1 .. _tut-brieftourtwo: 2 3 ********************************************* 4 Brief Tour of the Standard Library -- Part II 5 ********************************************* 6 7 This second tour covers more advanced modules that support professional 8 programming needs. These modules rarely occur in small scripts. 9 10 11 .. _tut-output-formatting: 12 13 Output Formatting 14 ================= 15 16 The :mod:`repr` module provides a version of :func:`repr` customized for 17 abbreviated displays of large or deeply nested containers:: 18 19 >>> import repr 20 >>> repr.repr(set('supercalifragilisticexpialidocious')) 21 "set(['a', 'c', 'd', 'e', 'f', 'g', ...])" 22 23 The :mod:`pprint` module offers more sophisticated control over printing both 24 built-in and user defined objects in a way that is readable by the interpreter. 25 When the result is longer than one line, the "pretty printer" adds line breaks 26 and indentation to more clearly reveal data structure:: 27 28 >>> import pprint 29 >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta', 30 ... 'yellow'], 'blue']]] 31 ... 32 >>> pprint.pprint(t, width=30) 33 [[[['black', 'cyan'], 34 'white', 35 ['green', 'red']], 36 [['magenta', 'yellow'], 37 'blue']]] 38 39 The :mod:`textwrap` module formats paragraphs of text to fit a given screen 40 width:: 41 42 >>> import textwrap 43 >>> doc = """The wrap() method is just like fill() except that it returns 44 ... a list of strings instead of one big string with newlines to separate 45 ... the wrapped lines.""" 46 ... 47 >>> print textwrap.fill(doc, width=40) 48 The wrap() method is just like fill() 49 except that it returns a list of strings 50 instead of one big string with newlines 51 to separate the wrapped lines. 52 53 The :mod:`locale` module accesses a database of culture specific data formats. 54 The grouping attribute of locale's format function provides a direct way of 55 formatting numbers with group separators:: 56 57 >>> import locale 58 >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252') 59 'English_United States.1252' 60 >>> conv = locale.localeconv() # get a mapping of conventions 61 >>> x = 1234567.8 62 >>> locale.format("%d", x, grouping=True) 63 '1,234,567' 64 >>> locale.format_string("%s%.*f", (conv['currency_symbol'], 65 ... conv['frac_digits'], x), grouping=True) 66 '$1,234,567.80' 67 68 69 .. _tut-templating: 70 71 Templating 72 ========== 73 74 The :mod:`string` module includes a versatile :class:`~string.Template` class 75 with a simplified syntax suitable for editing by end-users. This allows users 76 to customize their applications without having to alter the application. 77 78 The format uses placeholder names formed by ``$`` with valid Python identifiers 79 (alphanumeric characters and underscores). Surrounding the placeholder with 80 braces allows it to be followed by more alphanumeric letters with no intervening 81 spaces. Writing ``$$`` creates a single escaped ``$``:: 82 83 >>> from string import Template 84 >>> t = Template('${village}folk send $$10 to $cause.') 85 >>> t.substitute(village='Nottingham', cause='the ditch fund') 86 'Nottinghamfolk send $10 to the ditch fund.' 87 88 The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a 89 placeholder is not supplied in a dictionary or a keyword argument. For 90 mail-merge style applications, user supplied data may be incomplete and the 91 :meth:`~string.Template.safe_substitute` method may be more appropriate --- 92 it will leave placeholders unchanged if data is missing:: 93 94 >>> t = Template('Return the $item to $owner.') 95 >>> d = dict(item='unladen swallow') 96 >>> t.substitute(d) 97 Traceback (most recent call last): 98 ... 99 KeyError: 'owner' 100 >>> t.safe_substitute(d) 101 'Return the unladen swallow to $owner.' 102 103 Template subclasses can specify a custom delimiter. For example, a batch 104 renaming utility for a photo browser may elect to use percent signs for 105 placeholders such as the current date, image sequence number, or file format:: 106 107 >>> import time, os.path 108 >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg'] 109 >>> class BatchRename(Template): 110 ... delimiter = '%' 111 >>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ') 112 Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f 113 114 >>> t = BatchRename(fmt) 115 >>> date = time.strftime('%d%b%y') 116 >>> for i, filename in enumerate(photofiles): 117 ... base, ext = os.path.splitext(filename) 118 ... newname = t.substitute(d=date, n=i, f=ext) 119 ... print '{0} --> {1}'.format(filename, newname) 120 121 img_1074.jpg --> Ashley_0.jpg 122 img_1076.jpg --> Ashley_1.jpg 123 img_1077.jpg --> Ashley_2.jpg 124 125 Another application for templating is separating program logic from the details 126 of multiple output formats. This makes it possible to substitute custom 127 templates for XML files, plain text reports, and HTML web reports. 128 129 130 .. _tut-binary-formats: 131 132 Working with Binary Data Record Layouts 133 ======================================= 134 135 The :mod:`struct` module provides :func:`~struct.pack` and 136 :func:`~struct.unpack` functions for working with variable length binary 137 record formats. The following example shows 138 how to loop through header information in a ZIP file without using the 139 :mod:`zipfile` module. Pack codes ``"H"`` and ``"I"`` represent two and four 140 byte unsigned numbers respectively. The ``"<"`` indicates that they are 141 standard size and in little-endian byte order:: 142 143 import struct 144 145 data = open('myfile.zip', 'rb').read() 146 start = 0 147 for i in range(3): # show the first 3 file headers 148 start += 14 149 fields = struct.unpack('<IIIHH', data[start:start+16]) 150 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields 151 152 start += 16 153 filename = data[start:start+filenamesize] 154 start += filenamesize 155 extra = data[start:start+extra_size] 156 print filename, hex(crc32), comp_size, uncomp_size 157 158 start += extra_size + comp_size # skip to the next header 159 160 161 .. _tut-multi-threading: 162 163 Multi-threading 164 =============== 165 166 Threading is a technique for decoupling tasks which are not sequentially 167 dependent. Threads can be used to improve the responsiveness of applications 168 that accept user input while other tasks run in the background. A related use 169 case is running I/O in parallel with computations in another thread. 170 171 The following code shows how the high level :mod:`threading` module can run 172 tasks in background while the main program continues to run:: 173 174 import threading, zipfile 175 176 class AsyncZip(threading.Thread): 177 def __init__(self, infile, outfile): 178 threading.Thread.__init__(self) 179 self.infile = infile 180 self.outfile = outfile 181 182 def run(self): 183 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED) 184 f.write(self.infile) 185 f.close() 186 print 'Finished background zip of: ', self.infile 187 188 background = AsyncZip('mydata.txt', 'myarchive.zip') 189 background.start() 190 print 'The main program continues to run in foreground.' 191 192 background.join() # Wait for the background task to finish 193 print 'Main program waited until background was done.' 194 195 The principal challenge of multi-threaded applications is coordinating threads 196 that share data or other resources. To that end, the threading module provides 197 a number of synchronization primitives including locks, events, condition 198 variables, and semaphores. 199 200 While those tools are powerful, minor design errors can result in problems that 201 are difficult to reproduce. So, the preferred approach to task coordination is 202 to concentrate all access to a resource in a single thread and then use the 203 :mod:`Queue` module to feed that thread with requests from other threads. 204 Applications using :class:`Queue.Queue` objects for inter-thread communication 205 and coordination are easier to design, more readable, and more reliable. 206 207 208 .. _tut-logging: 209 210 Logging 211 ======= 212 213 The :mod:`logging` module offers a full featured and flexible logging system. 214 At its simplest, log messages are sent to a file or to ``sys.stderr``:: 215 216 import logging 217 logging.debug('Debugging information') 218 logging.info('Informational message') 219 logging.warning('Warning:config file %s not found', 'server.conf') 220 logging.error('Error occurred') 221 logging.critical('Critical error -- shutting down') 222 223 This produces the following output: 224 225 .. code-block:: none 226 227 WARNING:root:Warning:config file server.conf not found 228 ERROR:root:Error occurred 229 CRITICAL:root:Critical error -- shutting down 230 231 By default, informational and debugging messages are suppressed and the output 232 is sent to standard error. Other output options include routing messages 233 through email, datagrams, sockets, or to an HTTP Server. New filters can select 234 different routing based on message priority: :const:`~logging.DEBUG`, 235 :const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`, 236 and :const:`~logging.CRITICAL`. 237 238 The logging system can be configured directly from Python or can be loaded from 239 a user editable configuration file for customized logging without altering the 240 application. 241 242 243 .. _tut-weak-references: 244 245 Weak References 246 =============== 247 248 Python does automatic memory management (reference counting for most objects and 249 :term:`garbage collection` to eliminate cycles). The memory is freed shortly 250 after the last reference to it has been eliminated. 251 252 This approach works fine for most applications but occasionally there is a need 253 to track objects only as long as they are being used by something else. 254 Unfortunately, just tracking them creates a reference that makes them permanent. 255 The :mod:`weakref` module provides tools for tracking objects without creating a 256 reference. When the object is no longer needed, it is automatically removed 257 from a weakref table and a callback is triggered for weakref objects. Typical 258 applications include caching objects that are expensive to create:: 259 260 >>> import weakref, gc 261 >>> class A: 262 ... def __init__(self, value): 263 ... self.value = value 264 ... def __repr__(self): 265 ... return str(self.value) 266 ... 267 >>> a = A(10) # create a reference 268 >>> d = weakref.WeakValueDictionary() 269 >>> d['primary'] = a # does not create a reference 270 >>> d['primary'] # fetch the object if it is still alive 271 10 272 >>> del a # remove the one reference 273 >>> gc.collect() # run garbage collection right away 274 0 275 >>> d['primary'] # entry was automatically removed 276 Traceback (most recent call last): 277 File "<stdin>", line 1, in <module> 278 d['primary'] # entry was automatically removed 279 File "C:/python26/lib/weakref.py", line 46, in __getitem__ 280 o = self.data[key]() 281 KeyError: 'primary' 282 283 284 .. _tut-list-tools: 285 286 Tools for Working with Lists 287 ============================ 288 289 Many data structure needs can be met with the built-in list type. However, 290 sometimes there is a need for alternative implementations with different 291 performance trade-offs. 292 293 The :mod:`array` module provides an :class:`~array.array()` object that is like 294 a list that stores only homogeneous data and stores it more compactly. The 295 following example shows an array of numbers stored as two byte unsigned binary 296 numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular 297 lists of Python int objects:: 298 299 >>> from array import array 300 >>> a = array('H', [4000, 10, 700, 22222]) 301 >>> sum(a) 302 26932 303 >>> a[1:3] 304 array('H', [10, 700]) 305 306 The :mod:`collections` module provides a :class:`~collections.deque()` object 307 that is like a list with faster appends and pops from the left side but slower 308 lookups in the middle. These objects are well suited for implementing queues 309 and breadth first tree searches:: 310 311 >>> from collections import deque 312 >>> d = deque(["task1", "task2", "task3"]) 313 >>> d.append("task4") 314 >>> print "Handling", d.popleft() 315 Handling task1 316 317 :: 318 319 unsearched = deque([starting_node]) 320 def breadth_first_search(unsearched): 321 node = unsearched.popleft() 322 for m in gen_moves(node): 323 if is_goal(m): 324 return m 325 unsearched.append(m) 326 327 In addition to alternative list implementations, the library also offers other 328 tools such as the :mod:`bisect` module with functions for manipulating sorted 329 lists:: 330 331 >>> import bisect 332 >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')] 333 >>> bisect.insort(scores, (300, 'ruby')) 334 >>> scores 335 [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')] 336 337 The :mod:`heapq` module provides functions for implementing heaps based on 338 regular lists. The lowest valued entry is always kept at position zero. This 339 is useful for applications which repeatedly access the smallest element but do 340 not want to run a full list sort:: 341 342 >>> from heapq import heapify, heappop, heappush 343 >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0] 344 >>> heapify(data) # rearrange the list into heap order 345 >>> heappush(data, -5) # add a new entry 346 >>> [heappop(data) for i in range(3)] # fetch the three smallest entries 347 [-5, 0, 1] 348 349 350 .. _tut-decimal-fp: 351 352 Decimal Floating Point Arithmetic 353 ================================= 354 355 The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for 356 decimal floating point arithmetic. Compared to the built-in :class:`float` 357 implementation of binary floating point, the class is especially helpful for 358 359 * financial applications and other uses which require exact decimal 360 representation, 361 * control over precision, 362 * control over rounding to meet legal or regulatory requirements, 363 * tracking of significant decimal places, or 364 * applications where the user expects the results to match calculations done by 365 hand. 366 367 For example, calculating a 5% tax on a 70 cent phone charge gives different 368 results in decimal floating point and binary floating point. The difference 369 becomes significant if the results are rounded to the nearest cent:: 370 371 >>> from decimal import * 372 >>> x = Decimal('0.70') * Decimal('1.05') 373 >>> x 374 Decimal('0.7350') 375 >>> x.quantize(Decimal('0.01')) # round to nearest cent 376 Decimal('0.74') 377 >>> round(.70 * 1.05, 2) # same calculation with floats 378 0.73 379 380 The :class:`~decimal.Decimal` result keeps a trailing zero, automatically 381 inferring four place significance from multiplicands with two place 382 significance. Decimal reproduces mathematics as done by hand and avoids 383 issues that can arise when binary floating point cannot exactly represent 384 decimal quantities. 385 386 Exact representation enables the :class:`~decimal.Decimal` class to perform 387 modulo calculations and equality tests that are unsuitable for binary floating 388 point:: 389 390 >>> Decimal('1.00') % Decimal('.10') 391 Decimal('0.00') 392 >>> 1.00 % 0.10 393 0.09999999999999995 394 395 >>> sum([Decimal('0.1')]*10) == Decimal('1.0') 396 True 397 >>> sum([0.1]*10) == 1.0 398 False 399 400 The :mod:`decimal` module provides arithmetic with as much precision as needed:: 401 402 >>> getcontext().prec = 36 403 >>> Decimal(1) / Decimal(7) 404 Decimal('0.142857142857142857142857142857142857') 405 406 407