Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrFragmentProcessor_DEFINED
      9 #define GrFragmentProcessor_DEFINED
     10 
     11 #include "GrProcessor.h"
     12 
     13 class GrCoordTransform;
     14 class GrGLSLFragmentProcessor;
     15 class GrInvariantOutput;
     16 class GrPipeline;
     17 class GrProcessorKeyBuilder;
     18 class GrShaderCaps;
     19 class GrSwizzle;
     20 
     21 /** Provides custom fragment shader code. Fragment processors receive an input color (vec4f) and
     22     produce an output color. They may reference textures and uniforms. They may use
     23     GrCoordTransforms to receive a transformation of the local coordinates that map from local space
     24     to the fragment being processed.
     25  */
     26 class GrFragmentProcessor : public GrResourceIOProcessor, public GrProgramElement {
     27 public:
     28     /**
     29     *  In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to
     30     *  only consider the input color's alpha. However, there is a competing desire to have reusable
     31     *  GrFragmentProcessor subclasses that can be used in other scenarios where the entire input
     32     *  color is considered. This function exists to filter the input color and pass it to a FP. It
     33     *  does so by returning a parent FP that multiplies the passed in FPs output by the parent's
     34     *  input alpha. The passed in FP will not receive an input color.
     35     */
     36     static sk_sp<GrFragmentProcessor> MulOutputByInputAlpha(sk_sp<GrFragmentProcessor>);
     37 
     38     /**
     39      *  This assumes that the input color to the returned processor will be unpremul and that the
     40      *  passed processor (which becomes the returned processor's child) produces a premul output.
     41      *  The result of the returned processor is a premul of its input color modulated by the child
     42      *  processor's premul output.
     43      */
     44     static sk_sp<GrFragmentProcessor> MakeInputPremulAndMulByOutput(sk_sp<GrFragmentProcessor>);
     45 
     46     /**
     47      *  Returns a parent fragment processor that adopts the passed fragment processor as a child.
     48      *  The parent will ignore its input color and instead feed the passed in color as input to the
     49      *  child.
     50      */
     51     static sk_sp<GrFragmentProcessor> OverrideInput(sk_sp<GrFragmentProcessor>, GrColor4f);
     52 
     53     /**
     54      *  Returns a fragment processor that premuls the input before calling the passed in fragment
     55      *  processor.
     56      */
     57     static sk_sp<GrFragmentProcessor> PremulInput(sk_sp<GrFragmentProcessor>);
     58 
     59     /**
     60      *  Returns a fragment processor that calls the passed in fragment processor, and then premuls
     61      *  the output.
     62      */
     63     static sk_sp<GrFragmentProcessor> PremulOutput(sk_sp<GrFragmentProcessor>);
     64 
     65     /**
     66      *  Returns a fragment processor that calls the passed in fragment processor, and then unpremuls
     67      *  the output.
     68      */
     69     static sk_sp<GrFragmentProcessor> UnpremulOutput(sk_sp<GrFragmentProcessor>);
     70 
     71     /**
     72      *  Returns a fragment processor that calls the passed in fragment processor, and then swizzles
     73      *  the output.
     74      */
     75     static sk_sp<GrFragmentProcessor> SwizzleOutput(sk_sp<GrFragmentProcessor>, const GrSwizzle&);
     76 
     77     /**
     78      * Returns a fragment processor that runs the passed in array of fragment processors in a
     79      * series. The original input is passed to the first, the first's output is passed to the
     80      * second, etc. The output of the returned processor is the output of the last processor of the
     81      * series.
     82      *
     83      * The array elements with be moved.
     84      */
     85     static sk_sp<GrFragmentProcessor> RunInSeries(sk_sp<GrFragmentProcessor>*, int cnt);
     86 
     87     ~GrFragmentProcessor() override;
     88 
     89     GrGLSLFragmentProcessor* createGLSLInstance() const;
     90 
     91     void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
     92         this->onGetGLSLProcessorKey(caps, b);
     93         for (int i = 0; i < fChildProcessors.count(); ++i) {
     94             fChildProcessors[i]->getGLSLProcessorKey(caps, b);
     95         }
     96     }
     97 
     98     int numCoordTransforms() const { return fCoordTransforms.count(); }
     99 
    100     /** Returns the coordinate transformation at index. index must be valid according to
    101         numTransforms(). */
    102     const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; }
    103 
    104     const SkTArray<const GrCoordTransform*, true>& coordTransforms() const {
    105         return fCoordTransforms;
    106     }
    107 
    108     int numChildProcessors() const { return fChildProcessors.count(); }
    109 
    110     const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; }
    111 
    112     bool instantiate(GrResourceProvider*) const;
    113 
    114     /** Do any of the coordtransforms for this processor require local coords? */
    115     bool usesLocalCoords() const { return SkToBool(fFlags & kUsesLocalCoords_Flag); }
    116 
    117     /**
    118      * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color
    119      * output under the following scenario:
    120      *   * all the color fragment processors report true to this query,
    121      *   * all the coverage fragment processors report true to this query,
    122      *   * the blend mode arithmetic allows for it it.
    123      * To be compatible a fragment processor's output must be a modulation of its input color or
    124      * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color
    125      * or alpha that is modulated against the input cannot depend on the input's alpha. The computed
    126      * value cannot depend on the input's color channels unless it unpremultiplies the input color
    127      * channels by the input alpha.
    128      */
    129     bool compatibleWithCoverageAsAlpha() const {
    130         return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag);
    131     }
    132 
    133     /**
    134      * If this is true then all opaque input colors to the processor produce opaque output colors.
    135      */
    136     bool preservesOpaqueInput() const {
    137         return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag);
    138     }
    139 
    140     /**
    141      * Tests whether given a constant input color the processor produces a constant output color
    142      * (for all fragments). If true outputColor will contain the constant color produces for
    143      * inputColor.
    144      */
    145     bool hasConstantOutputForConstantInput(GrColor4f inputColor, GrColor4f* outputColor) const {
    146         if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) {
    147             *outputColor = this->constantOutputForConstantInput(inputColor);
    148             return true;
    149         }
    150         return false;
    151     }
    152     bool hasConstantOutputForConstantInput() const {
    153         return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag);
    154     }
    155 
    156     /** Returns true if this and other processor conservatively draw identically. It can only return
    157         true when the two processor are of the same subclass (i.e. they return the same object from
    158         from getFactory()).
    159 
    160         A return value of true from isEqual() should not be used to test whether the processor would
    161         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
    162      */
    163     bool isEqual(const GrFragmentProcessor& that) const;
    164 
    165     /**
    166      * Pre-order traversal of a FP hierarchy, or of the forest of FPs in a GrPipeline. In the latter
    167      * case the tree rooted at each FP in the GrPipeline is visited successively.
    168      */
    169     class Iter : public SkNoncopyable {
    170     public:
    171         explicit Iter(const GrFragmentProcessor* fp) { fFPStack.push_back(fp); }
    172         explicit Iter(const GrPipeline& pipeline);
    173         const GrFragmentProcessor* next();
    174 
    175     private:
    176         SkSTArray<4, const GrFragmentProcessor*, true> fFPStack;
    177     };
    178 
    179     /**
    180      * Iterates over all the Ts owned by a GrFragmentProcessor and its children or over all the Ts
    181      * owned by the forest of GrFragmentProcessors in a GrPipeline. FPs are visited in the same
    182      * order as Iter and each of an FP's Ts are visited in order.
    183      */
    184     template <typename T, typename BASE,
    185               int (BASE::*COUNT)() const,
    186               const T& (BASE::*GET)(int) const>
    187     class FPItemIter : public SkNoncopyable {
    188     public:
    189         explicit FPItemIter(const GrFragmentProcessor* fp)
    190                 : fCurrFP(nullptr)
    191                 , fCTIdx(0)
    192                 , fFPIter(fp) {
    193             fCurrFP = fFPIter.next();
    194         }
    195         explicit FPItemIter(const GrPipeline& pipeline)
    196                 : fCurrFP(nullptr)
    197                 , fCTIdx(0)
    198                 , fFPIter(pipeline) {
    199             fCurrFP = fFPIter.next();
    200         }
    201 
    202         const T* next() {
    203             if (!fCurrFP) {
    204                 return nullptr;
    205             }
    206             while (fCTIdx == (fCurrFP->*COUNT)()) {
    207                 fCTIdx = 0;
    208                 fCurrFP = fFPIter.next();
    209                 if (!fCurrFP) {
    210                     return nullptr;
    211                 }
    212             }
    213             return &(fCurrFP->*GET)(fCTIdx++);
    214         }
    215 
    216     private:
    217         const GrFragmentProcessor*  fCurrFP;
    218         int                         fCTIdx;
    219         GrFragmentProcessor::Iter   fFPIter;
    220     };
    221 
    222     using CoordTransformIter = FPItemIter<GrCoordTransform,
    223                                           GrFragmentProcessor,
    224                                           &GrFragmentProcessor::numCoordTransforms,
    225                                           &GrFragmentProcessor::coordTransform>;
    226 
    227     using TextureAccessIter = FPItemIter<TextureSampler,
    228                                          GrResourceIOProcessor,
    229                                          &GrResourceIOProcessor::numTextureSamplers,
    230                                          &GrResourceIOProcessor::textureSampler>;
    231 
    232 protected:
    233     enum OptimizationFlags : uint32_t {
    234         kNone_OptimizationFlags,
    235         kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1,
    236         kPreservesOpaqueInput_OptimizationFlag = 0x2,
    237         kConstantOutputForConstantInput_OptimizationFlag = 0x4,
    238         kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag |
    239                                  kPreservesOpaqueInput_OptimizationFlag |
    240                                  kConstantOutputForConstantInput_OptimizationFlag
    241     };
    242     GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)
    243 
    244     GrFragmentProcessor(OptimizationFlags optimizationFlags) : fFlags(optimizationFlags) {
    245         SkASSERT((fFlags & ~kAll_OptimizationFlags) == 0);
    246     }
    247 
    248     OptimizationFlags optimizationFlags() const {
    249         return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags);
    250     }
    251 
    252     /**
    253      * This allows one subclass to access another subclass's implementation of
    254      * constantOutputForConstantInput. It must only be called when
    255      * hasConstantOutputForConstantInput() is known to be true.
    256      */
    257     static GrColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp,
    258                                                     GrColor4f input) {
    259         SkASSERT(fp.hasConstantOutputForConstantInput());
    260         return fp.constantOutputForConstantInput(input);
    261     }
    262 
    263     /**
    264      * Fragment Processor subclasses call this from their constructor to register coordinate
    265      * transformations. Coord transforms provide a mechanism for a processor to receive coordinates
    266      * in their FS code. The matrix expresses a transformation from local space. For a given
    267      * fragment the matrix will be applied to the local coordinate that maps to the fragment.
    268      *
    269      * When the transformation has perspective, the transformed coordinates will have
    270      * 3 components. Otherwise they'll have 2.
    271      *
    272      * This must only be called from the constructor because GrProcessors are immutable. The
    273      * processor subclass manages the lifetime of the transformations (this function only stores a
    274      * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass.
    275      *
    276      * A processor subclass that has multiple methods of construction should always add its coord
    277      * transforms in a consistent order. The non-virtual implementation of isEqual() automatically
    278      * compares transforms and will assume they line up across the two processor instances.
    279      */
    280     void addCoordTransform(const GrCoordTransform*);
    281 
    282     /**
    283      * FragmentProcessor subclasses call this from their constructor to register any child
    284      * FragmentProcessors they have. This must be called AFTER all texture accesses and coord
    285      * transforms have been added.
    286      * This is for processors whose shader code will be composed of nested processors whose output
    287      * colors will be combined somehow to produce its output color.  Registering these child
    288      * processors will allow the ProgramBuilder to automatically handle their transformed coords and
    289      * texture accesses and mangle their uniform and output color names.
    290      */
    291     int registerChildProcessor(sk_sp<GrFragmentProcessor> child);
    292 
    293 private:
    294     void addPendingIOs() const override { GrResourceIOProcessor::addPendingIOs(); }
    295     void removeRefs() const override { GrResourceIOProcessor::removeRefs(); }
    296     void pendingIOComplete() const override { GrResourceIOProcessor::pendingIOComplete(); }
    297 
    298     void notifyRefCntIsZero() const final;
    299 
    300     virtual GrColor4f constantOutputForConstantInput(GrColor4f /* inputColor */) const {
    301         SkFAIL("Subclass must override this if advertising this optimization.");
    302         return GrColor4f::TransparentBlack();
    303     }
    304 
    305     /** Returns a new instance of the appropriate *GL* implementation class
    306         for the given GrFragmentProcessor; caller is responsible for deleting
    307         the object. */
    308     virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0;
    309 
    310     /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */
    311     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
    312 
    313     /**
    314      * Subclass implements this to support isEqual(). It will only be called if it is known that
    315      * the two processors are of the same subclass (i.e. they return the same object from
    316      * getFactory()). The processor subclass should not compare its coord transforms as that will
    317      * be performed automatically in the non-virtual isEqual().
    318      */
    319     virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
    320 
    321     bool hasSameTransforms(const GrFragmentProcessor&) const;
    322 
    323     enum PrivateFlags {
    324         kFirstPrivateFlag = kAll_OptimizationFlags + 1,
    325         kUsesLocalCoords_Flag = kFirstPrivateFlag,
    326     };
    327 
    328     mutable uint32_t fFlags = 0;
    329 
    330     SkSTArray<4, const GrCoordTransform*, true> fCoordTransforms;
    331 
    332     /**
    333      * This is not SkSTArray<1, sk_sp<GrFragmentProcessor>> because this class holds strong
    334      * references until notifyRefCntIsZero and then it holds pending executions.
    335      */
    336     SkSTArray<1, GrFragmentProcessor*, true> fChildProcessors;
    337 
    338     typedef GrResourceIOProcessor INHERITED;
    339 };
    340 
    341 GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)
    342 
    343 #endif
    344