Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "float.h"
      9 
     10 #include "SkColorPriv.h"
     11 #include "SkEndian.h"
     12 #include "SkFDot6.h"
     13 #include "SkFixed.h"
     14 #include "SkFloatBits.h"
     15 #include "SkFloatingPoint.h"
     16 #include "SkHalf.h"
     17 #include "SkMathPriv.h"
     18 #include "SkPoint.h"
     19 #include "SkRandom.h"
     20 #include "Test.h"
     21 
     22 static void test_clz(skiatest::Reporter* reporter) {
     23     REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
     24     REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
     25     REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
     26     REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
     27 
     28     SkRandom rand;
     29     for (int i = 0; i < 1000; ++i) {
     30         uint32_t mask = rand.nextU();
     31         // need to get some zeros for testing, but in some obscure way so the
     32         // compiler won't "see" that, and work-around calling the functions.
     33         mask >>= (mask & 31);
     34         int intri = SkCLZ(mask);
     35         int porta = SkCLZ_portable(mask);
     36         REPORTER_ASSERT(reporter, intri == porta);
     37     }
     38 }
     39 
     40 static void test_quick_div(skiatest::Reporter* reporter) {
     41     /*
     42     The inverse table is generated by turning on SkDebugf in the following test code
     43     */
     44     SkFixed storage[kInverseTableSize * 2];
     45     SkFixed* table = storage + kInverseTableSize;
     46 
     47     // SkDebugf("static const int gFDot6INVERSE[] = {");
     48     for (SkFDot6 i=-kInverseTableSize; i<kInverseTableSize; i++) {
     49         if (i != 0) {
     50             table[i] = SkFDot6Div(SK_FDot6One, i);
     51             REPORTER_ASSERT(reporter, table[i] == gFDot6INVERSE[i + kInverseTableSize]);
     52         }
     53         // SkDebugf("%d, ", table[i]);
     54     }
     55     // SkDebugf("}\n");
     56 
     57 
     58     for (SkFDot6 a = -1024; a <= 1024; a++) {
     59         for (SkFDot6 b = -1024; b <= 1024; b++) {
     60             if (b != 0) {
     61                 SkFixed ourAnswer = QuickSkFDot6Div(a, b);
     62                 SkFixed directAnswer = SkFDot6Div(a, b);
     63                 REPORTER_ASSERT(reporter,
     64                     (directAnswer == 0 && ourAnswer == 0) ||
     65                     SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10
     66                 );
     67             }
     68         }
     69     }
     70 }
     71 
     72 ///////////////////////////////////////////////////////////////////////////////
     73 
     74 static float sk_fsel(float pred, float result_ge, float result_lt) {
     75     return pred >= 0 ? result_ge : result_lt;
     76 }
     77 
     78 static float fast_floor(float x) {
     79 //    float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
     80     float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
     81     return (float)(x + big) - big;
     82 }
     83 
     84 static float std_floor(float x) {
     85     return sk_float_floor(x);
     86 }
     87 
     88 static void test_floor_value(skiatest::Reporter* reporter, float value) {
     89     float fast = fast_floor(value);
     90     float std = std_floor(value);
     91     if (std != fast) {
     92         ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
     93                value, fast, std, value);
     94     }
     95 }
     96 
     97 static void test_floor(skiatest::Reporter* reporter) {
     98     static const float gVals[] = {
     99         0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
    100     };
    101 
    102     for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
    103         test_floor_value(reporter, gVals[i]);
    104 //        test_floor_value(reporter, -gVals[i]);
    105     }
    106 }
    107 
    108 ///////////////////////////////////////////////////////////////////////////////
    109 
    110 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
    111 static void test_muldivround(skiatest::Reporter* reporter) {
    112 #if 0
    113     // this "complete" test is too slow, so we test a random sampling of it
    114 
    115     for (int a = 0; a <= 32767; ++a) {
    116         for (int b = 0; b <= 32767; ++b) {
    117             unsigned prod0 = SkMul16ShiftRound(a, b, 8);
    118             unsigned prod1 = SkMulDiv255Round(a, b);
    119             SkASSERT(prod0 == prod1);
    120         }
    121     }
    122 #endif
    123 
    124     SkRandom rand;
    125     for (int i = 0; i < 10000; ++i) {
    126         unsigned a = rand.nextU() & 0x7FFF;
    127         unsigned b = rand.nextU() & 0x7FFF;
    128 
    129         unsigned prod0 = SkMul16ShiftRound(a, b, 8);
    130         unsigned prod1 = SkMulDiv255Round(a, b);
    131 
    132         REPORTER_ASSERT(reporter, prod0 == prod1);
    133     }
    134 }
    135 
    136 static float float_blend(int src, int dst, float unit) {
    137     return dst + (src - dst) * unit;
    138 }
    139 
    140 static int blend31(int src, int dst, int a31) {
    141     return dst + ((src - dst) * a31 * 2114 >> 16);
    142     //    return dst + ((src - dst) * a31 * 33 >> 10);
    143 }
    144 
    145 static int blend31_slow(int src, int dst, int a31) {
    146     int prod = src * a31 + (31 - a31) * dst + 16;
    147     prod = (prod + (prod >> 5)) >> 5;
    148     return prod;
    149 }
    150 
    151 static int blend31_round(int src, int dst, int a31) {
    152     int prod = (src - dst) * a31 + 16;
    153     prod = (prod + (prod >> 5)) >> 5;
    154     return dst + prod;
    155 }
    156 
    157 static int blend31_old(int src, int dst, int a31) {
    158     a31 += a31 >> 4;
    159     return dst + ((src - dst) * a31 >> 5);
    160 }
    161 
    162 // suppress unused code warning
    163 static int (*blend_functions[])(int, int, int) = {
    164     blend31,
    165     blend31_slow,
    166     blend31_round,
    167     blend31_old
    168 };
    169 
    170 static void test_blend31() {
    171     int failed = 0;
    172     int death = 0;
    173     if (false) { // avoid bit rot, suppress warning
    174         failed = (*blend_functions[0])(0,0,0);
    175     }
    176     for (int src = 0; src <= 255; src++) {
    177         for (int dst = 0; dst <= 255; dst++) {
    178             for (int a = 0; a <= 31; a++) {
    179 //                int r0 = blend31(src, dst, a);
    180 //                int r0 = blend31_round(src, dst, a);
    181 //                int r0 = blend31_old(src, dst, a);
    182                 int r0 = blend31_slow(src, dst, a);
    183 
    184                 float f = float_blend(src, dst, a / 31.f);
    185                 int r1 = (int)f;
    186                 int r2 = SkScalarRoundToInt(f);
    187 
    188                 if (r0 != r1 && r0 != r2) {
    189                     SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
    190                                  src,   dst, a,        r0,      f);
    191                     failed += 1;
    192                 }
    193                 if (r0 > 255) {
    194                     death += 1;
    195                     SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
    196                                         src,   dst, a,        r0,      f);
    197                 }
    198             }
    199         }
    200     }
    201     SkDebugf("---- failed %d death %d\n", failed, death);
    202 }
    203 
    204 static void test_blend(skiatest::Reporter* reporter) {
    205     for (int src = 0; src <= 255; src++) {
    206         for (int dst = 0; dst <= 255; dst++) {
    207             for (int a = 0; a <= 255; a++) {
    208                 int r0 = SkAlphaBlend255(src, dst, a);
    209                 float f1 = float_blend(src, dst, a / 255.f);
    210                 int r1 = SkScalarRoundToInt(f1);
    211 
    212                 if (r0 != r1) {
    213                     float diff = sk_float_abs(f1 - r1);
    214                     diff = sk_float_abs(diff - 0.5f);
    215                     if (diff > (1 / 255.f)) {
    216                         ERRORF(reporter, "src:%d dst:%d a:%d "
    217                                "result:%d float:%g\n", src, dst, a, r0, f1);
    218                     }
    219                 }
    220             }
    221         }
    222     }
    223 }
    224 
    225 static void check_length(skiatest::Reporter* reporter,
    226                          const SkPoint& p, SkScalar targetLen) {
    227     float x = SkScalarToFloat(p.fX);
    228     float y = SkScalarToFloat(p.fY);
    229     float len = sk_float_sqrt(x*x + y*y);
    230 
    231     len /= SkScalarToFloat(targetLen);
    232 
    233     REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
    234 }
    235 
    236 static float nextFloat(SkRandom& rand) {
    237     SkFloatIntUnion data;
    238     data.fSignBitInt = rand.nextU();
    239     return data.fFloat;
    240 }
    241 
    242 /*  returns true if a == b as resulting from (int)x. Since it is undefined
    243  what to do if the float exceeds 2^32-1, we check for that explicitly.
    244  */
    245 static bool equal_float_native_skia(float x, int32_t ni, int32_t si) {
    246     // When the float is out of integer range (NaN, above, below),
    247     // the C cast is undefined, but Skia's methods should have clamped.
    248     if (!(x == x)) {    // NaN
    249         return si == SK_MaxS32 || si == SK_MinS32;
    250     }
    251     if (x > SK_MaxS32) {
    252         return si == SK_MaxS32;
    253     }
    254     if (x < SK_MinS32) {
    255         return si == SK_MinS32;
    256     }
    257     return si == ni;
    258 }
    259 
    260 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
    261                                float x, int32_t ni, int32_t si) {
    262     if (!equal_float_native_skia(x, ni, si)) {
    263         ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
    264                op, x, SkFloat2Bits(x), ni, si);
    265     }
    266 }
    267 
    268 static void test_float_floor(skiatest::Reporter* reporter, float x) {
    269     int ix = (int)floor(x);
    270     int iix = SkFloatToIntFloor(x);
    271     assert_float_equal(reporter, "floor", x, ix, iix);
    272 }
    273 
    274 static void test_float_round(skiatest::Reporter* reporter, float x) {
    275     double xx = x + 0.5;    // need intermediate double to avoid temp loss
    276     int ix = (int)floor(xx);
    277     int iix = SkFloatToIntRound(x);
    278     assert_float_equal(reporter, "round", x, ix, iix);
    279 }
    280 
    281 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
    282     int ix = (int)ceil(x);
    283     int iix = SkFloatToIntCeil(x);
    284     assert_float_equal(reporter, "ceil", x, ix, iix);
    285 }
    286 
    287 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
    288     test_float_floor(reporter, x);
    289     test_float_round(reporter, x);
    290     test_float_ceil(reporter, x);
    291 }
    292 
    293 static void unittest_fastfloat(skiatest::Reporter* reporter) {
    294     SkRandom rand;
    295     size_t i;
    296 
    297     static const float gFloats[] = {
    298         0.f/0.f, -0.f/0.f, 1.f/0.f, -1.f/0.f,
    299         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
    300         0.000000001f, 1000000000.f,     // doesn't overflow
    301         0.0000000001f, 10000000000.f    // does overflow
    302     };
    303     for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
    304         test_float_conversions(reporter, gFloats[i]);
    305         test_float_conversions(reporter, -gFloats[i]);
    306     }
    307 
    308     for (int outer = 0; outer < 100; outer++) {
    309         rand.setSeed(outer);
    310         for (i = 0; i < 100000; i++) {
    311             float x = nextFloat(rand);
    312             test_float_conversions(reporter, x);
    313         }
    314     }
    315 }
    316 
    317 static float make_zero() {
    318     return sk_float_sin(0);
    319 }
    320 
    321 static void unittest_isfinite(skiatest::Reporter* reporter) {
    322     float nan = sk_float_asin(2);
    323     float inf = 1.0f / make_zero();
    324     float big = 3.40282e+038f;
    325 
    326     REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
    327     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
    328     REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
    329     REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
    330 
    331     REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan));
    332     REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
    333     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
    334     REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
    335 
    336     REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
    337     REPORTER_ASSERT(reporter,  SkScalarIsFinite(big));
    338     REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big));
    339     REPORTER_ASSERT(reporter,  SkScalarIsFinite(0));
    340 }
    341 
    342 static void unittest_half(skiatest::Reporter* reporter) {
    343     static const float gFloats[] = {
    344         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
    345         -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
    346     };
    347 
    348     for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
    349         SkHalf h = SkFloatToHalf(gFloats[i]);
    350         float f = SkHalfToFloat(h);
    351         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
    352     }
    353 
    354     // check some special values
    355     union FloatUnion {
    356         uint32_t fU;
    357         float    fF;
    358     };
    359 
    360     static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
    361     SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
    362     float f = SkHalfToFloat(h);
    363     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
    364 
    365     static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
    366     h = SkFloatToHalf(largestNegativeHalf.fF);
    367     f = SkHalfToFloat(h);
    368     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
    369 
    370     static const FloatUnion smallestPositiveHalf = { 102 << 23 };
    371     h = SkFloatToHalf(smallestPositiveHalf.fF);
    372     f = SkHalfToFloat(h);
    373     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
    374 
    375     static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
    376     h = SkFloatToHalf(overflowHalf.fF);
    377     f = SkHalfToFloat(h);
    378     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
    379 
    380     static const FloatUnion underflowHalf = { 101 << 23 };
    381     h = SkFloatToHalf(underflowHalf.fF);
    382     f = SkHalfToFloat(h);
    383     REPORTER_ASSERT(reporter, f == 0.0f );
    384 
    385     static const FloatUnion inf32 = { 255 << 23 };
    386     h = SkFloatToHalf(inf32.fF);
    387     f = SkHalfToFloat(h);
    388     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
    389 
    390     static const FloatUnion nan32 = { 255 << 23 | 1 };
    391     h = SkFloatToHalf(nan32.fF);
    392     f = SkHalfToFloat(h);
    393     REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
    394 
    395 }
    396 
    397 template <typename RSqrtFn>
    398 static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
    399     const float maxRelativeError = 6.50196699e-4f;
    400 
    401     // test close to 0 up to 1
    402     float input = 0.000001f;
    403     for (int i = 0; i < 1000; ++i) {
    404         float exact = 1.0f/sk_float_sqrt(input);
    405         float estimate = rsqrt(input);
    406         float relativeError = sk_float_abs(exact - estimate)/exact;
    407         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    408         input += 0.001f;
    409     }
    410 
    411     // test 1 to ~100
    412     input = 1.0f;
    413     for (int i = 0; i < 1000; ++i) {
    414         float exact = 1.0f/sk_float_sqrt(input);
    415         float estimate = rsqrt(input);
    416         float relativeError = sk_float_abs(exact - estimate)/exact;
    417         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    418         input += 0.01f;
    419     }
    420 
    421     // test some big numbers
    422     input = 1000000.0f;
    423     for (int i = 0; i < 100; ++i) {
    424         float exact = 1.0f/sk_float_sqrt(input);
    425         float estimate = rsqrt(input);
    426         float relativeError = sk_float_abs(exact - estimate)/exact;
    427         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    428         input += 754326.f;
    429     }
    430 }
    431 
    432 static void test_muldiv255(skiatest::Reporter* reporter) {
    433     for (int a = 0; a <= 255; a++) {
    434         for (int b = 0; b <= 255; b++) {
    435             int ab = a * b;
    436             float s = ab / 255.0f;
    437             int round = (int)floorf(s + 0.5f);
    438             int trunc = (int)floorf(s);
    439 
    440             int iround = SkMulDiv255Round(a, b);
    441             int itrunc = SkMulDiv255Trunc(a, b);
    442 
    443             REPORTER_ASSERT(reporter, iround == round);
    444             REPORTER_ASSERT(reporter, itrunc == trunc);
    445 
    446             REPORTER_ASSERT(reporter, itrunc <= iround);
    447             REPORTER_ASSERT(reporter, iround <= a);
    448             REPORTER_ASSERT(reporter, iround <= b);
    449         }
    450     }
    451 }
    452 
    453 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
    454     for (int c = 0; c <= 255; c++) {
    455         for (int a = 0; a <= 255; a++) {
    456             int product = (c * a + 255);
    457             int expected_ceiling = (product + (product >> 8)) >> 8;
    458             int webkit_ceiling = (c * a + 254) / 255;
    459             REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
    460             int skia_ceiling = SkMulDiv255Ceiling(c, a);
    461             REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
    462         }
    463     }
    464 }
    465 
    466 static void test_copysign(skiatest::Reporter* reporter) {
    467     static const int32_t gTriples[] = {
    468         // x, y, expected result
    469         0, 0, 0,
    470         0, 1, 0,
    471         0, -1, 0,
    472         1, 0, 1,
    473         1, 1, 1,
    474         1, -1, -1,
    475         -1, 0, 1,
    476         -1, 1, 1,
    477         -1, -1, -1,
    478     };
    479     for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
    480         REPORTER_ASSERT(reporter,
    481                         SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
    482         float x = (float)gTriples[i];
    483         float y = (float)gTriples[i+1];
    484         float expected = (float)gTriples[i+2];
    485         REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
    486     }
    487 
    488     SkRandom rand;
    489     for (int j = 0; j < 1000; j++) {
    490         int ix = rand.nextS();
    491         REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
    492         REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
    493         REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
    494         REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
    495 
    496         SkScalar sx = rand.nextSScalar1();
    497         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
    498         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
    499         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
    500         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
    501     }
    502 }
    503 
    504 DEF_TEST(Math, reporter) {
    505     int         i;
    506     SkRandom    rand;
    507 
    508     // these should assert
    509 #if 0
    510     SkToS8(128);
    511     SkToS8(-129);
    512     SkToU8(256);
    513     SkToU8(-5);
    514 
    515     SkToS16(32768);
    516     SkToS16(-32769);
    517     SkToU16(65536);
    518     SkToU16(-5);
    519 
    520     if (sizeof(size_t) > 4) {
    521         SkToS32(4*1024*1024);
    522         SkToS32(-4*1024*1024);
    523         SkToU32(5*1024*1024);
    524         SkToU32(-5);
    525     }
    526 #endif
    527 
    528     test_muldiv255(reporter);
    529     test_muldiv255ceiling(reporter);
    530     test_copysign(reporter);
    531 
    532     {
    533         SkScalar x = SK_ScalarNaN;
    534         REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
    535     }
    536 
    537     for (i = 0; i < 1000; i++) {
    538         int value = rand.nextS16();
    539         int max = rand.nextU16();
    540 
    541         int clamp = SkClampMax(value, max);
    542         int clamp2 = value < 0 ? 0 : (value > max ? max : value);
    543         REPORTER_ASSERT(reporter, clamp == clamp2);
    544     }
    545 
    546     for (i = 0; i < 10000; i++) {
    547         SkPoint p;
    548 
    549         // These random values are being treated as 32-bit-patterns, not as
    550         // ints; calling SkIntToScalar() here produces crashes.
    551         p.setLength((SkScalar) rand.nextS(),
    552                     (SkScalar) rand.nextS(),
    553                     SK_Scalar1);
    554         check_length(reporter, p, SK_Scalar1);
    555         p.setLength((SkScalar) (rand.nextS() >> 13),
    556                     (SkScalar) (rand.nextS() >> 13),
    557                     SK_Scalar1);
    558         check_length(reporter, p, SK_Scalar1);
    559     }
    560 
    561     {
    562         SkFixed result = SkFixedDiv(100, 100);
    563         REPORTER_ASSERT(reporter, result == SK_Fixed1);
    564         result = SkFixedDiv(1, SK_Fixed1);
    565         REPORTER_ASSERT(reporter, result == 1);
    566         result = SkFixedDiv(10 - 1, SK_Fixed1 * 3);
    567         REPORTER_ASSERT(reporter, result == 3);
    568     }
    569 
    570     {
    571         REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
    572         REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
    573         REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
    574     }
    575 
    576     unittest_fastfloat(reporter);
    577     unittest_isfinite(reporter);
    578     unittest_half(reporter);
    579     test_rsqrt(reporter, sk_float_rsqrt);
    580     test_rsqrt(reporter, sk_float_rsqrt_portable);
    581 
    582     for (i = 0; i < 10000; i++) {
    583         SkFixed numer = rand.nextS();
    584         SkFixed denom = rand.nextS();
    585         SkFixed result = SkFixedDiv(numer, denom);
    586         int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
    587 
    588         (void)SkCLZ(numer);
    589         (void)SkCLZ(denom);
    590 
    591         REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
    592         if (check > SK_MaxS32) {
    593             check = SK_MaxS32;
    594         } else if (check < -SK_MaxS32) {
    595             check = SK_MinS32;
    596         }
    597         if (result != (int32_t)check) {
    598             ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
    599         }
    600         REPORTER_ASSERT(reporter, result == (int32_t)check);
    601     }
    602 
    603     test_blend(reporter);
    604 
    605     if (false) test_floor(reporter);
    606 
    607     // disable for now
    608     if (false) test_blend31();  // avoid bit rot, suppress warning
    609 
    610     test_muldivround(reporter);
    611     test_clz(reporter);
    612     test_quick_div(reporter);
    613 }
    614 
    615 template <typename T> struct PairRec {
    616     T   fYin;
    617     T   fYang;
    618 };
    619 
    620 DEF_TEST(TestEndian, reporter) {
    621     static const PairRec<uint16_t> g16[] = {
    622         { 0x0,      0x0     },
    623         { 0xFFFF,   0xFFFF  },
    624         { 0x1122,   0x2211  },
    625     };
    626     static const PairRec<uint32_t> g32[] = {
    627         { 0x0,          0x0         },
    628         { 0xFFFFFFFF,   0xFFFFFFFF  },
    629         { 0x11223344,   0x44332211  },
    630     };
    631     static const PairRec<uint64_t> g64[] = {
    632         { 0x0,      0x0                             },
    633         { 0xFFFFFFFFFFFFFFFFULL,  0xFFFFFFFFFFFFFFFFULL  },
    634         { 0x1122334455667788ULL,  0x8877665544332211ULL  },
    635     };
    636 
    637     REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
    638     REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
    639     REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
    640 
    641     for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
    642         REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
    643     }
    644     for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
    645         REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
    646     }
    647     for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
    648         REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
    649     }
    650 }
    651 
    652 template <typename T>
    653 static void test_divmod(skiatest::Reporter* r) {
    654     const struct {
    655         T numer;
    656         T denom;
    657     } kEdgeCases[] = {
    658         {(T)17, (T)17},
    659         {(T)17, (T)4},
    660         {(T)0,  (T)17},
    661         // For unsigned T these negatives are just some large numbers.  Doesn't hurt to test them.
    662         {(T)-17, (T)-17},
    663         {(T)-17, (T)4},
    664         {(T)17,  (T)-4},
    665         {(T)-17, (T)-4},
    666     };
    667 
    668     for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
    669         const T numer = kEdgeCases[i].numer;
    670         const T denom = kEdgeCases[i].denom;
    671         T div, mod;
    672         SkTDivMod(numer, denom, &div, &mod);
    673         REPORTER_ASSERT(r, numer/denom == div);
    674         REPORTER_ASSERT(r, numer%denom == mod);
    675     }
    676 
    677     SkRandom rand;
    678     for (size_t i = 0; i < 10000; i++) {
    679         const T numer = (T)rand.nextS();
    680         T denom = 0;
    681         while (0 == denom) {
    682             denom = (T)rand.nextS();
    683         }
    684         T div, mod;
    685         SkTDivMod(numer, denom, &div, &mod);
    686         REPORTER_ASSERT(r, numer/denom == div);
    687         REPORTER_ASSERT(r, numer%denom == mod);
    688     }
    689 }
    690 
    691 DEF_TEST(divmod_u8, r) {
    692     test_divmod<uint8_t>(r);
    693 }
    694 
    695 DEF_TEST(divmod_u16, r) {
    696     test_divmod<uint16_t>(r);
    697 }
    698 
    699 DEF_TEST(divmod_u32, r) {
    700     test_divmod<uint32_t>(r);
    701 }
    702 
    703 DEF_TEST(divmod_u64, r) {
    704     test_divmod<uint64_t>(r);
    705 }
    706 
    707 DEF_TEST(divmod_s8, r) {
    708     test_divmod<int8_t>(r);
    709 }
    710 
    711 DEF_TEST(divmod_s16, r) {
    712     test_divmod<int16_t>(r);
    713 }
    714 
    715 DEF_TEST(divmod_s32, r) {
    716     test_divmod<int32_t>(r);
    717 }
    718 
    719 DEF_TEST(divmod_s64, r) {
    720     test_divmod<int64_t>(r);
    721 }
    722 
    723 static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) {
    724     size_t ans = GrNextSizePow2(test);
    725 
    726     REPORTER_ASSERT(r, ans == expectedAns);
    727     //SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns);
    728 }
    729 
    730 DEF_TEST(GrNextSizePow2, reporter) {
    731     constexpr int kNumSizeTBits = 8 * sizeof(size_t);
    732 
    733     size_t test = 0, expectedAns = 1;
    734 
    735     test_nextsizepow2(reporter, test, expectedAns);
    736 
    737     test = 1; expectedAns = 1;
    738 
    739     for (int i = 1; i < kNumSizeTBits; ++i) {
    740         test_nextsizepow2(reporter, test, expectedAns);
    741 
    742         test++;
    743         expectedAns <<= 1;
    744 
    745         test_nextsizepow2(reporter, test, expectedAns);
    746 
    747         test = expectedAns;
    748     }
    749 
    750     // For the remaining three tests there is no higher power (of 2)
    751     test = 0x1;
    752     test <<= kNumSizeTBits-1;
    753     test_nextsizepow2(reporter, test, test);
    754 
    755     test++;
    756     test_nextsizepow2(reporter, test, test);
    757 
    758     test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX);
    759 }
    760