Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a linear scan register allocator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "regalloc"
     15 #include "LiveDebugVariables.h"
     16 #include "LiveRangeEdit.h"
     17 #include "VirtRegMap.h"
     18 #include "VirtRegRewriter.h"
     19 #include "RegisterClassInfo.h"
     20 #include "Spiller.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/CodeGen/CalcSpillWeights.h"
     24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/Passes.h"
     30 #include "llvm/CodeGen/RegAllocRegistry.h"
     31 #include "llvm/Target/TargetRegisterInfo.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetOptions.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/ADT/EquivalenceClasses.h"
     36 #include "llvm/ADT/SmallSet.h"
     37 #include "llvm/ADT/Statistic.h"
     38 #include "llvm/ADT/STLExtras.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <algorithm>
     43 #include <queue>
     44 #include <memory>
     45 #include <cmath>
     46 
     47 using namespace llvm;
     48 
     49 STATISTIC(NumIters     , "Number of iterations performed");
     50 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
     51 STATISTIC(NumCoalesce,   "Number of copies coalesced");
     52 STATISTIC(NumDowngrade,  "Number of registers downgraded");
     53 
     54 static cl::opt<bool>
     55 NewHeuristic("new-spilling-heuristic",
     56              cl::desc("Use new spilling heuristic"),
     57              cl::init(false), cl::Hidden);
     58 
     59 static cl::opt<bool>
     60 TrivCoalesceEnds("trivial-coalesce-ends",
     61                   cl::desc("Attempt trivial coalescing of interval ends"),
     62                   cl::init(false), cl::Hidden);
     63 
     64 static cl::opt<bool>
     65 AvoidWAWHazard("avoid-waw-hazard",
     66                cl::desc("Avoid write-write hazards for some register classes"),
     67                cl::init(false), cl::Hidden);
     68 
     69 static RegisterRegAlloc
     70 linearscanRegAlloc("linearscan", "linear scan register allocator",
     71                    createLinearScanRegisterAllocator);
     72 
     73 namespace {
     74   // When we allocate a register, add it to a fixed-size queue of
     75   // registers to skip in subsequent allocations. This trades a small
     76   // amount of register pressure and increased spills for flexibility in
     77   // the post-pass scheduler.
     78   //
     79   // Note that in a the number of registers used for reloading spills
     80   // will be one greater than the value of this option.
     81   //
     82   // One big limitation of this is that it doesn't differentiate between
     83   // different register classes. So on x86-64, if there is xmm register
     84   // pressure, it can caused fewer GPRs to be held in the queue.
     85   static cl::opt<unsigned>
     86   NumRecentlyUsedRegs("linearscan-skip-count",
     87                       cl::desc("Number of registers for linearscan to remember"
     88                                "to skip."),
     89                       cl::init(0),
     90                       cl::Hidden);
     91 
     92   struct RALinScan : public MachineFunctionPass {
     93     static char ID;
     94     RALinScan() : MachineFunctionPass(ID) {
     95       initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
     96       initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     97       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
     98       initializeRegisterCoalescerPass(
     99         *PassRegistry::getPassRegistry());
    100       initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    101       initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    102       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    103       initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    104       initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    105       initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    106 
    107       // Initialize the queue to record recently-used registers.
    108       if (NumRecentlyUsedRegs > 0)
    109         RecentRegs.resize(NumRecentlyUsedRegs, 0);
    110       RecentNext = RecentRegs.begin();
    111       avoidWAW_ = 0;
    112     }
    113 
    114     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
    115     typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
    116   private:
    117     /// RelatedRegClasses - This structure is built the first time a function is
    118     /// compiled, and keeps track of which register classes have registers that
    119     /// belong to multiple classes or have aliases that are in other classes.
    120     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
    121     DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
    122 
    123     // NextReloadMap - For each register in the map, it maps to the another
    124     // register which is defined by a reload from the same stack slot and
    125     // both reloads are in the same basic block.
    126     DenseMap<unsigned, unsigned> NextReloadMap;
    127 
    128     // DowngradedRegs - A set of registers which are being "downgraded", i.e.
    129     // un-favored for allocation.
    130     SmallSet<unsigned, 8> DowngradedRegs;
    131 
    132     // DowngradeMap - A map from virtual registers to physical registers being
    133     // downgraded for the virtual registers.
    134     DenseMap<unsigned, unsigned> DowngradeMap;
    135 
    136     MachineFunction* mf_;
    137     MachineRegisterInfo* mri_;
    138     const TargetMachine* tm_;
    139     const TargetRegisterInfo* tri_;
    140     const TargetInstrInfo* tii_;
    141     BitVector allocatableRegs_;
    142     BitVector reservedRegs_;
    143     LiveIntervals* li_;
    144     MachineLoopInfo *loopInfo;
    145     RegisterClassInfo RegClassInfo;
    146 
    147     /// handled_ - Intervals are added to the handled_ set in the order of their
    148     /// start value.  This is uses for backtracking.
    149     std::vector<LiveInterval*> handled_;
    150 
    151     /// fixed_ - Intervals that correspond to machine registers.
    152     ///
    153     IntervalPtrs fixed_;
    154 
    155     /// active_ - Intervals that are currently being processed, and which have a
    156     /// live range active for the current point.
    157     IntervalPtrs active_;
    158 
    159     /// inactive_ - Intervals that are currently being processed, but which have
    160     /// a hold at the current point.
    161     IntervalPtrs inactive_;
    162 
    163     typedef std::priority_queue<LiveInterval*,
    164                                 SmallVector<LiveInterval*, 64>,
    165                                 greater_ptr<LiveInterval> > IntervalHeap;
    166     IntervalHeap unhandled_;
    167 
    168     /// regUse_ - Tracks register usage.
    169     SmallVector<unsigned, 32> regUse_;
    170     SmallVector<unsigned, 32> regUseBackUp_;
    171 
    172     /// vrm_ - Tracks register assignments.
    173     VirtRegMap* vrm_;
    174 
    175     std::auto_ptr<VirtRegRewriter> rewriter_;
    176 
    177     std::auto_ptr<Spiller> spiller_;
    178 
    179     // The queue of recently-used registers.
    180     SmallVector<unsigned, 4> RecentRegs;
    181     SmallVector<unsigned, 4>::iterator RecentNext;
    182 
    183     // Last write-after-write register written.
    184     unsigned avoidWAW_;
    185 
    186     // Record that we just picked this register.
    187     void recordRecentlyUsed(unsigned reg) {
    188       assert(reg != 0 && "Recently used register is NOREG!");
    189       if (!RecentRegs.empty()) {
    190         *RecentNext++ = reg;
    191         if (RecentNext == RecentRegs.end())
    192           RecentNext = RecentRegs.begin();
    193       }
    194     }
    195 
    196   public:
    197     virtual const char* getPassName() const {
    198       return "Linear Scan Register Allocator";
    199     }
    200 
    201     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    202       AU.setPreservesCFG();
    203       AU.addRequired<AliasAnalysis>();
    204       AU.addPreserved<AliasAnalysis>();
    205       AU.addRequired<LiveIntervals>();
    206       AU.addPreserved<SlotIndexes>();
    207       if (StrongPHIElim)
    208         AU.addRequiredID(StrongPHIEliminationID);
    209       // Make sure PassManager knows which analyses to make available
    210       // to coalescing and which analyses coalescing invalidates.
    211       AU.addRequiredTransitiveID(RegisterCoalescerPassID);
    212       AU.addRequired<CalculateSpillWeights>();
    213       AU.addRequiredID(LiveStacksID);
    214       AU.addPreservedID(LiveStacksID);
    215       AU.addRequired<MachineLoopInfo>();
    216       AU.addPreserved<MachineLoopInfo>();
    217       AU.addRequired<VirtRegMap>();
    218       AU.addPreserved<VirtRegMap>();
    219       AU.addRequired<LiveDebugVariables>();
    220       AU.addPreserved<LiveDebugVariables>();
    221       AU.addRequiredID(MachineDominatorsID);
    222       AU.addPreservedID(MachineDominatorsID);
    223       MachineFunctionPass::getAnalysisUsage(AU);
    224     }
    225 
    226     /// runOnMachineFunction - register allocate the whole function
    227     bool runOnMachineFunction(MachineFunction&);
    228 
    229     // Determine if we skip this register due to its being recently used.
    230     bool isRecentlyUsed(unsigned reg) const {
    231       return reg == avoidWAW_ ||
    232        std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
    233     }
    234 
    235   private:
    236     /// linearScan - the linear scan algorithm
    237     void linearScan();
    238 
    239     /// initIntervalSets - initialize the interval sets.
    240     ///
    241     void initIntervalSets();
    242 
    243     /// processActiveIntervals - expire old intervals and move non-overlapping
    244     /// ones to the inactive list.
    245     void processActiveIntervals(SlotIndex CurPoint);
    246 
    247     /// processInactiveIntervals - expire old intervals and move overlapping
    248     /// ones to the active list.
    249     void processInactiveIntervals(SlotIndex CurPoint);
    250 
    251     /// hasNextReloadInterval - Return the next liveinterval that's being
    252     /// defined by a reload from the same SS as the specified one.
    253     LiveInterval *hasNextReloadInterval(LiveInterval *cur);
    254 
    255     /// DowngradeRegister - Downgrade a register for allocation.
    256     void DowngradeRegister(LiveInterval *li, unsigned Reg);
    257 
    258     /// UpgradeRegister - Upgrade a register for allocation.
    259     void UpgradeRegister(unsigned Reg);
    260 
    261     /// assignRegOrStackSlotAtInterval - assign a register if one
    262     /// is available, or spill.
    263     void assignRegOrStackSlotAtInterval(LiveInterval* cur);
    264 
    265     void updateSpillWeights(std::vector<float> &Weights,
    266                             unsigned reg, float weight,
    267                             const TargetRegisterClass *RC);
    268 
    269     /// findIntervalsToSpill - Determine the intervals to spill for the
    270     /// specified interval. It's passed the physical registers whose spill
    271     /// weight is the lowest among all the registers whose live intervals
    272     /// conflict with the interval.
    273     void findIntervalsToSpill(LiveInterval *cur,
    274                             std::vector<std::pair<unsigned,float> > &Candidates,
    275                             unsigned NumCands,
    276                             SmallVector<LiveInterval*, 8> &SpillIntervals);
    277 
    278     /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
    279     /// try to allocate the definition to the same register as the source,
    280     /// if the register is not defined during the life time of the interval.
    281     /// This eliminates a copy, and is used to coalesce copies which were not
    282     /// coalesced away before allocation either due to dest and src being in
    283     /// different register classes or because the coalescer was overly
    284     /// conservative.
    285     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
    286 
    287     ///
    288     /// Register usage / availability tracking helpers.
    289     ///
    290 
    291     void initRegUses() {
    292       regUse_.resize(tri_->getNumRegs(), 0);
    293       regUseBackUp_.resize(tri_->getNumRegs(), 0);
    294     }
    295 
    296     void finalizeRegUses() {
    297 #ifndef NDEBUG
    298       // Verify all the registers are "freed".
    299       bool Error = false;
    300       for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
    301         if (regUse_[i] != 0) {
    302           dbgs() << tri_->getName(i) << " is still in use!\n";
    303           Error = true;
    304         }
    305       }
    306       if (Error)
    307         llvm_unreachable(0);
    308 #endif
    309       regUse_.clear();
    310       regUseBackUp_.clear();
    311     }
    312 
    313     void addRegUse(unsigned physReg) {
    314       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
    315              "should be physical register!");
    316       ++regUse_[physReg];
    317       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
    318         ++regUse_[*as];
    319     }
    320 
    321     void delRegUse(unsigned physReg) {
    322       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
    323              "should be physical register!");
    324       assert(regUse_[physReg] != 0);
    325       --regUse_[physReg];
    326       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
    327         assert(regUse_[*as] != 0);
    328         --regUse_[*as];
    329       }
    330     }
    331 
    332     bool isRegAvail(unsigned physReg) const {
    333       assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
    334              "should be physical register!");
    335       return regUse_[physReg] == 0;
    336     }
    337 
    338     void backUpRegUses() {
    339       regUseBackUp_ = regUse_;
    340     }
    341 
    342     void restoreRegUses() {
    343       regUse_ = regUseBackUp_;
    344     }
    345 
    346     ///
    347     /// Register handling helpers.
    348     ///
    349 
    350     /// getFreePhysReg - return a free physical register for this virtual
    351     /// register interval if we have one, otherwise return 0.
    352     unsigned getFreePhysReg(LiveInterval* cur);
    353     unsigned getFreePhysReg(LiveInterval* cur,
    354                             const TargetRegisterClass *RC,
    355                             unsigned MaxInactiveCount,
    356                             SmallVector<unsigned, 256> &inactiveCounts,
    357                             bool SkipDGRegs);
    358 
    359     /// getFirstNonReservedPhysReg - return the first non-reserved physical
    360     /// register in the register class.
    361     unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
    362       ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
    363       assert(!O.empty() && "All registers reserved?!");
    364       return O.front();
    365     }
    366 
    367     void ComputeRelatedRegClasses();
    368 
    369     template <typename ItTy>
    370     void printIntervals(const char* const str, ItTy i, ItTy e) const {
    371       DEBUG({
    372           if (str)
    373             dbgs() << str << " intervals:\n";
    374 
    375           for (; i != e; ++i) {
    376             dbgs() << '\t' << *i->first << " -> ";
    377 
    378             unsigned reg = i->first->reg;
    379             if (TargetRegisterInfo::isVirtualRegister(reg))
    380               reg = vrm_->getPhys(reg);
    381 
    382             dbgs() << tri_->getName(reg) << '\n';
    383           }
    384         });
    385     }
    386   };
    387   char RALinScan::ID = 0;
    388 }
    389 
    390 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
    391                       "Linear Scan Register Allocator", false, false)
    392 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    393 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
    394 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
    395 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
    396 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    397 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
    398 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
    399 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    400 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
    401                     "Linear Scan Register Allocator", false, false)
    402 
    403 void RALinScan::ComputeRelatedRegClasses() {
    404   // First pass, add all reg classes to the union, and determine at least one
    405   // reg class that each register is in.
    406   bool HasAliases = false;
    407   for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
    408        E = tri_->regclass_end(); RCI != E; ++RCI) {
    409     RelatedRegClasses.insert(*RCI);
    410     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
    411          I != E; ++I) {
    412       HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
    413 
    414       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
    415       if (PRC) {
    416         // Already processed this register.  Just make sure we know that
    417         // multiple register classes share a register.
    418         RelatedRegClasses.unionSets(PRC, *RCI);
    419       } else {
    420         PRC = *RCI;
    421       }
    422     }
    423   }
    424 
    425   // Second pass, now that we know conservatively what register classes each reg
    426   // belongs to, add info about aliases.  We don't need to do this for targets
    427   // without register aliases.
    428   if (HasAliases)
    429     for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
    430          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
    431          I != E; ++I)
    432       for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
    433         const TargetRegisterClass *AliasClass =
    434           OneClassForEachPhysReg.lookup(*AS);
    435         if (AliasClass)
    436           RelatedRegClasses.unionSets(I->second, AliasClass);
    437       }
    438 }
    439 
    440 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
    441 /// allocate the definition the same register as the source register if the
    442 /// register is not defined during live time of the interval. If the interval is
    443 /// killed by a copy, try to use the destination register. This eliminates a
    444 /// copy. This is used to coalesce copies which were not coalesced away before
    445 /// allocation either due to dest and src being in different register classes or
    446 /// because the coalescer was overly conservative.
    447 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
    448   unsigned Preference = vrm_->getRegAllocPref(cur.reg);
    449   if ((Preference && Preference == Reg) || !cur.containsOneValue())
    450     return Reg;
    451 
    452   // We cannot handle complicated live ranges. Simple linear stuff only.
    453   if (cur.ranges.size() != 1)
    454     return Reg;
    455 
    456   const LiveRange &range = cur.ranges.front();
    457 
    458   VNInfo *vni = range.valno;
    459   if (vni->isUnused() || !vni->def.isValid())
    460     return Reg;
    461 
    462   unsigned CandReg;
    463   {
    464     MachineInstr *CopyMI;
    465     if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
    466       // Defined by a copy, try to extend SrcReg forward
    467       CandReg = CopyMI->getOperand(1).getReg();
    468     else if (TrivCoalesceEnds &&
    469             (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
    470              CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
    471       // Only used by a copy, try to extend DstReg backwards
    472       CandReg = CopyMI->getOperand(0).getReg();
    473     else
    474       return Reg;
    475 
    476     // If the target of the copy is a sub-register then don't coalesce.
    477     if(CopyMI->getOperand(0).getSubReg())
    478       return Reg;
    479   }
    480 
    481   if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
    482     if (!vrm_->isAssignedReg(CandReg))
    483       return Reg;
    484     CandReg = vrm_->getPhys(CandReg);
    485   }
    486   if (Reg == CandReg)
    487     return Reg;
    488 
    489   const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
    490   if (!RC->contains(CandReg))
    491     return Reg;
    492 
    493   if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
    494     return Reg;
    495 
    496   // Try to coalesce.
    497   DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
    498         << '\n');
    499   vrm_->clearVirt(cur.reg);
    500   vrm_->assignVirt2Phys(cur.reg, CandReg);
    501 
    502   ++NumCoalesce;
    503   return CandReg;
    504 }
    505 
    506 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
    507   mf_ = &fn;
    508   mri_ = &fn.getRegInfo();
    509   tm_ = &fn.getTarget();
    510   tri_ = tm_->getRegisterInfo();
    511   tii_ = tm_->getInstrInfo();
    512   allocatableRegs_ = tri_->getAllocatableSet(fn);
    513   reservedRegs_ = tri_->getReservedRegs(fn);
    514   li_ = &getAnalysis<LiveIntervals>();
    515   loopInfo = &getAnalysis<MachineLoopInfo>();
    516   RegClassInfo.runOnMachineFunction(fn);
    517 
    518   // We don't run the coalescer here because we have no reason to
    519   // interact with it.  If the coalescer requires interaction, it
    520   // won't do anything.  If it doesn't require interaction, we assume
    521   // it was run as a separate pass.
    522 
    523   // If this is the first function compiled, compute the related reg classes.
    524   if (RelatedRegClasses.empty())
    525     ComputeRelatedRegClasses();
    526 
    527   // Also resize register usage trackers.
    528   initRegUses();
    529 
    530   vrm_ = &getAnalysis<VirtRegMap>();
    531   if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
    532 
    533   spiller_.reset(createSpiller(*this, *mf_, *vrm_));
    534 
    535   initIntervalSets();
    536 
    537   linearScan();
    538 
    539   // Rewrite spill code and update the PhysRegsUsed set.
    540   rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
    541 
    542   // Write out new DBG_VALUE instructions.
    543   getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
    544 
    545   assert(unhandled_.empty() && "Unhandled live intervals remain!");
    546 
    547   finalizeRegUses();
    548 
    549   fixed_.clear();
    550   active_.clear();
    551   inactive_.clear();
    552   handled_.clear();
    553   NextReloadMap.clear();
    554   DowngradedRegs.clear();
    555   DowngradeMap.clear();
    556   spiller_.reset(0);
    557 
    558   return true;
    559 }
    560 
    561 /// initIntervalSets - initialize the interval sets.
    562 ///
    563 void RALinScan::initIntervalSets()
    564 {
    565   assert(unhandled_.empty() && fixed_.empty() &&
    566          active_.empty() && inactive_.empty() &&
    567          "interval sets should be empty on initialization");
    568 
    569   handled_.reserve(li_->getNumIntervals());
    570 
    571   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
    572     if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
    573       if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
    574         mri_->setPhysRegUsed(i->second->reg);
    575         fixed_.push_back(std::make_pair(i->second, i->second->begin()));
    576       }
    577     } else {
    578       if (i->second->empty()) {
    579         assignRegOrStackSlotAtInterval(i->second);
    580       }
    581       else
    582         unhandled_.push(i->second);
    583     }
    584   }
    585 }
    586 
    587 void RALinScan::linearScan() {
    588   // linear scan algorithm
    589   DEBUG({
    590       dbgs() << "********** LINEAR SCAN **********\n"
    591              << "********** Function: "
    592              << mf_->getFunction()->getName() << '\n';
    593       printIntervals("fixed", fixed_.begin(), fixed_.end());
    594     });
    595 
    596   while (!unhandled_.empty()) {
    597     // pick the interval with the earliest start point
    598     LiveInterval* cur = unhandled_.top();
    599     unhandled_.pop();
    600     ++NumIters;
    601     DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
    602 
    603     assert(!cur->empty() && "Empty interval in unhandled set.");
    604 
    605     processActiveIntervals(cur->beginIndex());
    606     processInactiveIntervals(cur->beginIndex());
    607 
    608     assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
    609            "Can only allocate virtual registers!");
    610 
    611     // Allocating a virtual register. try to find a free
    612     // physical register or spill an interval (possibly this one) in order to
    613     // assign it one.
    614     assignRegOrStackSlotAtInterval(cur);
    615 
    616     DEBUG({
    617         printIntervals("active", active_.begin(), active_.end());
    618         printIntervals("inactive", inactive_.begin(), inactive_.end());
    619       });
    620   }
    621 
    622   // Expire any remaining active intervals
    623   while (!active_.empty()) {
    624     IntervalPtr &IP = active_.back();
    625     unsigned reg = IP.first->reg;
    626     DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
    627     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
    628            "Can only allocate virtual registers!");
    629     reg = vrm_->getPhys(reg);
    630     delRegUse(reg);
    631     active_.pop_back();
    632   }
    633 
    634   // Expire any remaining inactive intervals
    635   DEBUG({
    636       for (IntervalPtrs::reverse_iterator
    637              i = inactive_.rbegin(); i != inactive_.rend(); ++i)
    638         dbgs() << "\tinterval " << *i->first << " expired\n";
    639     });
    640   inactive_.clear();
    641 
    642   // Add live-ins to every BB except for entry. Also perform trivial coalescing.
    643   MachineFunction::iterator EntryMBB = mf_->begin();
    644   SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
    645   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
    646     LiveInterval &cur = *i->second;
    647     unsigned Reg = 0;
    648     bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
    649     if (isPhys)
    650       Reg = cur.reg;
    651     else if (vrm_->isAssignedReg(cur.reg))
    652       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
    653     if (!Reg)
    654       continue;
    655     // Ignore splited live intervals.
    656     if (!isPhys && vrm_->getPreSplitReg(cur.reg))
    657       continue;
    658 
    659     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
    660          I != E; ++I) {
    661       const LiveRange &LR = *I;
    662       if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
    663         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
    664           if (LiveInMBBs[i] != EntryMBB) {
    665             assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
    666                    "Adding a virtual register to livein set?");
    667             LiveInMBBs[i]->addLiveIn(Reg);
    668           }
    669         LiveInMBBs.clear();
    670       }
    671     }
    672   }
    673 
    674   DEBUG(dbgs() << *vrm_);
    675 
    676   // Look for physical registers that end up not being allocated even though
    677   // register allocator had to spill other registers in its register class.
    678   if (!vrm_->FindUnusedRegisters(li_))
    679     return;
    680 }
    681 
    682 /// processActiveIntervals - expire old intervals and move non-overlapping ones
    683 /// to the inactive list.
    684 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
    685 {
    686   DEBUG(dbgs() << "\tprocessing active intervals:\n");
    687 
    688   for (unsigned i = 0, e = active_.size(); i != e; ++i) {
    689     LiveInterval *Interval = active_[i].first;
    690     LiveInterval::iterator IntervalPos = active_[i].second;
    691     unsigned reg = Interval->reg;
    692 
    693     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
    694 
    695     if (IntervalPos == Interval->end()) {     // Remove expired intervals.
    696       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
    697       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
    698              "Can only allocate virtual registers!");
    699       reg = vrm_->getPhys(reg);
    700       delRegUse(reg);
    701 
    702       // Pop off the end of the list.
    703       active_[i] = active_.back();
    704       active_.pop_back();
    705       --i; --e;
    706 
    707     } else if (IntervalPos->start > CurPoint) {
    708       // Move inactive intervals to inactive list.
    709       DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
    710       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
    711              "Can only allocate virtual registers!");
    712       reg = vrm_->getPhys(reg);
    713       delRegUse(reg);
    714       // add to inactive.
    715       inactive_.push_back(std::make_pair(Interval, IntervalPos));
    716 
    717       // Pop off the end of the list.
    718       active_[i] = active_.back();
    719       active_.pop_back();
    720       --i; --e;
    721     } else {
    722       // Otherwise, just update the iterator position.
    723       active_[i].second = IntervalPos;
    724     }
    725   }
    726 }
    727 
    728 /// processInactiveIntervals - expire old intervals and move overlapping
    729 /// ones to the active list.
    730 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
    731 {
    732   DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
    733 
    734   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
    735     LiveInterval *Interval = inactive_[i].first;
    736     LiveInterval::iterator IntervalPos = inactive_[i].second;
    737     unsigned reg = Interval->reg;
    738 
    739     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
    740 
    741     if (IntervalPos == Interval->end()) {       // remove expired intervals.
    742       DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
    743 
    744       // Pop off the end of the list.
    745       inactive_[i] = inactive_.back();
    746       inactive_.pop_back();
    747       --i; --e;
    748     } else if (IntervalPos->start <= CurPoint) {
    749       // move re-activated intervals in active list
    750       DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
    751       assert(TargetRegisterInfo::isVirtualRegister(reg) &&
    752              "Can only allocate virtual registers!");
    753       reg = vrm_->getPhys(reg);
    754       addRegUse(reg);
    755       // add to active
    756       active_.push_back(std::make_pair(Interval, IntervalPos));
    757 
    758       // Pop off the end of the list.
    759       inactive_[i] = inactive_.back();
    760       inactive_.pop_back();
    761       --i; --e;
    762     } else {
    763       // Otherwise, just update the iterator position.
    764       inactive_[i].second = IntervalPos;
    765     }
    766   }
    767 }
    768 
    769 /// updateSpillWeights - updates the spill weights of the specifed physical
    770 /// register and its weight.
    771 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
    772                                    unsigned reg, float weight,
    773                                    const TargetRegisterClass *RC) {
    774   SmallSet<unsigned, 4> Processed;
    775   SmallSet<unsigned, 4> SuperAdded;
    776   SmallVector<unsigned, 4> Supers;
    777   Weights[reg] += weight;
    778   Processed.insert(reg);
    779   for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
    780     Weights[*as] += weight;
    781     Processed.insert(*as);
    782     if (tri_->isSubRegister(*as, reg) &&
    783         SuperAdded.insert(*as) &&
    784         RC->contains(*as)) {
    785       Supers.push_back(*as);
    786     }
    787   }
    788 
    789   // If the alias is a super-register, and the super-register is in the
    790   // register class we are trying to allocate. Then add the weight to all
    791   // sub-registers of the super-register even if they are not aliases.
    792   // e.g. allocating for GR32, bh is not used, updating bl spill weight.
    793   //      bl should get the same spill weight otherwise it will be chosen
    794   //      as a spill candidate since spilling bh doesn't make ebx available.
    795   for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
    796     for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
    797       if (!Processed.count(*sr))
    798         Weights[*sr] += weight;
    799   }
    800 }
    801 
    802 static
    803 RALinScan::IntervalPtrs::iterator
    804 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
    805   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
    806        I != E; ++I)
    807     if (I->first == LI) return I;
    808   return IP.end();
    809 }
    810 
    811 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
    812                                     SlotIndex Point){
    813   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    814     RALinScan::IntervalPtr &IP = V[i];
    815     LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
    816                                                 IP.second, Point);
    817     if (I != IP.first->begin()) --I;
    818     IP.second = I;
    819   }
    820 }
    821 
    822 /// getConflictWeight - Return the number of conflicts between cur
    823 /// live interval and defs and uses of Reg weighted by loop depthes.
    824 static
    825 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
    826                         MachineRegisterInfo *mri_,
    827                         MachineLoopInfo *loopInfo) {
    828   float Conflicts = 0;
    829   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
    830          E = mri_->reg_end(); I != E; ++I) {
    831     MachineInstr *MI = &*I;
    832     if (cur->liveAt(li_->getInstructionIndex(MI))) {
    833       unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
    834       Conflicts += std::pow(10.0f, (float)loopDepth);
    835     }
    836   }
    837   return Conflicts;
    838 }
    839 
    840 /// findIntervalsToSpill - Determine the intervals to spill for the
    841 /// specified interval. It's passed the physical registers whose spill
    842 /// weight is the lowest among all the registers whose live intervals
    843 /// conflict with the interval.
    844 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
    845                             std::vector<std::pair<unsigned,float> > &Candidates,
    846                             unsigned NumCands,
    847                             SmallVector<LiveInterval*, 8> &SpillIntervals) {
    848   // We have figured out the *best* register to spill. But there are other
    849   // registers that are pretty good as well (spill weight within 3%). Spill
    850   // the one that has fewest defs and uses that conflict with cur.
    851   float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
    852   SmallVector<LiveInterval*, 8> SLIs[3];
    853 
    854   DEBUG({
    855       dbgs() << "\tConsidering " << NumCands << " candidates: ";
    856       for (unsigned i = 0; i != NumCands; ++i)
    857         dbgs() << tri_->getName(Candidates[i].first) << " ";
    858       dbgs() << "\n";
    859     });
    860 
    861   // Calculate the number of conflicts of each candidate.
    862   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
    863     unsigned Reg = i->first->reg;
    864     unsigned PhysReg = vrm_->getPhys(Reg);
    865     if (!cur->overlapsFrom(*i->first, i->second))
    866       continue;
    867     for (unsigned j = 0; j < NumCands; ++j) {
    868       unsigned Candidate = Candidates[j].first;
    869       if (tri_->regsOverlap(PhysReg, Candidate)) {
    870         if (NumCands > 1)
    871           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
    872         SLIs[j].push_back(i->first);
    873       }
    874     }
    875   }
    876 
    877   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
    878     unsigned Reg = i->first->reg;
    879     unsigned PhysReg = vrm_->getPhys(Reg);
    880     if (!cur->overlapsFrom(*i->first, i->second-1))
    881       continue;
    882     for (unsigned j = 0; j < NumCands; ++j) {
    883       unsigned Candidate = Candidates[j].first;
    884       if (tri_->regsOverlap(PhysReg, Candidate)) {
    885         if (NumCands > 1)
    886           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
    887         SLIs[j].push_back(i->first);
    888       }
    889     }
    890   }
    891 
    892   // Which is the best candidate?
    893   unsigned BestCandidate = 0;
    894   float MinConflicts = Conflicts[0];
    895   for (unsigned i = 1; i != NumCands; ++i) {
    896     if (Conflicts[i] < MinConflicts) {
    897       BestCandidate = i;
    898       MinConflicts = Conflicts[i];
    899     }
    900   }
    901 
    902   std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
    903             std::back_inserter(SpillIntervals));
    904 }
    905 
    906 namespace {
    907   struct WeightCompare {
    908   private:
    909     const RALinScan &Allocator;
    910 
    911   public:
    912     WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
    913 
    914     typedef std::pair<unsigned, float> RegWeightPair;
    915     bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
    916       return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
    917     }
    918   };
    919 }
    920 
    921 static bool weightsAreClose(float w1, float w2) {
    922   if (!NewHeuristic)
    923     return false;
    924 
    925   float diff = w1 - w2;
    926   if (diff <= 0.02f)  // Within 0.02f
    927     return true;
    928   return (diff / w2) <= 0.05f;  // Within 5%.
    929 }
    930 
    931 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
    932   DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
    933   if (I == NextReloadMap.end())
    934     return 0;
    935   return &li_->getInterval(I->second);
    936 }
    937 
    938 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
    939   for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
    940     bool isNew = DowngradedRegs.insert(*AS);
    941     (void)isNew; // Silence compiler warning.
    942     assert(isNew && "Multiple reloads holding the same register?");
    943     DowngradeMap.insert(std::make_pair(li->reg, *AS));
    944   }
    945   ++NumDowngrade;
    946 }
    947 
    948 void RALinScan::UpgradeRegister(unsigned Reg) {
    949   if (Reg) {
    950     DowngradedRegs.erase(Reg);
    951     for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
    952       DowngradedRegs.erase(*AS);
    953   }
    954 }
    955 
    956 namespace {
    957   struct LISorter {
    958     bool operator()(LiveInterval* A, LiveInterval* B) {
    959       return A->beginIndex() < B->beginIndex();
    960     }
    961   };
    962 }
    963 
    964 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
    965 /// spill.
    966 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
    967   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
    968   DEBUG(dbgs() << "\tallocating current interval from "
    969                << RC->getName() << ": ");
    970 
    971   // This is an implicitly defined live interval, just assign any register.
    972   if (cur->empty()) {
    973     unsigned physReg = vrm_->getRegAllocPref(cur->reg);
    974     if (!physReg)
    975       physReg = getFirstNonReservedPhysReg(RC);
    976     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
    977     // Note the register is not really in use.
    978     vrm_->assignVirt2Phys(cur->reg, physReg);
    979     return;
    980   }
    981 
    982   backUpRegUses();
    983 
    984   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
    985   SlotIndex StartPosition = cur->beginIndex();
    986   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
    987 
    988   // If start of this live interval is defined by a move instruction and its
    989   // source is assigned a physical register that is compatible with the target
    990   // register class, then we should try to assign it the same register.
    991   // This can happen when the move is from a larger register class to a smaller
    992   // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
    993   if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
    994     VNInfo *vni = cur->begin()->valno;
    995     if (!vni->isUnused() && vni->def.isValid()) {
    996       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
    997       if (CopyMI && CopyMI->isCopy()) {
    998         unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
    999         unsigned SrcReg = CopyMI->getOperand(1).getReg();
   1000         unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
   1001         unsigned Reg = 0;
   1002         if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1003           Reg = SrcReg;
   1004         else if (vrm_->isAssignedReg(SrcReg))
   1005           Reg = vrm_->getPhys(SrcReg);
   1006         if (Reg) {
   1007           if (SrcSubReg)
   1008             Reg = tri_->getSubReg(Reg, SrcSubReg);
   1009           if (DstSubReg)
   1010             Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
   1011           if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
   1012             mri_->setRegAllocationHint(cur->reg, 0, Reg);
   1013         }
   1014       }
   1015     }
   1016   }
   1017 
   1018   // For every interval in inactive we overlap with, mark the
   1019   // register as not free and update spill weights.
   1020   for (IntervalPtrs::const_iterator i = inactive_.begin(),
   1021          e = inactive_.end(); i != e; ++i) {
   1022     unsigned Reg = i->first->reg;
   1023     assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
   1024            "Can only allocate virtual registers!");
   1025     const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
   1026     // If this is not in a related reg class to the register we're allocating,
   1027     // don't check it.
   1028     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
   1029         cur->overlapsFrom(*i->first, i->second-1)) {
   1030       Reg = vrm_->getPhys(Reg);
   1031       addRegUse(Reg);
   1032       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
   1033     }
   1034   }
   1035 
   1036   // Speculatively check to see if we can get a register right now.  If not,
   1037   // we know we won't be able to by adding more constraints.  If so, we can
   1038   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
   1039   // is very bad (it contains all callee clobbered registers for any functions
   1040   // with a call), so we want to avoid doing that if possible.
   1041   unsigned physReg = getFreePhysReg(cur);
   1042   unsigned BestPhysReg = physReg;
   1043   if (physReg) {
   1044     // We got a register.  However, if it's in the fixed_ list, we might
   1045     // conflict with it.  Check to see if we conflict with it or any of its
   1046     // aliases.
   1047     SmallSet<unsigned, 8> RegAliases;
   1048     for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
   1049       RegAliases.insert(*AS);
   1050 
   1051     bool ConflictsWithFixed = false;
   1052     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
   1053       IntervalPtr &IP = fixed_[i];
   1054       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
   1055         // Okay, this reg is on the fixed list.  Check to see if we actually
   1056         // conflict.
   1057         LiveInterval *I = IP.first;
   1058         if (I->endIndex() > StartPosition) {
   1059           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
   1060           IP.second = II;
   1061           if (II != I->begin() && II->start > StartPosition)
   1062             --II;
   1063           if (cur->overlapsFrom(*I, II)) {
   1064             ConflictsWithFixed = true;
   1065             break;
   1066           }
   1067         }
   1068       }
   1069     }
   1070 
   1071     // Okay, the register picked by our speculative getFreePhysReg call turned
   1072     // out to be in use.  Actually add all of the conflicting fixed registers to
   1073     // regUse_ so we can do an accurate query.
   1074     if (ConflictsWithFixed) {
   1075       // For every interval in fixed we overlap with, mark the register as not
   1076       // free and update spill weights.
   1077       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
   1078         IntervalPtr &IP = fixed_[i];
   1079         LiveInterval *I = IP.first;
   1080 
   1081         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
   1082         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
   1083             I->endIndex() > StartPosition) {
   1084           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
   1085           IP.second = II;
   1086           if (II != I->begin() && II->start > StartPosition)
   1087             --II;
   1088           if (cur->overlapsFrom(*I, II)) {
   1089             unsigned reg = I->reg;
   1090             addRegUse(reg);
   1091             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
   1092           }
   1093         }
   1094       }
   1095 
   1096       // Using the newly updated regUse_ object, which includes conflicts in the
   1097       // future, see if there are any registers available.
   1098       physReg = getFreePhysReg(cur);
   1099     }
   1100   }
   1101 
   1102   // Restore the physical register tracker, removing information about the
   1103   // future.
   1104   restoreRegUses();
   1105 
   1106   // If we find a free register, we are done: assign this virtual to
   1107   // the free physical register and add this interval to the active
   1108   // list.
   1109   if (physReg) {
   1110     DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
   1111     assert(RC->contains(physReg) && "Invalid candidate");
   1112     vrm_->assignVirt2Phys(cur->reg, physReg);
   1113     addRegUse(physReg);
   1114     active_.push_back(std::make_pair(cur, cur->begin()));
   1115     handled_.push_back(cur);
   1116 
   1117     // Remember physReg for avoiding a write-after-write hazard in the next
   1118     // instruction.
   1119     if (AvoidWAWHazard &&
   1120         tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
   1121       avoidWAW_ = physReg;
   1122 
   1123     // "Upgrade" the physical register since it has been allocated.
   1124     UpgradeRegister(physReg);
   1125     if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
   1126       // "Downgrade" physReg to try to keep physReg from being allocated until
   1127       // the next reload from the same SS is allocated.
   1128       mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
   1129       DowngradeRegister(cur, physReg);
   1130     }
   1131     return;
   1132   }
   1133   DEBUG(dbgs() << "no free registers\n");
   1134 
   1135   // Compile the spill weights into an array that is better for scanning.
   1136   std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
   1137   for (std::vector<std::pair<unsigned, float> >::iterator
   1138        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
   1139     updateSpillWeights(SpillWeights, I->first, I->second, RC);
   1140 
   1141   // for each interval in active, update spill weights.
   1142   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
   1143        i != e; ++i) {
   1144     unsigned reg = i->first->reg;
   1145     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
   1146            "Can only allocate virtual registers!");
   1147     reg = vrm_->getPhys(reg);
   1148     updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
   1149   }
   1150 
   1151   DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
   1152 
   1153   // Find a register to spill.
   1154   float minWeight = HUGE_VALF;
   1155   unsigned minReg = 0;
   1156 
   1157   bool Found = false;
   1158   std::vector<std::pair<unsigned,float> > RegsWeights;
   1159   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
   1160   if (!minReg || SpillWeights[minReg] == HUGE_VALF)
   1161     for (unsigned i = 0; i != Order.size(); ++i) {
   1162       unsigned reg = Order[i];
   1163       float regWeight = SpillWeights[reg];
   1164       // Skip recently allocated registers and reserved registers.
   1165       if (minWeight > regWeight && !isRecentlyUsed(reg))
   1166         Found = true;
   1167       RegsWeights.push_back(std::make_pair(reg, regWeight));
   1168     }
   1169 
   1170   // If we didn't find a register that is spillable, try aliases?
   1171   if (!Found) {
   1172     for (unsigned i = 0; i != Order.size(); ++i) {
   1173       unsigned reg = Order[i];
   1174       // No need to worry about if the alias register size < regsize of RC.
   1175       // We are going to spill all registers that alias it anyway.
   1176       for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
   1177         RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
   1178     }
   1179   }
   1180 
   1181   // Sort all potential spill candidates by weight.
   1182   std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
   1183   minReg = RegsWeights[0].first;
   1184   minWeight = RegsWeights[0].second;
   1185   if (minWeight == HUGE_VALF) {
   1186     // All registers must have inf weight. Just grab one!
   1187     minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
   1188     if (cur->weight == HUGE_VALF ||
   1189         li_->getApproximateInstructionCount(*cur) == 0) {
   1190       // Spill a physical register around defs and uses.
   1191       if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
   1192         // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
   1193         // in fixed_. Reset them.
   1194         for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
   1195           IntervalPtr &IP = fixed_[i];
   1196           LiveInterval *I = IP.first;
   1197           if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
   1198             IP.second = I->advanceTo(I->begin(), StartPosition);
   1199         }
   1200 
   1201         DowngradedRegs.clear();
   1202         assignRegOrStackSlotAtInterval(cur);
   1203       } else {
   1204         assert(false && "Ran out of registers during register allocation!");
   1205         report_fatal_error("Ran out of registers during register allocation!");
   1206       }
   1207       return;
   1208     }
   1209   }
   1210 
   1211   // Find up to 3 registers to consider as spill candidates.
   1212   unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
   1213   while (LastCandidate > 1) {
   1214     if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
   1215       break;
   1216     --LastCandidate;
   1217   }
   1218 
   1219   DEBUG({
   1220       dbgs() << "\t\tregister(s) with min weight(s): ";
   1221 
   1222       for (unsigned i = 0; i != LastCandidate; ++i)
   1223         dbgs() << tri_->getName(RegsWeights[i].first)
   1224                << " (" << RegsWeights[i].second << ")\n";
   1225     });
   1226 
   1227   // If the current has the minimum weight, we need to spill it and
   1228   // add any added intervals back to unhandled, and restart
   1229   // linearscan.
   1230   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
   1231     DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
   1232     SmallVector<LiveInterval*, 8> added;
   1233     LiveRangeEdit LRE(*cur, added);
   1234     spiller_->spill(LRE);
   1235 
   1236     std::sort(added.begin(), added.end(), LISorter());
   1237     if (added.empty())
   1238       return;  // Early exit if all spills were folded.
   1239 
   1240     // Merge added with unhandled.  Note that we have already sorted
   1241     // intervals returned by addIntervalsForSpills by their starting
   1242     // point.
   1243     // This also update the NextReloadMap. That is, it adds mapping from a
   1244     // register defined by a reload from SS to the next reload from SS in the
   1245     // same basic block.
   1246     MachineBasicBlock *LastReloadMBB = 0;
   1247     LiveInterval *LastReload = 0;
   1248     int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
   1249     for (unsigned i = 0, e = added.size(); i != e; ++i) {
   1250       LiveInterval *ReloadLi = added[i];
   1251       if (ReloadLi->weight == HUGE_VALF &&
   1252           li_->getApproximateInstructionCount(*ReloadLi) == 0) {
   1253         SlotIndex ReloadIdx = ReloadLi->beginIndex();
   1254         MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
   1255         int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
   1256         if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
   1257           // Last reload of same SS is in the same MBB. We want to try to
   1258           // allocate both reloads the same register and make sure the reg
   1259           // isn't clobbered in between if at all possible.
   1260           assert(LastReload->beginIndex() < ReloadIdx);
   1261           NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
   1262         }
   1263         LastReloadMBB = ReloadMBB;
   1264         LastReload = ReloadLi;
   1265         LastReloadSS = ReloadSS;
   1266       }
   1267       unhandled_.push(ReloadLi);
   1268     }
   1269     return;
   1270   }
   1271 
   1272   ++NumBacktracks;
   1273 
   1274   // Push the current interval back to unhandled since we are going
   1275   // to re-run at least this iteration. Since we didn't modify it it
   1276   // should go back right in the front of the list
   1277   unhandled_.push(cur);
   1278 
   1279   assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
   1280          "did not choose a register to spill?");
   1281 
   1282   // We spill all intervals aliasing the register with
   1283   // minimum weight, rollback to the interval with the earliest
   1284   // start point and let the linear scan algorithm run again
   1285   SmallVector<LiveInterval*, 8> spillIs;
   1286 
   1287   // Determine which intervals have to be spilled.
   1288   findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
   1289 
   1290   // Set of spilled vregs (used later to rollback properly)
   1291   SmallSet<unsigned, 8> spilled;
   1292 
   1293   // The earliest start of a Spilled interval indicates up to where
   1294   // in handled we need to roll back
   1295   assert(!spillIs.empty() && "No spill intervals?");
   1296   SlotIndex earliestStart = spillIs[0]->beginIndex();
   1297 
   1298   // Spill live intervals of virtual regs mapped to the physical register we
   1299   // want to clear (and its aliases).  We only spill those that overlap with the
   1300   // current interval as the rest do not affect its allocation. we also keep
   1301   // track of the earliest start of all spilled live intervals since this will
   1302   // mark our rollback point.
   1303   SmallVector<LiveInterval*, 8> added;
   1304   while (!spillIs.empty()) {
   1305     LiveInterval *sli = spillIs.back();
   1306     spillIs.pop_back();
   1307     DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
   1308     if (sli->beginIndex() < earliestStart)
   1309       earliestStart = sli->beginIndex();
   1310     LiveRangeEdit LRE(*sli, added, 0, &spillIs);
   1311     spiller_->spill(LRE);
   1312     spilled.insert(sli->reg);
   1313   }
   1314 
   1315   // Include any added intervals in earliestStart.
   1316   for (unsigned i = 0, e = added.size(); i != e; ++i) {
   1317     SlotIndex SI = added[i]->beginIndex();
   1318     if (SI < earliestStart)
   1319       earliestStart = SI;
   1320   }
   1321 
   1322   DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
   1323 
   1324   // Scan handled in reverse order up to the earliest start of a
   1325   // spilled live interval and undo each one, restoring the state of
   1326   // unhandled.
   1327   while (!handled_.empty()) {
   1328     LiveInterval* i = handled_.back();
   1329     // If this interval starts before t we are done.
   1330     if (!i->empty() && i->beginIndex() < earliestStart)
   1331       break;
   1332     DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
   1333     handled_.pop_back();
   1334 
   1335     // When undoing a live interval allocation we must know if it is active or
   1336     // inactive to properly update regUse_ and the VirtRegMap.
   1337     IntervalPtrs::iterator it;
   1338     if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
   1339       active_.erase(it);
   1340       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
   1341       if (!spilled.count(i->reg))
   1342         unhandled_.push(i);
   1343       delRegUse(vrm_->getPhys(i->reg));
   1344       vrm_->clearVirt(i->reg);
   1345     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
   1346       inactive_.erase(it);
   1347       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
   1348       if (!spilled.count(i->reg))
   1349         unhandled_.push(i);
   1350       vrm_->clearVirt(i->reg);
   1351     } else {
   1352       assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
   1353              "Can only allocate virtual registers!");
   1354       vrm_->clearVirt(i->reg);
   1355       unhandled_.push(i);
   1356     }
   1357 
   1358     DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
   1359     if (ii == DowngradeMap.end())
   1360       // It interval has a preference, it must be defined by a copy. Clear the
   1361       // preference now since the source interval allocation may have been
   1362       // undone as well.
   1363       mri_->setRegAllocationHint(i->reg, 0, 0);
   1364     else {
   1365       UpgradeRegister(ii->second);
   1366     }
   1367   }
   1368 
   1369   // Rewind the iterators in the active, inactive, and fixed lists back to the
   1370   // point we reverted to.
   1371   RevertVectorIteratorsTo(active_, earliestStart);
   1372   RevertVectorIteratorsTo(inactive_, earliestStart);
   1373   RevertVectorIteratorsTo(fixed_, earliestStart);
   1374 
   1375   // Scan the rest and undo each interval that expired after t and
   1376   // insert it in active (the next iteration of the algorithm will
   1377   // put it in inactive if required)
   1378   for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
   1379     LiveInterval *HI = handled_[i];
   1380     if (!HI->expiredAt(earliestStart) &&
   1381         HI->expiredAt(cur->beginIndex())) {
   1382       DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
   1383       active_.push_back(std::make_pair(HI, HI->begin()));
   1384       assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
   1385       addRegUse(vrm_->getPhys(HI->reg));
   1386     }
   1387   }
   1388 
   1389   // Merge added with unhandled.
   1390   // This also update the NextReloadMap. That is, it adds mapping from a
   1391   // register defined by a reload from SS to the next reload from SS in the
   1392   // same basic block.
   1393   MachineBasicBlock *LastReloadMBB = 0;
   1394   LiveInterval *LastReload = 0;
   1395   int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
   1396   std::sort(added.begin(), added.end(), LISorter());
   1397   for (unsigned i = 0, e = added.size(); i != e; ++i) {
   1398     LiveInterval *ReloadLi = added[i];
   1399     if (ReloadLi->weight == HUGE_VALF &&
   1400         li_->getApproximateInstructionCount(*ReloadLi) == 0) {
   1401       SlotIndex ReloadIdx = ReloadLi->beginIndex();
   1402       MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
   1403       int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
   1404       if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
   1405         // Last reload of same SS is in the same MBB. We want to try to
   1406         // allocate both reloads the same register and make sure the reg
   1407         // isn't clobbered in between if at all possible.
   1408         assert(LastReload->beginIndex() < ReloadIdx);
   1409         NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
   1410       }
   1411       LastReloadMBB = ReloadMBB;
   1412       LastReload = ReloadLi;
   1413       LastReloadSS = ReloadSS;
   1414     }
   1415     unhandled_.push(ReloadLi);
   1416   }
   1417 }
   1418 
   1419 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
   1420                                    const TargetRegisterClass *RC,
   1421                                    unsigned MaxInactiveCount,
   1422                                    SmallVector<unsigned, 256> &inactiveCounts,
   1423                                    bool SkipDGRegs) {
   1424   unsigned FreeReg = 0;
   1425   unsigned FreeRegInactiveCount = 0;
   1426 
   1427   std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
   1428   // Resolve second part of the hint (if possible) given the current allocation.
   1429   unsigned physReg = Hint.second;
   1430   if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
   1431     physReg = vrm_->getPhys(physReg);
   1432 
   1433   ArrayRef<unsigned> Order;
   1434   if (Hint.first)
   1435     Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
   1436   else
   1437     Order = RegClassInfo.getOrder(RC);
   1438 
   1439   assert(!Order.empty() && "No allocatable register in this register class!");
   1440 
   1441   // Scan for the first available register.
   1442   for (unsigned i = 0; i != Order.size(); ++i) {
   1443     unsigned Reg = Order[i];
   1444     // Ignore "downgraded" registers.
   1445     if (SkipDGRegs && DowngradedRegs.count(Reg))
   1446       continue;
   1447     // Skip reserved registers.
   1448     if (reservedRegs_.test(Reg))
   1449       continue;
   1450     // Skip recently allocated registers.
   1451     if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
   1452       FreeReg = Reg;
   1453       if (FreeReg < inactiveCounts.size())
   1454         FreeRegInactiveCount = inactiveCounts[FreeReg];
   1455       else
   1456         FreeRegInactiveCount = 0;
   1457       break;
   1458     }
   1459   }
   1460 
   1461   // If there are no free regs, or if this reg has the max inactive count,
   1462   // return this register.
   1463   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
   1464     // Remember what register we picked so we can skip it next time.
   1465     if (FreeReg != 0) recordRecentlyUsed(FreeReg);
   1466     return FreeReg;
   1467   }
   1468 
   1469   // Continue scanning the registers, looking for the one with the highest
   1470   // inactive count.  Alkis found that this reduced register pressure very
   1471   // slightly on X86 (in rev 1.94 of this file), though this should probably be
   1472   // reevaluated now.
   1473   for (unsigned i = 0; i != Order.size(); ++i) {
   1474     unsigned Reg = Order[i];
   1475     // Ignore "downgraded" registers.
   1476     if (SkipDGRegs && DowngradedRegs.count(Reg))
   1477       continue;
   1478     // Skip reserved registers.
   1479     if (reservedRegs_.test(Reg))
   1480       continue;
   1481     if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
   1482         FreeRegInactiveCount < inactiveCounts[Reg] &&
   1483         (!SkipDGRegs || !isRecentlyUsed(Reg))) {
   1484       FreeReg = Reg;
   1485       FreeRegInactiveCount = inactiveCounts[Reg];
   1486       if (FreeRegInactiveCount == MaxInactiveCount)
   1487         break;    // We found the one with the max inactive count.
   1488     }
   1489   }
   1490 
   1491   // Remember what register we picked so we can skip it next time.
   1492   recordRecentlyUsed(FreeReg);
   1493 
   1494   return FreeReg;
   1495 }
   1496 
   1497 /// getFreePhysReg - return a free physical register for this virtual register
   1498 /// interval if we have one, otherwise return 0.
   1499 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
   1500   SmallVector<unsigned, 256> inactiveCounts;
   1501   unsigned MaxInactiveCount = 0;
   1502 
   1503   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
   1504   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
   1505 
   1506   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
   1507        i != e; ++i) {
   1508     unsigned reg = i->first->reg;
   1509     assert(TargetRegisterInfo::isVirtualRegister(reg) &&
   1510            "Can only allocate virtual registers!");
   1511 
   1512     // If this is not in a related reg class to the register we're allocating,
   1513     // don't check it.
   1514     const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
   1515     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
   1516       reg = vrm_->getPhys(reg);
   1517       if (inactiveCounts.size() <= reg)
   1518         inactiveCounts.resize(reg+1);
   1519       ++inactiveCounts[reg];
   1520       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
   1521     }
   1522   }
   1523 
   1524   // If copy coalescer has assigned a "preferred" register, check if it's
   1525   // available first.
   1526   unsigned Preference = vrm_->getRegAllocPref(cur->reg);
   1527   if (Preference) {
   1528     DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
   1529     if (isRegAvail(Preference) &&
   1530         RC->contains(Preference))
   1531       return Preference;
   1532   }
   1533 
   1534   unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
   1535                                     true);
   1536   if (FreeReg)
   1537     return FreeReg;
   1538   return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
   1539 }
   1540 
   1541 FunctionPass* llvm::createLinearScanRegisterAllocator() {
   1542   return new RALinScan();
   1543 }
   1544