, calculating a 5% tax on a 70 cent phone charge gives different
    368 results in decimal floating point and binary floating point. The difference
    369 becomes significant if the results are rounded to the nearest cent::
    370 
    371    >>> from decimal import *
    372    >>> x = Decimal('0.70') * Decimal('1.05')
    373    >>> x
    374    Decimal('0.7350')
    375    >>> x.quantize(Decimal('0.01'))  # round to nearest cent
    376    Decimal('0.74')
    377    >>> round(.70 * 1.05, 2)         # same calculation with floats
    378    0.73
    379 
    380 The :class:`~decimal.Decimal` result keeps a trailing zero, automatically
    381 inferring four place significance from multiplicands with two place
    382 significance.  Decimal reproduces mathematics as done by hand and avoids
    383 issues that can arise when binary floating point cannot exactly represent
    384 decimal quantities.
    385 
    386 Exact representation enables the :class:`~decimal.Decimal` class to perform
    387 modulo calculations and equality tests that are unsuitable for binary floating
    388 point::
    389 
    390    >>> Decimal('1.00') % Decimal('.10')
    391    Decimal('0.00')
    392    >>> 1.00 % 0.10
    393    0.09999999999999995
    394 
    395    >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
    396    True
    397    >>> sum([0.1]*10) == 1.0
    398    False
    399 
    400 The :mod:`decimal` module provides arithmetic with as much precision as needed::
    401 
    402    >>> getcontext().prec = 36
    403    >>> Decimal(1) / Decimal(7)
    404    Decimal('0.142857142857142857142857142857142857')
    405 
    406 
    407