Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This register allocator allocates registers to a basic block at a time,
     11 // attempting to keep values in registers and reusing registers as appropriate.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "RegisterClassInfo.h"
     17 #include "llvm/BasicBlock.h"
     18 #include "llvm/CodeGen/MachineFunctionPass.h"
     19 #include "llvm/CodeGen/MachineInstr.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/Passes.h"
     24 #include "llvm/CodeGen/RegAllocRegistry.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Target/TargetMachine.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/ADT/DenseMap.h"
     32 #include "llvm/ADT/IndexedMap.h"
     33 #include "llvm/ADT/SmallSet.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include <algorithm>
     38 using namespace llvm;
     39 
     40 STATISTIC(NumStores, "Number of stores added");
     41 STATISTIC(NumLoads , "Number of loads added");
     42 STATISTIC(NumCopies, "Number of copies coalesced");
     43 
     44 static RegisterRegAlloc
     45   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
     46 
     47 namespace {
     48   class RAFast : public MachineFunctionPass {
     49   public:
     50     static char ID;
     51     RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
     52                isBulkSpilling(false) {
     53       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     54       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
     55     }
     56   private:
     57     const TargetMachine *TM;
     58     MachineFunction *MF;
     59     MachineRegisterInfo *MRI;
     60     const TargetRegisterInfo *TRI;
     61     const TargetInstrInfo *TII;
     62     RegisterClassInfo RegClassInfo;
     63 
     64     // Basic block currently being allocated.
     65     MachineBasicBlock *MBB;
     66 
     67     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
     68     // values are spilled.
     69     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
     70 
     71     // Everything we know about a live virtual register.
     72     struct LiveReg {
     73       MachineInstr *LastUse;    // Last instr to use reg.
     74       unsigned PhysReg;         // Currently held here.
     75       unsigned short LastOpNum; // OpNum on LastUse.
     76       bool Dirty;               // Register needs spill.
     77 
     78       LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
     79                               Dirty(false) {}
     80     };
     81 
     82     typedef DenseMap<unsigned, LiveReg> LiveRegMap;
     83     typedef LiveRegMap::value_type LiveRegEntry;
     84 
     85     // LiveVirtRegs - This map contains entries for each virtual register
     86     // that is currently available in a physical register.
     87     LiveRegMap LiveVirtRegs;
     88 
     89     DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
     90 
     91     // RegState - Track the state of a physical register.
     92     enum RegState {
     93       // A disabled register is not available for allocation, but an alias may
     94       // be in use. A register can only be moved out of the disabled state if
     95       // all aliases are disabled.
     96       regDisabled,
     97 
     98       // A free register is not currently in use and can be allocated
     99       // immediately without checking aliases.
    100       regFree,
    101 
    102       // A reserved register has been assigned explicitly (e.g., setting up a
    103       // call parameter), and it remains reserved until it is used.
    104       regReserved
    105 
    106       // A register state may also be a virtual register number, indication that
    107       // the physical register is currently allocated to a virtual register. In
    108       // that case, LiveVirtRegs contains the inverse mapping.
    109     };
    110 
    111     // PhysRegState - One of the RegState enums, or a virtreg.
    112     std::vector<unsigned> PhysRegState;
    113 
    114     // UsedInInstr - BitVector of physregs that are used in the current
    115     // instruction, and so cannot be allocated.
    116     BitVector UsedInInstr;
    117 
    118     // SkippedInstrs - Descriptors of instructions whose clobber list was
    119     // ignored because all registers were spilled. It is still necessary to
    120     // mark all the clobbered registers as used by the function.
    121     SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
    122 
    123     // isBulkSpilling - This flag is set when LiveRegMap will be cleared
    124     // completely after spilling all live registers. LiveRegMap entries should
    125     // not be erased.
    126     bool isBulkSpilling;
    127 
    128     enum {
    129       spillClean = 1,
    130       spillDirty = 100,
    131       spillImpossible = ~0u
    132     };
    133   public:
    134     virtual const char *getPassName() const {
    135       return "Fast Register Allocator";
    136     }
    137 
    138     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    139       AU.setPreservesCFG();
    140       AU.addRequiredID(PHIEliminationID);
    141       AU.addRequiredID(TwoAddressInstructionPassID);
    142       MachineFunctionPass::getAnalysisUsage(AU);
    143     }
    144 
    145   private:
    146     bool runOnMachineFunction(MachineFunction &Fn);
    147     void AllocateBasicBlock();
    148     void handleThroughOperands(MachineInstr *MI,
    149                                SmallVectorImpl<unsigned> &VirtDead);
    150     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
    151     bool isLastUseOfLocalReg(MachineOperand&);
    152 
    153     void addKillFlag(const LiveReg&);
    154     void killVirtReg(LiveRegMap::iterator);
    155     void killVirtReg(unsigned VirtReg);
    156     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
    157     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
    158 
    159     void usePhysReg(MachineOperand&);
    160     void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
    161     unsigned calcSpillCost(unsigned PhysReg) const;
    162     void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg);
    163     void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint);
    164     LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
    165                                        unsigned VirtReg, unsigned Hint);
    166     LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
    167                                        unsigned VirtReg, unsigned Hint);
    168     void spillAll(MachineInstr *MI);
    169     bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
    170   };
    171   char RAFast::ID = 0;
    172 }
    173 
    174 /// getStackSpaceFor - This allocates space for the specified virtual register
    175 /// to be held on the stack.
    176 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
    177   // Find the location Reg would belong...
    178   int SS = StackSlotForVirtReg[VirtReg];
    179   if (SS != -1)
    180     return SS;          // Already has space allocated?
    181 
    182   // Allocate a new stack object for this spill location...
    183   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
    184                                                             RC->getAlignment());
    185 
    186   // Assign the slot.
    187   StackSlotForVirtReg[VirtReg] = FrameIdx;
    188   return FrameIdx;
    189 }
    190 
    191 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
    192 /// its virtual register, and it is guaranteed to be a block-local register.
    193 ///
    194 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
    195   // Check for non-debug uses or defs following MO.
    196   // This is the most likely way to fail - fast path it.
    197   MachineOperand *Next = &MO;
    198   while ((Next = Next->getNextOperandForReg()))
    199     if (!Next->isDebug())
    200       return false;
    201 
    202   // If the register has ever been spilled or reloaded, we conservatively assume
    203   // it is a global register used in multiple blocks.
    204   if (StackSlotForVirtReg[MO.getReg()] != -1)
    205     return false;
    206 
    207   // Check that the use/def chain has exactly one operand - MO.
    208   return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
    209 }
    210 
    211 /// addKillFlag - Set kill flags on last use of a virtual register.
    212 void RAFast::addKillFlag(const LiveReg &LR) {
    213   if (!LR.LastUse) return;
    214   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
    215   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    216     if (MO.getReg() == LR.PhysReg)
    217       MO.setIsKill();
    218     else
    219       LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
    220   }
    221 }
    222 
    223 /// killVirtReg - Mark virtreg as no longer available.
    224 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
    225   addKillFlag(LRI->second);
    226   const LiveReg &LR = LRI->second;
    227   assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
    228   PhysRegState[LR.PhysReg] = regFree;
    229   // Erase from LiveVirtRegs unless we're spilling in bulk.
    230   if (!isBulkSpilling)
    231     LiveVirtRegs.erase(LRI);
    232 }
    233 
    234 /// killVirtReg - Mark virtreg as no longer available.
    235 void RAFast::killVirtReg(unsigned VirtReg) {
    236   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    237          "killVirtReg needs a virtual register");
    238   LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
    239   if (LRI != LiveVirtRegs.end())
    240     killVirtReg(LRI);
    241 }
    242 
    243 /// spillVirtReg - This method spills the value specified by VirtReg into the
    244 /// corresponding stack slot if needed.
    245 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
    246   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    247          "Spilling a physical register is illegal!");
    248   LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
    249   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
    250   spillVirtReg(MI, LRI);
    251 }
    252 
    253 /// spillVirtReg - Do the actual work of spilling.
    254 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
    255                           LiveRegMap::iterator LRI) {
    256   LiveReg &LR = LRI->second;
    257   assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
    258 
    259   if (LR.Dirty) {
    260     // If this physreg is used by the instruction, we want to kill it on the
    261     // instruction, not on the spill.
    262     bool SpillKill = LR.LastUse != MI;
    263     LR.Dirty = false;
    264     DEBUG(dbgs() << "Spilling " << PrintReg(LRI->first, TRI)
    265                  << " in " << PrintReg(LR.PhysReg, TRI));
    266     const TargetRegisterClass *RC = MRI->getRegClass(LRI->first);
    267     int FI = getStackSpaceFor(LRI->first, RC);
    268     DEBUG(dbgs() << " to stack slot #" << FI << "\n");
    269     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
    270     ++NumStores;   // Update statistics
    271 
    272     // If this register is used by DBG_VALUE then insert new DBG_VALUE to
    273     // identify spilled location as the place to find corresponding variable's
    274     // value.
    275     SmallVector<MachineInstr *, 4> &LRIDbgValues = LiveDbgValueMap[LRI->first];
    276     for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
    277       MachineInstr *DBG = LRIDbgValues[li];
    278       const MDNode *MDPtr =
    279         DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
    280       int64_t Offset = 0;
    281       if (DBG->getOperand(1).isImm())
    282         Offset = DBG->getOperand(1).getImm();
    283       DebugLoc DL;
    284       if (MI == MBB->end()) {
    285         // If MI is at basic block end then use last instruction's location.
    286         MachineBasicBlock::iterator EI = MI;
    287         DL = (--EI)->getDebugLoc();
    288       }
    289       else
    290         DL = MI->getDebugLoc();
    291       if (MachineInstr *NewDV =
    292           TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
    293         MachineBasicBlock *MBB = DBG->getParent();
    294         MBB->insert(MI, NewDV);
    295         DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
    296       }
    297     }
    298     // Now this register is spilled there is should not be any DBG_VALUE pointing
    299     // to this register because they are all pointing to spilled value now.
    300     LRIDbgValues.clear();
    301     if (SpillKill)
    302       LR.LastUse = 0; // Don't kill register again
    303   }
    304   killVirtReg(LRI);
    305 }
    306 
    307 /// spillAll - Spill all dirty virtregs without killing them.
    308 void RAFast::spillAll(MachineInstr *MI) {
    309   if (LiveVirtRegs.empty()) return;
    310   isBulkSpilling = true;
    311   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
    312   // of spilling here is deterministic, if arbitrary.
    313   for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
    314        i != e; ++i)
    315     spillVirtReg(MI, i);
    316   LiveVirtRegs.clear();
    317   isBulkSpilling = false;
    318 }
    319 
    320 /// usePhysReg - Handle the direct use of a physical register.
    321 /// Check that the register is not used by a virtreg.
    322 /// Kill the physreg, marking it free.
    323 /// This may add implicit kills to MO->getParent() and invalidate MO.
    324 void RAFast::usePhysReg(MachineOperand &MO) {
    325   unsigned PhysReg = MO.getReg();
    326   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    327          "Bad usePhysReg operand");
    328 
    329   switch (PhysRegState[PhysReg]) {
    330   case regDisabled:
    331     break;
    332   case regReserved:
    333     PhysRegState[PhysReg] = regFree;
    334     // Fall through
    335   case regFree:
    336     UsedInInstr.set(PhysReg);
    337     MO.setIsKill();
    338     return;
    339   default:
    340     // The physreg was allocated to a virtual register. That means the value we
    341     // wanted has been clobbered.
    342     llvm_unreachable("Instruction uses an allocated register");
    343   }
    344 
    345   // Maybe a superregister is reserved?
    346   for (const unsigned *AS = TRI->getAliasSet(PhysReg);
    347        unsigned Alias = *AS; ++AS) {
    348     switch (PhysRegState[Alias]) {
    349     case regDisabled:
    350       break;
    351     case regReserved:
    352       assert(TRI->isSuperRegister(PhysReg, Alias) &&
    353              "Instruction is not using a subregister of a reserved register");
    354       // Leave the superregister in the working set.
    355       PhysRegState[Alias] = regFree;
    356       UsedInInstr.set(Alias);
    357       MO.getParent()->addRegisterKilled(Alias, TRI, true);
    358       return;
    359     case regFree:
    360       if (TRI->isSuperRegister(PhysReg, Alias)) {
    361         // Leave the superregister in the working set.
    362         UsedInInstr.set(Alias);
    363         MO.getParent()->addRegisterKilled(Alias, TRI, true);
    364         return;
    365       }
    366       // Some other alias was in the working set - clear it.
    367       PhysRegState[Alias] = regDisabled;
    368       break;
    369     default:
    370       llvm_unreachable("Instruction uses an alias of an allocated register");
    371     }
    372   }
    373 
    374   // All aliases are disabled, bring register into working set.
    375   PhysRegState[PhysReg] = regFree;
    376   UsedInInstr.set(PhysReg);
    377   MO.setIsKill();
    378 }
    379 
    380 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
    381 /// virtregs. This is very similar to defineVirtReg except the physreg is
    382 /// reserved instead of allocated.
    383 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
    384                            RegState NewState) {
    385   UsedInInstr.set(PhysReg);
    386   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
    387   case regDisabled:
    388     break;
    389   default:
    390     spillVirtReg(MI, VirtReg);
    391     // Fall through.
    392   case regFree:
    393   case regReserved:
    394     PhysRegState[PhysReg] = NewState;
    395     return;
    396   }
    397 
    398   // This is a disabled register, disable all aliases.
    399   PhysRegState[PhysReg] = NewState;
    400   for (const unsigned *AS = TRI->getAliasSet(PhysReg);
    401        unsigned Alias = *AS; ++AS) {
    402     switch (unsigned VirtReg = PhysRegState[Alias]) {
    403     case regDisabled:
    404       break;
    405     default:
    406       spillVirtReg(MI, VirtReg);
    407       // Fall through.
    408     case regFree:
    409     case regReserved:
    410       PhysRegState[Alias] = regDisabled;
    411       if (TRI->isSuperRegister(PhysReg, Alias))
    412         return;
    413       break;
    414     }
    415   }
    416 }
    417 
    418 
    419 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
    420 // aliases so it is free for allocation.
    421 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
    422 // can be allocated directly.
    423 // Returns spillImpossible when PhysReg or an alias can't be spilled.
    424 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
    425   if (UsedInInstr.test(PhysReg)) {
    426     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
    427     return spillImpossible;
    428   }
    429   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
    430   case regDisabled:
    431     break;
    432   case regFree:
    433     return 0;
    434   case regReserved:
    435     DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
    436                  << PrintReg(PhysReg, TRI) << " is reserved already.\n");
    437     return spillImpossible;
    438   default:
    439     return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
    440   }
    441 
    442   // This is a disabled register, add up cost of aliases.
    443   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
    444   unsigned Cost = 0;
    445   for (const unsigned *AS = TRI->getAliasSet(PhysReg);
    446        unsigned Alias = *AS; ++AS) {
    447     if (UsedInInstr.test(Alias))
    448       return spillImpossible;
    449     switch (unsigned VirtReg = PhysRegState[Alias]) {
    450     case regDisabled:
    451       break;
    452     case regFree:
    453       ++Cost;
    454       break;
    455     case regReserved:
    456       return spillImpossible;
    457     default:
    458       Cost += LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
    459       break;
    460     }
    461   }
    462   return Cost;
    463 }
    464 
    465 
    466 /// assignVirtToPhysReg - This method updates local state so that we know
    467 /// that PhysReg is the proper container for VirtReg now.  The physical
    468 /// register must not be used for anything else when this is called.
    469 ///
    470 void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) {
    471   DEBUG(dbgs() << "Assigning " << PrintReg(LRE.first, TRI) << " to "
    472                << PrintReg(PhysReg, TRI) << "\n");
    473   PhysRegState[PhysReg] = LRE.first;
    474   assert(!LRE.second.PhysReg && "Already assigned a physreg");
    475   LRE.second.PhysReg = PhysReg;
    476 }
    477 
    478 /// allocVirtReg - Allocate a physical register for VirtReg.
    479 void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) {
    480   const unsigned VirtReg = LRE.first;
    481 
    482   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    483          "Can only allocate virtual registers");
    484 
    485   const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    486 
    487   // Ignore invalid hints.
    488   if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
    489                !RC->contains(Hint) || !RegClassInfo.isAllocatable(Hint)))
    490     Hint = 0;
    491 
    492   // Take hint when possible.
    493   if (Hint) {
    494     // Ignore the hint if we would have to spill a dirty register.
    495     unsigned Cost = calcSpillCost(Hint);
    496     if (Cost < spillDirty) {
    497       if (Cost)
    498         definePhysReg(MI, Hint, regFree);
    499       return assignVirtToPhysReg(LRE, Hint);
    500     }
    501   }
    502 
    503   ArrayRef<unsigned> AO = RegClassInfo.getOrder(RC);
    504 
    505   // First try to find a completely free register.
    506   for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
    507     unsigned PhysReg = *I;
    508     if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg))
    509       return assignVirtToPhysReg(LRE, PhysReg);
    510   }
    511 
    512   DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
    513                << RC->getName() << "\n");
    514 
    515   unsigned BestReg = 0, BestCost = spillImpossible;
    516   for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
    517     unsigned Cost = calcSpillCost(*I);
    518     DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
    519     DEBUG(dbgs() << "\tCost: " << Cost << "\n");
    520     DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
    521     // Cost is 0 when all aliases are already disabled.
    522     if (Cost == 0)
    523       return assignVirtToPhysReg(LRE, *I);
    524     if (Cost < BestCost)
    525       BestReg = *I, BestCost = Cost;
    526   }
    527 
    528   if (BestReg) {
    529     definePhysReg(MI, BestReg, regFree);
    530     return assignVirtToPhysReg(LRE, BestReg);
    531   }
    532 
    533   // Nothing we can do. Report an error and keep going with a bad allocation.
    534   MI->emitError("ran out of registers during register allocation");
    535   definePhysReg(MI, *AO.begin(), regFree);
    536   assignVirtToPhysReg(LRE, *AO.begin());
    537 }
    538 
    539 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
    540 RAFast::LiveRegMap::iterator
    541 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
    542                       unsigned VirtReg, unsigned Hint) {
    543   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    544          "Not a virtual register");
    545   LiveRegMap::iterator LRI;
    546   bool New;
    547   tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
    548   LiveReg &LR = LRI->second;
    549   if (New) {
    550     // If there is no hint, peek at the only use of this register.
    551     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
    552         MRI->hasOneNonDBGUse(VirtReg)) {
    553       const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
    554       // It's a copy, use the destination register as a hint.
    555       if (UseMI.isCopyLike())
    556         Hint = UseMI.getOperand(0).getReg();
    557     }
    558     allocVirtReg(MI, *LRI, Hint);
    559   } else if (LR.LastUse) {
    560     // Redefining a live register - kill at the last use, unless it is this
    561     // instruction defining VirtReg multiple times.
    562     if (LR.LastUse != MI || LR.LastUse->getOperand(LR.LastOpNum).isUse())
    563       addKillFlag(LR);
    564   }
    565   assert(LR.PhysReg && "Register not assigned");
    566   LR.LastUse = MI;
    567   LR.LastOpNum = OpNum;
    568   LR.Dirty = true;
    569   UsedInInstr.set(LR.PhysReg);
    570   return LRI;
    571 }
    572 
    573 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
    574 RAFast::LiveRegMap::iterator
    575 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
    576                       unsigned VirtReg, unsigned Hint) {
    577   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    578          "Not a virtual register");
    579   LiveRegMap::iterator LRI;
    580   bool New;
    581   tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
    582   LiveReg &LR = LRI->second;
    583   MachineOperand &MO = MI->getOperand(OpNum);
    584   if (New) {
    585     allocVirtReg(MI, *LRI, Hint);
    586     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    587     int FrameIndex = getStackSpaceFor(VirtReg, RC);
    588     DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
    589                  << PrintReg(LR.PhysReg, TRI) << "\n");
    590     TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI);
    591     ++NumLoads;
    592   } else if (LR.Dirty) {
    593     if (isLastUseOfLocalReg(MO)) {
    594       DEBUG(dbgs() << "Killing last use: " << MO << "\n");
    595       if (MO.isUse())
    596         MO.setIsKill();
    597       else
    598         MO.setIsDead();
    599     } else if (MO.isKill()) {
    600       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
    601       MO.setIsKill(false);
    602     } else if (MO.isDead()) {
    603       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
    604       MO.setIsDead(false);
    605     }
    606   } else if (MO.isKill()) {
    607     // We must remove kill flags from uses of reloaded registers because the
    608     // register would be killed immediately, and there might be a second use:
    609     //   %foo = OR %x<kill>, %x
    610     // This would cause a second reload of %x into a different register.
    611     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
    612     MO.setIsKill(false);
    613   } else if (MO.isDead()) {
    614     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
    615     MO.setIsDead(false);
    616   }
    617   assert(LR.PhysReg && "Register not assigned");
    618   LR.LastUse = MI;
    619   LR.LastOpNum = OpNum;
    620   UsedInInstr.set(LR.PhysReg);
    621   return LRI;
    622 }
    623 
    624 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
    625 // subregs. This may invalidate any operand pointers.
    626 // Return true if the operand kills its register.
    627 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
    628   MachineOperand &MO = MI->getOperand(OpNum);
    629   if (!MO.getSubReg()) {
    630     MO.setReg(PhysReg);
    631     return MO.isKill() || MO.isDead();
    632   }
    633 
    634   // Handle subregister index.
    635   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
    636   MO.setSubReg(0);
    637 
    638   // A kill flag implies killing the full register. Add corresponding super
    639   // register kill.
    640   if (MO.isKill()) {
    641     MI->addRegisterKilled(PhysReg, TRI, true);
    642     return true;
    643   }
    644   return MO.isDead();
    645 }
    646 
    647 // Handle special instruction operand like early clobbers and tied ops when
    648 // there are additional physreg defines.
    649 void RAFast::handleThroughOperands(MachineInstr *MI,
    650                                    SmallVectorImpl<unsigned> &VirtDead) {
    651   DEBUG(dbgs() << "Scanning for through registers:");
    652   SmallSet<unsigned, 8> ThroughRegs;
    653   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    654     MachineOperand &MO = MI->getOperand(i);
    655     if (!MO.isReg()) continue;
    656     unsigned Reg = MO.getReg();
    657     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    658       continue;
    659     if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
    660         (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
    661       if (ThroughRegs.insert(Reg))
    662         DEBUG(dbgs() << ' ' << PrintReg(Reg));
    663     }
    664   }
    665 
    666   // If any physreg defines collide with preallocated through registers,
    667   // we must spill and reallocate.
    668   DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
    669   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    670     MachineOperand &MO = MI->getOperand(i);
    671     if (!MO.isReg() || !MO.isDef()) continue;
    672     unsigned Reg = MO.getReg();
    673     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    674     UsedInInstr.set(Reg);
    675     if (ThroughRegs.count(PhysRegState[Reg]))
    676       definePhysReg(MI, Reg, regFree);
    677     for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
    678       UsedInInstr.set(*AS);
    679       if (ThroughRegs.count(PhysRegState[*AS]))
    680         definePhysReg(MI, *AS, regFree);
    681     }
    682   }
    683 
    684   SmallVector<unsigned, 8> PartialDefs;
    685   DEBUG(dbgs() << "Allocating tied uses and early clobbers.\n");
    686   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    687     MachineOperand &MO = MI->getOperand(i);
    688     if (!MO.isReg()) continue;
    689     unsigned Reg = MO.getReg();
    690     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    691     if (MO.isUse()) {
    692       unsigned DefIdx = 0;
    693       if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
    694       DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
    695         << DefIdx << ".\n");
    696       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
    697       unsigned PhysReg = LRI->second.PhysReg;
    698       setPhysReg(MI, i, PhysReg);
    699       // Note: we don't update the def operand yet. That would cause the normal
    700       // def-scan to attempt spilling.
    701     } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
    702       DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
    703       // Reload the register, but don't assign to the operand just yet.
    704       // That would confuse the later phys-def processing pass.
    705       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
    706       PartialDefs.push_back(LRI->second.PhysReg);
    707     } else if (MO.isEarlyClobber()) {
    708       // Note: defineVirtReg may invalidate MO.
    709       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
    710       unsigned PhysReg = LRI->second.PhysReg;
    711       if (setPhysReg(MI, i, PhysReg))
    712         VirtDead.push_back(Reg);
    713     }
    714   }
    715 
    716   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
    717   UsedInInstr.reset();
    718   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    719     MachineOperand &MO = MI->getOperand(i);
    720     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    721     unsigned Reg = MO.getReg();
    722     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    723     DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
    724                  << " as used in instr\n");
    725     UsedInInstr.set(Reg);
    726   }
    727 
    728   // Also mark PartialDefs as used to avoid reallocation.
    729   for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
    730     UsedInInstr.set(PartialDefs[i]);
    731 }
    732 
    733 void RAFast::AllocateBasicBlock() {
    734   DEBUG(dbgs() << "\nAllocating " << *MBB);
    735 
    736   // FIXME: This should probably be added by instruction selection instead?
    737   // If the last instruction in the block is a return, make sure to mark it as
    738   // using all of the live-out values in the function.  Things marked both call
    739   // and return are tail calls; do not do this for them.  The tail callee need
    740   // not take the same registers as input that it produces as output, and there
    741   // are dependencies for its input registers elsewhere.
    742   if (!MBB->empty() && MBB->back().getDesc().isReturn() &&
    743       !MBB->back().getDesc().isCall()) {
    744     MachineInstr *Ret = &MBB->back();
    745 
    746     for (MachineRegisterInfo::liveout_iterator
    747          I = MF->getRegInfo().liveout_begin(),
    748          E = MF->getRegInfo().liveout_end(); I != E; ++I) {
    749       assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
    750              "Cannot have a live-out virtual register.");
    751 
    752       // Add live-out registers as implicit uses.
    753       Ret->addRegisterKilled(*I, TRI, true);
    754     }
    755   }
    756 
    757   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
    758   assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
    759 
    760   MachineBasicBlock::iterator MII = MBB->begin();
    761 
    762   // Add live-in registers as live.
    763   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    764          E = MBB->livein_end(); I != E; ++I)
    765     if (RegClassInfo.isAllocatable(*I))
    766       definePhysReg(MII, *I, regReserved);
    767 
    768   SmallVector<unsigned, 8> VirtDead;
    769   SmallVector<MachineInstr*, 32> Coalesced;
    770 
    771   // Otherwise, sequentially allocate each instruction in the MBB.
    772   while (MII != MBB->end()) {
    773     MachineInstr *MI = MII++;
    774     const MCInstrDesc &MCID = MI->getDesc();
    775     DEBUG({
    776         dbgs() << "\n>> " << *MI << "Regs:";
    777         for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
    778           if (PhysRegState[Reg] == regDisabled) continue;
    779           dbgs() << " " << TRI->getName(Reg);
    780           switch(PhysRegState[Reg]) {
    781           case regFree:
    782             break;
    783           case regReserved:
    784             dbgs() << "*";
    785             break;
    786           default:
    787             dbgs() << '=' << PrintReg(PhysRegState[Reg]);
    788             if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
    789               dbgs() << "*";
    790             assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
    791                    "Bad inverse map");
    792             break;
    793           }
    794         }
    795         dbgs() << '\n';
    796         // Check that LiveVirtRegs is the inverse.
    797         for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
    798              e = LiveVirtRegs.end(); i != e; ++i) {
    799            assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
    800                   "Bad map key");
    801            assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
    802                   "Bad map value");
    803            assert(PhysRegState[i->second.PhysReg] == i->first &&
    804                   "Bad inverse map");
    805         }
    806       });
    807 
    808     // Debug values are not allowed to change codegen in any way.
    809     if (MI->isDebugValue()) {
    810       bool ScanDbgValue = true;
    811       while (ScanDbgValue) {
    812         ScanDbgValue = false;
    813         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    814           MachineOperand &MO = MI->getOperand(i);
    815           if (!MO.isReg()) continue;
    816           unsigned Reg = MO.getReg();
    817           if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    818           LiveDbgValueMap[Reg].push_back(MI);
    819           LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg);
    820           if (LRI != LiveVirtRegs.end())
    821             setPhysReg(MI, i, LRI->second.PhysReg);
    822           else {
    823             int SS = StackSlotForVirtReg[Reg];
    824             if (SS == -1) {
    825               // We can't allocate a physreg for a DebugValue, sorry!
    826               DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    827               MO.setReg(0);
    828             }
    829             else {
    830               // Modify DBG_VALUE now that the value is in a spill slot.
    831               int64_t Offset = MI->getOperand(1).getImm();
    832               const MDNode *MDPtr =
    833                 MI->getOperand(MI->getNumOperands()-1).getMetadata();
    834               DebugLoc DL = MI->getDebugLoc();
    835               if (MachineInstr *NewDV =
    836                   TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
    837                 DEBUG(dbgs() << "Modifying debug info due to spill:" <<
    838                       "\t" << *MI);
    839                 MachineBasicBlock *MBB = MI->getParent();
    840                 MBB->insert(MBB->erase(MI), NewDV);
    841                 // Scan NewDV operands from the beginning.
    842                 MI = NewDV;
    843                 ScanDbgValue = true;
    844                 break;
    845               } else {
    846                 // We can't allocate a physreg for a DebugValue; sorry!
    847                 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    848                 MO.setReg(0);
    849               }
    850             }
    851           }
    852         }
    853       }
    854       // Next instruction.
    855       continue;
    856     }
    857 
    858     // If this is a copy, we may be able to coalesce.
    859     unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
    860     if (MI->isCopy()) {
    861       CopyDst = MI->getOperand(0).getReg();
    862       CopySrc = MI->getOperand(1).getReg();
    863       CopyDstSub = MI->getOperand(0).getSubReg();
    864       CopySrcSub = MI->getOperand(1).getSubReg();
    865     }
    866 
    867     // Track registers used by instruction.
    868     UsedInInstr.reset();
    869 
    870     // First scan.
    871     // Mark physreg uses and early clobbers as used.
    872     // Find the end of the virtreg operands
    873     unsigned VirtOpEnd = 0;
    874     bool hasTiedOps = false;
    875     bool hasEarlyClobbers = false;
    876     bool hasPartialRedefs = false;
    877     bool hasPhysDefs = false;
    878     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    879       MachineOperand &MO = MI->getOperand(i);
    880       if (!MO.isReg()) continue;
    881       unsigned Reg = MO.getReg();
    882       if (!Reg) continue;
    883       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    884         VirtOpEnd = i+1;
    885         if (MO.isUse()) {
    886           hasTiedOps = hasTiedOps ||
    887                               MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
    888         } else {
    889           if (MO.isEarlyClobber())
    890             hasEarlyClobbers = true;
    891           if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
    892             hasPartialRedefs = true;
    893         }
    894         continue;
    895       }
    896       if (!RegClassInfo.isAllocatable(Reg)) continue;
    897       if (MO.isUse()) {
    898         usePhysReg(MO);
    899       } else if (MO.isEarlyClobber()) {
    900         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
    901                                regFree : regReserved);
    902         hasEarlyClobbers = true;
    903       } else
    904         hasPhysDefs = true;
    905     }
    906 
    907     // The instruction may have virtual register operands that must be allocated
    908     // the same register at use-time and def-time: early clobbers and tied
    909     // operands. If there are also physical defs, these registers must avoid
    910     // both physical defs and uses, making them more constrained than normal
    911     // operands.
    912     // Similarly, if there are multiple defs and tied operands, we must make
    913     // sure the same register is allocated to uses and defs.
    914     // We didn't detect inline asm tied operands above, so just make this extra
    915     // pass for all inline asm.
    916     if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
    917         (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
    918       handleThroughOperands(MI, VirtDead);
    919       // Don't attempt coalescing when we have funny stuff going on.
    920       CopyDst = 0;
    921       // Pretend we have early clobbers so the use operands get marked below.
    922       // This is not necessary for the common case of a single tied use.
    923       hasEarlyClobbers = true;
    924     }
    925 
    926     // Second scan.
    927     // Allocate virtreg uses.
    928     for (unsigned i = 0; i != VirtOpEnd; ++i) {
    929       MachineOperand &MO = MI->getOperand(i);
    930       if (!MO.isReg()) continue;
    931       unsigned Reg = MO.getReg();
    932       if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    933       if (MO.isUse()) {
    934         LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
    935         unsigned PhysReg = LRI->second.PhysReg;
    936         CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
    937         if (setPhysReg(MI, i, PhysReg))
    938           killVirtReg(LRI);
    939       }
    940     }
    941 
    942     MRI->addPhysRegsUsed(UsedInInstr);
    943 
    944     // Track registers defined by instruction - early clobbers and tied uses at
    945     // this point.
    946     UsedInInstr.reset();
    947     if (hasEarlyClobbers) {
    948       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    949         MachineOperand &MO = MI->getOperand(i);
    950         if (!MO.isReg()) continue;
    951         unsigned Reg = MO.getReg();
    952         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    953         // Look for physreg defs and tied uses.
    954         if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
    955         UsedInInstr.set(Reg);
    956         for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
    957           UsedInInstr.set(*AS);
    958       }
    959     }
    960 
    961     unsigned DefOpEnd = MI->getNumOperands();
    962     if (MCID.isCall()) {
    963       // Spill all virtregs before a call. This serves two purposes: 1. If an
    964       // exception is thrown, the landing pad is going to expect to find
    965       // registers in their spill slots, and 2. we don't have to wade through
    966       // all the <imp-def> operands on the call instruction.
    967       DefOpEnd = VirtOpEnd;
    968       DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
    969       spillAll(MI);
    970 
    971       // The imp-defs are skipped below, but we still need to mark those
    972       // registers as used by the function.
    973       SkippedInstrs.insert(&MCID);
    974     }
    975 
    976     // Third scan.
    977     // Allocate defs and collect dead defs.
    978     for (unsigned i = 0; i != DefOpEnd; ++i) {
    979       MachineOperand &MO = MI->getOperand(i);
    980       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
    981         continue;
    982       unsigned Reg = MO.getReg();
    983 
    984       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    985         if (!RegClassInfo.isAllocatable(Reg)) continue;
    986         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
    987                                regFree : regReserved);
    988         continue;
    989       }
    990       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
    991       unsigned PhysReg = LRI->second.PhysReg;
    992       if (setPhysReg(MI, i, PhysReg)) {
    993         VirtDead.push_back(Reg);
    994         CopyDst = 0; // cancel coalescing;
    995       } else
    996         CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
    997     }
    998 
    999     // Kill dead defs after the scan to ensure that multiple defs of the same
   1000     // register are allocated identically. We didn't need to do this for uses
   1001     // because we are crerating our own kill flags, and they are always at the
   1002     // last use.
   1003     for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
   1004       killVirtReg(VirtDead[i]);
   1005     VirtDead.clear();
   1006 
   1007     MRI->addPhysRegsUsed(UsedInInstr);
   1008 
   1009     if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
   1010       DEBUG(dbgs() << "-- coalescing: " << *MI);
   1011       Coalesced.push_back(MI);
   1012     } else {
   1013       DEBUG(dbgs() << "<< " << *MI);
   1014     }
   1015   }
   1016 
   1017   // Spill all physical registers holding virtual registers now.
   1018   DEBUG(dbgs() << "Spilling live registers at end of block.\n");
   1019   spillAll(MBB->getFirstTerminator());
   1020 
   1021   // Erase all the coalesced copies. We are delaying it until now because
   1022   // LiveVirtRegs might refer to the instrs.
   1023   for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
   1024     MBB->erase(Coalesced[i]);
   1025   NumCopies += Coalesced.size();
   1026 
   1027   DEBUG(MBB->dump());
   1028 }
   1029 
   1030 /// runOnMachineFunction - Register allocate the whole function
   1031 ///
   1032 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
   1033   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
   1034                << "********** Function: "
   1035                << ((Value*)Fn.getFunction())->getName() << '\n');
   1036   MF = &Fn;
   1037   MRI = &MF->getRegInfo();
   1038   TM = &Fn.getTarget();
   1039   TRI = TM->getRegisterInfo();
   1040   TII = TM->getInstrInfo();
   1041   RegClassInfo.runOnMachineFunction(Fn);
   1042   UsedInInstr.resize(TRI->getNumRegs());
   1043 
   1044   // initialize the virtual->physical register map to have a 'null'
   1045   // mapping for all virtual registers
   1046   StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
   1047 
   1048   // Loop over all of the basic blocks, eliminating virtual register references
   1049   for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
   1050        MBBi != MBBe; ++MBBi) {
   1051     MBB = &*MBBi;
   1052     AllocateBasicBlock();
   1053   }
   1054 
   1055   // Make sure the set of used physregs is closed under subreg operations.
   1056   MRI->closePhysRegsUsed(*TRI);
   1057 
   1058   // Add the clobber lists for all the instructions we skipped earlier.
   1059   for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
   1060        I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
   1061     if (const unsigned *Defs = (*I)->getImplicitDefs())
   1062       while (*Defs)
   1063         MRI->setPhysRegUsed(*Defs++);
   1064 
   1065   SkippedInstrs.clear();
   1066   StackSlotForVirtReg.clear();
   1067   LiveDbgValueMap.clear();
   1068   return true;
   1069 }
   1070 
   1071 FunctionPass *llvm::createFastRegisterAllocator() {
   1072   return new RAFast();
   1073 }
   1074