Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DenseMap class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_DENSEMAP_H
     15 #define LLVM_ADT_DENSEMAP_H
     16 
     17 #include "llvm/Support/MathExtras.h"
     18 #include "llvm/Support/PointerLikeTypeTraits.h"
     19 #include "llvm/Support/type_traits.h"
     20 #include "llvm/ADT/DenseMapInfo.h"
     21 #include <algorithm>
     22 #include <iterator>
     23 #include <new>
     24 #include <utility>
     25 #include <cassert>
     26 #include <cstddef>
     27 #include <cstring>
     28 
     29 namespace llvm {
     30 
     31 template<typename KeyT, typename ValueT,
     32          typename KeyInfoT = DenseMapInfo<KeyT>,
     33          typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
     34 class DenseMapIterator;
     35 
     36 template<typename KeyT, typename ValueT,
     37          typename KeyInfoT = DenseMapInfo<KeyT>,
     38          typename ValueInfoT = DenseMapInfo<ValueT> >
     39 class DenseMap {
     40   typedef std::pair<KeyT, ValueT> BucketT;
     41   unsigned NumBuckets;
     42   BucketT *Buckets;
     43 
     44   unsigned NumEntries;
     45   unsigned NumTombstones;
     46 public:
     47   typedef KeyT key_type;
     48   typedef ValueT mapped_type;
     49   typedef BucketT value_type;
     50 
     51   DenseMap(const DenseMap &other) {
     52     NumBuckets = 0;
     53     CopyFrom(other);
     54   }
     55 
     56   explicit DenseMap(unsigned NumInitBuckets = 0) {
     57     init(NumInitBuckets);
     58   }
     59 
     60   template<typename InputIt>
     61   DenseMap(const InputIt &I, const InputIt &E) {
     62     init(NextPowerOf2(std::distance(I, E)));
     63     insert(I, E);
     64   }
     65 
     66   ~DenseMap() {
     67     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
     68     for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
     69       if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
     70           !KeyInfoT::isEqual(P->first, TombstoneKey))
     71         P->second.~ValueT();
     72       P->first.~KeyT();
     73     }
     74 #ifndef NDEBUG
     75     if (NumBuckets)
     76       memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
     77 #endif
     78     operator delete(Buckets);
     79   }
     80 
     81   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
     82   typedef DenseMapIterator<KeyT, ValueT,
     83                            KeyInfoT, ValueInfoT, true> const_iterator;
     84   inline iterator begin() {
     85     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
     86     return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
     87   }
     88   inline iterator end() {
     89     return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
     90   }
     91   inline const_iterator begin() const {
     92     return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
     93   }
     94   inline const_iterator end() const {
     95     return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
     96   }
     97 
     98   bool empty() const { return NumEntries == 0; }
     99   unsigned size() const { return NumEntries; }
    100 
    101   /// Grow the densemap so that it has at least Size buckets. Does not shrink
    102   void resize(size_t Size) {
    103     if (Size > NumBuckets)
    104       grow(Size);
    105   }
    106 
    107   void clear() {
    108     if (NumEntries == 0 && NumTombstones == 0) return;
    109 
    110     // If the capacity of the array is huge, and the # elements used is small,
    111     // shrink the array.
    112     if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
    113       shrink_and_clear();
    114       return;
    115     }
    116 
    117     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    118     for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
    119       if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
    120         if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
    121           P->second.~ValueT();
    122           --NumEntries;
    123         }
    124         P->first = EmptyKey;
    125       }
    126     }
    127     assert(NumEntries == 0 && "Node count imbalance!");
    128     NumTombstones = 0;
    129   }
    130 
    131   /// count - Return true if the specified key is in the map.
    132   bool count(const KeyT &Val) const {
    133     BucketT *TheBucket;
    134     return LookupBucketFor(Val, TheBucket);
    135   }
    136 
    137   iterator find(const KeyT &Val) {
    138     BucketT *TheBucket;
    139     if (LookupBucketFor(Val, TheBucket))
    140       return iterator(TheBucket, Buckets+NumBuckets);
    141     return end();
    142   }
    143   const_iterator find(const KeyT &Val) const {
    144     BucketT *TheBucket;
    145     if (LookupBucketFor(Val, TheBucket))
    146       return const_iterator(TheBucket, Buckets+NumBuckets);
    147     return end();
    148   }
    149 
    150   /// lookup - Return the entry for the specified key, or a default
    151   /// constructed value if no such entry exists.
    152   ValueT lookup(const KeyT &Val) const {
    153     BucketT *TheBucket;
    154     if (LookupBucketFor(Val, TheBucket))
    155       return TheBucket->second;
    156     return ValueT();
    157   }
    158 
    159   // Inserts key,value pair into the map if the key isn't already in the map.
    160   // If the key is already in the map, it returns false and doesn't update the
    161   // value.
    162   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    163     BucketT *TheBucket;
    164     if (LookupBucketFor(KV.first, TheBucket))
    165       return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
    166                             false); // Already in map.
    167 
    168     // Otherwise, insert the new element.
    169     TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
    170     return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
    171                           true);
    172   }
    173 
    174   /// insert - Range insertion of pairs.
    175   template<typename InputIt>
    176   void insert(InputIt I, InputIt E) {
    177     for (; I != E; ++I)
    178       insert(*I);
    179   }
    180 
    181 
    182   bool erase(const KeyT &Val) {
    183     BucketT *TheBucket;
    184     if (!LookupBucketFor(Val, TheBucket))
    185       return false; // not in map.
    186 
    187     TheBucket->second.~ValueT();
    188     TheBucket->first = getTombstoneKey();
    189     --NumEntries;
    190     ++NumTombstones;
    191     return true;
    192   }
    193   void erase(iterator I) {
    194     BucketT *TheBucket = &*I;
    195     TheBucket->second.~ValueT();
    196     TheBucket->first = getTombstoneKey();
    197     --NumEntries;
    198     ++NumTombstones;
    199   }
    200 
    201   void swap(DenseMap& RHS) {
    202     std::swap(NumBuckets, RHS.NumBuckets);
    203     std::swap(Buckets, RHS.Buckets);
    204     std::swap(NumEntries, RHS.NumEntries);
    205     std::swap(NumTombstones, RHS.NumTombstones);
    206   }
    207 
    208   value_type& FindAndConstruct(const KeyT &Key) {
    209     BucketT *TheBucket;
    210     if (LookupBucketFor(Key, TheBucket))
    211       return *TheBucket;
    212 
    213     return *InsertIntoBucket(Key, ValueT(), TheBucket);
    214   }
    215 
    216   ValueT &operator[](const KeyT &Key) {
    217     return FindAndConstruct(Key).second;
    218   }
    219 
    220   DenseMap& operator=(const DenseMap& other) {
    221     CopyFrom(other);
    222     return *this;
    223   }
    224 
    225   /// isPointerIntoBucketsArray - Return true if the specified pointer points
    226   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
    227   /// value in the DenseMap).
    228   bool isPointerIntoBucketsArray(const void *Ptr) const {
    229     return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
    230   }
    231 
    232   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
    233   /// array.  In conjunction with the previous method, this can be used to
    234   /// determine whether an insertion caused the DenseMap to reallocate.
    235   const void *getPointerIntoBucketsArray() const { return Buckets; }
    236 
    237 private:
    238   void CopyFrom(const DenseMap& other) {
    239     if (NumBuckets != 0 &&
    240         (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
    241       const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    242       for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
    243         if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
    244             !KeyInfoT::isEqual(P->first, TombstoneKey))
    245           P->second.~ValueT();
    246         P->first.~KeyT();
    247       }
    248     }
    249 
    250     NumEntries = other.NumEntries;
    251     NumTombstones = other.NumTombstones;
    252 
    253     if (NumBuckets) {
    254 #ifndef NDEBUG
    255       memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
    256 #endif
    257       operator delete(Buckets);
    258     }
    259 
    260     NumBuckets = other.NumBuckets;
    261 
    262     if (NumBuckets == 0) {
    263       Buckets = 0;
    264       return;
    265     }
    266 
    267     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
    268 
    269     if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
    270       memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT));
    271     else
    272       for (size_t i = 0; i < NumBuckets; ++i) {
    273         new (&Buckets[i].first) KeyT(other.Buckets[i].first);
    274         if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
    275             !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
    276           new (&Buckets[i].second) ValueT(other.Buckets[i].second);
    277       }
    278   }
    279 
    280   BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
    281                             BucketT *TheBucket) {
    282     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    283     // the buckets are empty (meaning that many are filled with tombstones),
    284     // grow the table.
    285     //
    286     // The later case is tricky.  For example, if we had one empty bucket with
    287     // tons of tombstones, failing lookups (e.g. for insertion) would have to
    288     // probe almost the entire table until it found the empty bucket.  If the
    289     // table completely filled with tombstones, no lookup would ever succeed,
    290     // causing infinite loops in lookup.
    291     ++NumEntries;
    292     if (NumEntries*4 >= NumBuckets*3) {
    293       this->grow(NumBuckets * 2);
    294       LookupBucketFor(Key, TheBucket);
    295     }
    296     if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
    297       this->grow(NumBuckets);
    298       LookupBucketFor(Key, TheBucket);
    299     }
    300 
    301     // If we are writing over a tombstone, remember this.
    302     if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
    303       --NumTombstones;
    304 
    305     TheBucket->first = Key;
    306     new (&TheBucket->second) ValueT(Value);
    307     return TheBucket;
    308   }
    309 
    310   static unsigned getHashValue(const KeyT &Val) {
    311     return KeyInfoT::getHashValue(Val);
    312   }
    313   static const KeyT getEmptyKey() {
    314     return KeyInfoT::getEmptyKey();
    315   }
    316   static const KeyT getTombstoneKey() {
    317     return KeyInfoT::getTombstoneKey();
    318   }
    319 
    320   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
    321   /// FoundBucket.  If the bucket contains the key and a value, this returns
    322   /// true, otherwise it returns a bucket with an empty marker or tombstone and
    323   /// returns false.
    324   bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
    325     unsigned BucketNo = getHashValue(Val);
    326     unsigned ProbeAmt = 1;
    327     BucketT *BucketsPtr = Buckets;
    328 
    329     if (NumBuckets == 0) {
    330       FoundBucket = 0;
    331       return false;
    332     }
    333 
    334     // FoundTombstone - Keep track of whether we find a tombstone while probing.
    335     BucketT *FoundTombstone = 0;
    336     const KeyT EmptyKey = getEmptyKey();
    337     const KeyT TombstoneKey = getTombstoneKey();
    338     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
    339            !KeyInfoT::isEqual(Val, TombstoneKey) &&
    340            "Empty/Tombstone value shouldn't be inserted into map!");
    341 
    342     while (1) {
    343       BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
    344       // Found Val's bucket?  If so, return it.
    345       if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
    346         FoundBucket = ThisBucket;
    347         return true;
    348       }
    349 
    350       // If we found an empty bucket, the key doesn't exist in the set.
    351       // Insert it and return the default value.
    352       if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
    353         // If we've already seen a tombstone while probing, fill it in instead
    354         // of the empty bucket we eventually probed to.
    355         if (FoundTombstone) ThisBucket = FoundTombstone;
    356         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
    357         return false;
    358       }
    359 
    360       // If this is a tombstone, remember it.  If Val ends up not in the map, we
    361       // prefer to return it than something that would require more probing.
    362       if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
    363         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
    364 
    365       // Otherwise, it's a hash collision or a tombstone, continue quadratic
    366       // probing.
    367       BucketNo += ProbeAmt++;
    368     }
    369   }
    370 
    371   void init(unsigned InitBuckets) {
    372     NumEntries = 0;
    373     NumTombstones = 0;
    374     NumBuckets = InitBuckets;
    375 
    376     if (InitBuckets == 0) {
    377       Buckets = 0;
    378       return;
    379     }
    380 
    381     assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
    382            "# initial buckets must be a power of two!");
    383     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
    384     // Initialize all the keys to EmptyKey.
    385     const KeyT EmptyKey = getEmptyKey();
    386     for (unsigned i = 0; i != InitBuckets; ++i)
    387       new (&Buckets[i].first) KeyT(EmptyKey);
    388   }
    389 
    390   void grow(unsigned AtLeast) {
    391     unsigned OldNumBuckets = NumBuckets;
    392     BucketT *OldBuckets = Buckets;
    393 
    394     if (NumBuckets < 64)
    395       NumBuckets = 64;
    396 
    397     // Double the number of buckets.
    398     while (NumBuckets < AtLeast)
    399       NumBuckets <<= 1;
    400     NumTombstones = 0;
    401     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
    402 
    403     // Initialize all the keys to EmptyKey.
    404     const KeyT EmptyKey = getEmptyKey();
    405     for (unsigned i = 0, e = NumBuckets; i != e; ++i)
    406       new (&Buckets[i].first) KeyT(EmptyKey);
    407 
    408     // Insert all the old elements.
    409     const KeyT TombstoneKey = getTombstoneKey();
    410     for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
    411       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
    412           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
    413         // Insert the key/value into the new table.
    414         BucketT *DestBucket;
    415         bool FoundVal = LookupBucketFor(B->first, DestBucket);
    416         (void)FoundVal; // silence warning.
    417         assert(!FoundVal && "Key already in new map?");
    418         DestBucket->first = B->first;
    419         new (&DestBucket->second) ValueT(B->second);
    420 
    421         // Free the value.
    422         B->second.~ValueT();
    423       }
    424       B->first.~KeyT();
    425     }
    426 
    427 #ifndef NDEBUG
    428     if (OldNumBuckets)
    429       memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
    430 #endif
    431     // Free the old table.
    432     operator delete(OldBuckets);
    433   }
    434 
    435   void shrink_and_clear() {
    436     unsigned OldNumBuckets = NumBuckets;
    437     BucketT *OldBuckets = Buckets;
    438 
    439     // Reduce the number of buckets.
    440     NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
    441                                  : 64;
    442     NumTombstones = 0;
    443     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
    444 
    445     // Initialize all the keys to EmptyKey.
    446     const KeyT EmptyKey = getEmptyKey();
    447     for (unsigned i = 0, e = NumBuckets; i != e; ++i)
    448       new (&Buckets[i].first) KeyT(EmptyKey);
    449 
    450     // Free the old buckets.
    451     const KeyT TombstoneKey = getTombstoneKey();
    452     for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
    453       if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
    454           !KeyInfoT::isEqual(B->first, TombstoneKey)) {
    455         // Free the value.
    456         B->second.~ValueT();
    457       }
    458       B->first.~KeyT();
    459     }
    460 
    461 #ifndef NDEBUG
    462     memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
    463 #endif
    464     // Free the old table.
    465     operator delete(OldBuckets);
    466 
    467     NumEntries = 0;
    468   }
    469 
    470 public:
    471   /// Return the approximate size (in bytes) of the actual map.
    472   /// This is just the raw memory used by DenseMap.
    473   /// If entries are pointers to objects, the size of the referenced objects
    474   /// are not included.
    475   size_t getMemorySize() const {
    476     return NumBuckets * sizeof(BucketT);
    477   }
    478 };
    479 
    480 template<typename KeyT, typename ValueT,
    481          typename KeyInfoT, typename ValueInfoT, bool IsConst>
    482 class DenseMapIterator {
    483   typedef std::pair<KeyT, ValueT> Bucket;
    484   typedef DenseMapIterator<KeyT, ValueT,
    485                            KeyInfoT, ValueInfoT, true> ConstIterator;
    486   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
    487 public:
    488   typedef ptrdiff_t difference_type;
    489   typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
    490   typedef value_type *pointer;
    491   typedef value_type &reference;
    492   typedef std::forward_iterator_tag iterator_category;
    493 private:
    494   pointer Ptr, End;
    495 public:
    496   DenseMapIterator() : Ptr(0), End(0) {}
    497 
    498   DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
    499     AdvancePastEmptyBuckets();
    500   }
    501 
    502   // If IsConst is true this is a converting constructor from iterator to
    503   // const_iterator and the default copy constructor is used.
    504   // Otherwise this is a copy constructor for iterator.
    505   DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
    506                                           KeyInfoT, ValueInfoT, false>& I)
    507     : Ptr(I.Ptr), End(I.End) {}
    508 
    509   reference operator*() const {
    510     return *Ptr;
    511   }
    512   pointer operator->() const {
    513     return Ptr;
    514   }
    515 
    516   bool operator==(const ConstIterator &RHS) const {
    517     return Ptr == RHS.operator->();
    518   }
    519   bool operator!=(const ConstIterator &RHS) const {
    520     return Ptr != RHS.operator->();
    521   }
    522 
    523   inline DenseMapIterator& operator++() {  // Preincrement
    524     ++Ptr;
    525     AdvancePastEmptyBuckets();
    526     return *this;
    527   }
    528   DenseMapIterator operator++(int) {  // Postincrement
    529     DenseMapIterator tmp = *this; ++*this; return tmp;
    530   }
    531 
    532 private:
    533   void AdvancePastEmptyBuckets() {
    534     const KeyT Empty = KeyInfoT::getEmptyKey();
    535     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
    536 
    537     while (Ptr != End &&
    538            (KeyInfoT::isEqual(Ptr->first, Empty) ||
    539             KeyInfoT::isEqual(Ptr->first, Tombstone)))
    540       ++Ptr;
    541   }
    542 };
    543 
    544 template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
    545 static inline size_t
    546 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT, ValueInfoT> &X) {
    547   return X.getMemorySize();
    548 }
    549 
    550 } // end namespace llvm
    551 
    552 #endif
    553