Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2008 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 
      9 #include "SkMathPriv.h"
     10 #include "SkPoint.h"
     11 
     12 void SkIPoint::rotateCW(SkIPoint* dst) const {
     13     SkASSERT(dst);
     14 
     15     // use a tmp in case this == dst
     16     int32_t tmp = fX;
     17     dst->fX = -fY;
     18     dst->fY = tmp;
     19 }
     20 
     21 void SkIPoint::rotateCCW(SkIPoint* dst) const {
     22     SkASSERT(dst);
     23 
     24     // use a tmp in case this == dst
     25     int32_t tmp = fX;
     26     dst->fX = fY;
     27     dst->fY = -tmp;
     28 }
     29 
     30 ///////////////////////////////////////////////////////////////////////////////
     31 
     32 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
     33     SkASSERT(stride >= sizeof(SkPoint));
     34 
     35     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
     36                                                    SkIntToScalar(t));
     37     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
     38                                                    SkIntToScalar(b));
     39     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
     40                                                    SkIntToScalar(b));
     41     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
     42                                                    SkIntToScalar(t));
     43 }
     44 
     45 void SkPoint::rotateCW(SkPoint* dst) const {
     46     SkASSERT(dst);
     47 
     48     // use a tmp in case this == dst
     49     SkScalar tmp = fX;
     50     dst->fX = -fY;
     51     dst->fY = tmp;
     52 }
     53 
     54 void SkPoint::rotateCCW(SkPoint* dst) const {
     55     SkASSERT(dst);
     56 
     57     // use a tmp in case this == dst
     58     SkScalar tmp = fX;
     59     dst->fX = fY;
     60     dst->fY = -tmp;
     61 }
     62 
     63 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
     64     SkASSERT(dst);
     65     dst->set(fX * scale, fY * scale);
     66 }
     67 
     68 bool SkPoint::normalize() {
     69     return this->setLength(fX, fY, SK_Scalar1);
     70 }
     71 
     72 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
     73     return this->setLength(x, y, SK_Scalar1);
     74 }
     75 
     76 bool SkPoint::setLength(SkScalar length) {
     77     return this->setLength(fX, fY, length);
     78 }
     79 
     80 // Returns the square of the Euclidian distance to (dx,dy).
     81 static inline float getLengthSquared(float dx, float dy) {
     82     return dx * dx + dy * dy;
     83 }
     84 
     85 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
     86 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     87 //
     88 // This logic is encapsulated in a helper method to make it explicit that we
     89 // always perform this check in the same manner, to avoid inconsistencies
     90 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
     91 static inline bool is_length_nearly_zero(float dx, float dy,
     92                                          float *lengthSquared) {
     93     *lengthSquared = getLengthSquared(dx, dy);
     94     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
     95 }
     96 
     97 SkScalar SkPoint::Normalize(SkPoint* pt) {
     98     float x = pt->fX;
     99     float y = pt->fY;
    100     float mag2;
    101     if (is_length_nearly_zero(x, y, &mag2)) {
    102         pt->set(0, 0);
    103         return 0;
    104     }
    105 
    106     float mag, scale;
    107     if (SkScalarIsFinite(mag2)) {
    108         mag = sk_float_sqrt(mag2);
    109         scale = 1 / mag;
    110     } else {
    111         // our mag2 step overflowed to infinity, so use doubles instead.
    112         // much slower, but needed when x or y are very large, other wise we
    113         // divide by inf. and return (0,0) vector.
    114         double xx = x;
    115         double yy = y;
    116         double magmag = sqrt(xx * xx + yy * yy);
    117         mag = (float)magmag;
    118         // we perform the divide with the double magmag, to stay exactly the
    119         // same as setLength. It would be faster to perform the divide with
    120         // mag, but it is possible that mag has overflowed to inf. but still
    121         // have a non-zero value for scale (thanks to denormalized numbers).
    122         scale = (float)(1 / magmag);
    123     }
    124     pt->set(x * scale, y * scale);
    125     return mag;
    126 }
    127 
    128 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    129     float mag2 = dx * dx + dy * dy;
    130     if (SkScalarIsFinite(mag2)) {
    131         return sk_float_sqrt(mag2);
    132     } else {
    133         double xx = dx;
    134         double yy = dy;
    135         return (float)sqrt(xx * xx + yy * yy);
    136     }
    137 }
    138 
    139 /*
    140  *  We have to worry about 2 tricky conditions:
    141  *  1. underflow of mag2 (compared against nearlyzero^2)
    142  *  2. overflow of mag2 (compared w/ isfinite)
    143  *
    144  *  If we underflow, we return false. If we overflow, we compute again using
    145  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
    146  */
    147 bool SkPoint::setLength(float x, float y, float length) {
    148     float mag2;
    149     if (is_length_nearly_zero(x, y, &mag2)) {
    150         this->set(0, 0);
    151         return false;
    152     }
    153 
    154     float scale;
    155     if (SkScalarIsFinite(mag2)) {
    156         scale = length / sk_float_sqrt(mag2);
    157     } else {
    158         // our mag2 step overflowed to infinity, so use doubles instead.
    159         // much slower, but needed when x or y are very large, other wise we
    160         // divide by inf. and return (0,0) vector.
    161         double xx = x;
    162         double yy = y;
    163     #ifdef SK_CPU_FLUSH_TO_ZERO
    164         // The iOS ARM processor discards small denormalized numbers to go faster.
    165         // Casting this to a float would cause the scale to go to zero. Keeping it
    166         // as a double for the multiply keeps the scale non-zero.
    167         double dscale = length / sqrt(xx * xx + yy * yy);
    168         fX = x * dscale;
    169         fY = y * dscale;
    170         return true;
    171     #else
    172         scale = (float)(length / sqrt(xx * xx + yy * yy));
    173     #endif
    174     }
    175     fX = x * scale;
    176     fY = y * scale;
    177     return true;
    178 }
    179 
    180 bool SkPoint::setLengthFast(float length) {
    181     return this->setLengthFast(fX, fY, length);
    182 }
    183 
    184 bool SkPoint::setLengthFast(float x, float y, float length) {
    185     float mag2;
    186     if (is_length_nearly_zero(x, y, &mag2)) {
    187         this->set(0, 0);
    188         return false;
    189     }
    190 
    191     float scale;
    192     if (SkScalarIsFinite(mag2)) {
    193         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    194     } else {
    195         // our mag2 step overflowed to infinity, so use doubles instead.
    196         // much slower, but needed when x or y are very large, other wise we
    197         // divide by inf. and return (0,0) vector.
    198         double xx = x;
    199         double yy = y;
    200         scale = (float)(length / sqrt(xx * xx + yy * yy));
    201     }
    202     fX = x * scale;
    203     fY = y * scale;
    204     return true;
    205 }
    206 
    207 
    208 ///////////////////////////////////////////////////////////////////////////////
    209 
    210 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
    211                                            const SkPoint& b,
    212                                            Side* side) const {
    213 
    214     SkVector u = b - a;
    215     SkVector v = *this - a;
    216 
    217     SkScalar uLengthSqd = u.lengthSqd();
    218     SkScalar det = u.cross(v);
    219     if (side) {
    220         SkASSERT(-1 == SkPoint::kLeft_Side &&
    221                   0 == SkPoint::kOn_Side &&
    222                   1 == kRight_Side);
    223         *side = (Side) SkScalarSignAsInt(det);
    224     }
    225     SkScalar temp = det / uLengthSqd;
    226     temp *= det;
    227     return temp;
    228 }
    229 
    230 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
    231                                                   const SkPoint& b) const {
    232     // See comments to distanceToLineBetweenSqd. If the projection of c onto
    233     // u is between a and b then this returns the same result as that
    234     // function. Otherwise, it returns the distance to the closer of a and
    235     // b. Let the projection of v onto u be v'.  There are three cases:
    236     //    1. v' points opposite to u. c is not between a and b and is closer
    237     //       to a than b.
    238     //    2. v' points along u and has magnitude less than y. c is between
    239     //       a and b and the distance to the segment is the same as distance
    240     //       to the line ab.
    241     //    3. v' points along u and has greater magnitude than u. c is not
    242     //       not between a and b and is closer to b than a.
    243     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
    244     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    245     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
    246     // avoid a sqrt to compute |u|.
    247 
    248     SkVector u = b - a;
    249     SkVector v = *this - a;
    250 
    251     SkScalar uLengthSqd = u.lengthSqd();
    252     SkScalar uDotV = SkPoint::DotProduct(u, v);
    253 
    254     if (uDotV <= 0) {
    255         return v.lengthSqd();
    256     } else if (uDotV > uLengthSqd) {
    257         return b.distanceToSqd(*this);
    258     } else {
    259         SkScalar det = u.cross(v);
    260         SkScalar temp = det / uLengthSqd;
    261         temp *= det;
    262         return temp;
    263     }
    264 }
    265