Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkLatticeIter.h"
      9 #include "SkRect.h"
     10 
     11 /**
     12  *  Divs must be in increasing order with no duplicates.
     13  */
     14 static bool valid_divs(const int* divs, int count, int start, int end) {
     15     int prev = start - 1;
     16     for (int i = 0; i < count; i++) {
     17         if (prev >= divs[i] || divs[i] >= end) {
     18             return false;
     19         }
     20         prev = divs[i];
     21     }
     22 
     23     return true;
     24 }
     25 
     26 bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
     27     SkIRect totalBounds = SkIRect::MakeWH(width, height);
     28     SkASSERT(lattice.fBounds);
     29     const SkIRect latticeBounds = *lattice.fBounds;
     30     if (!totalBounds.contains(latticeBounds)) {
     31         return false;
     32     }
     33 
     34     bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount &&
     35                                               latticeBounds.fLeft == lattice.fXDivs[0]);
     36     bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount &&
     37                                               latticeBounds.fTop == lattice.fYDivs[0]);
     38     if (zeroXDivs && zeroYDivs) {
     39         return false;
     40     }
     41 
     42     return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight)
     43         && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom);
     44 }
     45 
     46 /**
     47  *  Count the number of pixels that are in "scalable" patches.
     48  */
     49 static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
     50                                  int start, int end) {
     51     if (0 == numDivs) {
     52         return firstIsScalable ? end - start : 0;
     53     }
     54 
     55     int i;
     56     int count;
     57     if (firstIsScalable) {
     58         count = divs[0] - start;
     59         i = 1;
     60     } else {
     61         count = 0;
     62         i = 0;
     63     }
     64 
     65     for (; i < numDivs; i += 2) {
     66         // Alternatively, we could use |top| and |bottom| as variable names, instead of
     67         // |left| and |right|.
     68         int left = divs[i];
     69         int right = (i + 1 < numDivs) ? divs[i + 1] : end;
     70         count += right - left;
     71     }
     72 
     73     return count;
     74 }
     75 
     76 /**
     77  *  Set points for the src and dst rects on subsequent draw calls.
     78  */
     79 static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
     80                        int srcScalable, float srcStart, float srcEnd, float dstStart, float dstEnd,
     81                        bool isScalable) {
     82 
     83     float dstLen = dstEnd - dstStart;
     84     float scale;
     85     if (srcFixed <= dstLen) {
     86         // This is the "normal" case, where we scale the "scalable" patches and leave
     87         // the other patches fixed.
     88         scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
     89     } else {
     90         // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
     91         scale = dstLen / ((float) srcFixed);
     92     }
     93 
     94     src[0] = srcStart;
     95     dst[0] = dstStart;
     96     for (int i = 0; i < divCount; i++) {
     97         src[i + 1] = (float) (divs[i]);
     98         float srcDelta = src[i + 1] - src[i];
     99         float dstDelta;
    100         if (srcFixed <= dstLen) {
    101             dstDelta = isScalable ? scale * srcDelta : srcDelta;
    102         } else {
    103             dstDelta = isScalable ? 0.0f : scale * srcDelta;
    104         }
    105         dst[i + 1] = dst[i] + dstDelta;
    106 
    107         // Alternate between "scalable" and "fixed" patches.
    108         isScalable = !isScalable;
    109     }
    110 
    111     src[divCount + 1] = srcEnd;
    112     dst[divCount + 1] = dstEnd;
    113 }
    114 
    115 SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) {
    116     const int* xDivs = lattice.fXDivs;
    117     const int origXCount = lattice.fXCount;
    118     const int* yDivs = lattice.fYDivs;
    119     const int origYCount = lattice.fYCount;
    120     SkASSERT(lattice.fBounds);
    121     const SkIRect src = *lattice.fBounds;
    122 
    123     // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
    124     // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
    125     // first real rectangle "scalable" in the x-direction.
    126     //
    127     // The same interpretation applies to the y-dimension.
    128     //
    129     // As we move left to right across the image, alternating patches will be "fixed" or
    130     // "scalable" in the x-direction.  Similarly, as move top to bottom, alternating
    131     // patches will be "fixed" or "scalable" in the y-direction.
    132     int xCount = origXCount;
    133     int yCount = origYCount;
    134     bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]);
    135     if (xIsScalable) {
    136         // Once we've decided that the first patch is "scalable", we don't need the
    137         // xDiv.  It is always implied that we start at the edge of the bounds.
    138         xDivs++;
    139         xCount--;
    140     }
    141     bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]);
    142     if (yIsScalable) {
    143         // Once we've decided that the first patch is "scalable", we don't need the
    144         // yDiv.  It is always implied that we start at the edge of the bounds.
    145         yDivs++;
    146         yCount--;
    147     }
    148 
    149     // Count "scalable" and "fixed" pixels in each dimension.
    150     int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight);
    151     int xCountFixed = src.width() - xCountScalable;
    152     int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom);
    153     int yCountFixed = src.height() - yCountScalable;
    154 
    155     fSrcX.reset(xCount + 2);
    156     fDstX.reset(xCount + 2);
    157     set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
    158                src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable);
    159 
    160     fSrcY.reset(yCount + 2);
    161     fDstY.reset(yCount + 2);
    162     set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
    163                src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable);
    164 
    165     fCurrX = fCurrY = 0;
    166     fNumRectsInLattice = (xCount + 1) * (yCount + 1);
    167     fNumRectsToDraw = fNumRectsInLattice;
    168 
    169     if (lattice.fFlags) {
    170         fFlags.push_back_n(fNumRectsInLattice);
    171 
    172         const SkCanvas::Lattice::Flags* flags = lattice.fFlags;
    173 
    174         bool hasPadRow = (yCount != origYCount);
    175         bool hasPadCol = (xCount != origXCount);
    176         if (hasPadRow) {
    177             // The first row of rects are all empty, skip the first row of flags.
    178             flags += origXCount + 1;
    179         }
    180 
    181         int i = 0;
    182         for (int y = 0; y < yCount + 1; y++) {
    183             for (int x = 0; x < origXCount + 1; x++) {
    184                 if (0 == x && hasPadCol) {
    185                     // The first column of rects are all empty.  Skip a rect.
    186                     flags++;
    187                     continue;
    188                 }
    189 
    190                 fFlags[i] = *flags;
    191                 flags++;
    192                 i++;
    193             }
    194         }
    195 
    196         for (int j = 0; j < fFlags.count(); j++) {
    197             if (SkCanvas::Lattice::kTransparent_Flags == fFlags[j]) {
    198                 fNumRectsToDraw--;
    199             }
    200         }
    201     }
    202 }
    203 
    204 bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
    205     return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
    206 }
    207 
    208 SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
    209     SkASSERT(SkIRect::MakeWH(w, h).contains(c));
    210 
    211     fSrcX.reset(4);
    212     fSrcY.reset(4);
    213     fDstX.reset(4);
    214     fDstY.reset(4);
    215 
    216     fSrcX[0] = 0;
    217     fSrcX[1] = SkIntToScalar(c.fLeft);
    218     fSrcX[2] = SkIntToScalar(c.fRight);
    219     fSrcX[3] = SkIntToScalar(w);
    220 
    221     fSrcY[0] = 0;
    222     fSrcY[1] = SkIntToScalar(c.fTop);
    223     fSrcY[2] = SkIntToScalar(c.fBottom);
    224     fSrcY[3] = SkIntToScalar(h);
    225 
    226     fDstX[0] = dst.fLeft;
    227     fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
    228     fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
    229     fDstX[3] = dst.fRight;
    230 
    231     fDstY[0] = dst.fTop;
    232     fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
    233     fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
    234     fDstY[3] = dst.fBottom;
    235 
    236     if (fDstX[1] > fDstX[2]) {
    237         fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
    238         fDstX[2] = fDstX[1];
    239     }
    240 
    241     if (fDstY[1] > fDstY[2]) {
    242         fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
    243         fDstY[2] = fDstY[1];
    244     }
    245 
    246     fCurrX = fCurrY = 0;
    247     fNumRectsInLattice = 9;
    248     fNumRectsToDraw = 9;
    249 }
    250 
    251 bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
    252     int currRect = fCurrX + fCurrY * (fSrcX.count() - 1);
    253     if (currRect == fNumRectsInLattice) {
    254         return false;
    255     }
    256 
    257     const int x = fCurrX;
    258     const int y = fCurrY;
    259     SkASSERT(x >= 0 && x < fSrcX.count() - 1);
    260     SkASSERT(y >= 0 && y < fSrcY.count() - 1);
    261 
    262     if (fSrcX.count() - 1 == ++fCurrX) {
    263         fCurrX = 0;
    264         fCurrY += 1;
    265     }
    266 
    267     if (fFlags.count() > 0 && SkToBool(SkCanvas::Lattice::kTransparent_Flags & fFlags[currRect])) {
    268         return this->next(src, dst);
    269     }
    270 
    271     src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
    272     dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
    273     return true;
    274 }
    275 
    276 void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
    277     SkASSERT(matrix.isScaleTranslate());
    278     SkScalar tx = matrix.getTranslateX();
    279     SkScalar sx = matrix.getScaleX();
    280     for (int i = 0; i < fDstX.count(); i++) {
    281         fDstX[i] = fDstX[i] * sx + tx;
    282     }
    283 
    284     SkScalar ty = matrix.getTranslateY();
    285     SkScalar sy = matrix.getScaleY();
    286     for (int i = 0; i < fDstY.count(); i++) {
    287         fDstY[i] = fDstY[i] * sy + ty;
    288     }
    289 }
    290