Home | History | Annotate | Download | only in X86
      1 //===- X86InstrArithmetic.td - Integer Arithmetic Instrs ---*- tablegen -*-===//
      2 // 
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 // 
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the integer arithmetic instructions in the X86
     11 // architecture.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // LEA - Load Effective Address
     17 
     18 let neverHasSideEffects = 1 in
     19 def LEA16r   : I<0x8D, MRMSrcMem,
     20                  (outs GR16:$dst), (ins i32mem:$src),
     21                  "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize;
     22 let isReMaterializable = 1 in
     23 def LEA32r   : I<0x8D, MRMSrcMem,
     24                  (outs GR32:$dst), (ins i32mem:$src),
     25                  "lea{l}\t{$src|$dst}, {$dst|$src}",
     26                  [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>;
     27 
     28 def LEA64_32r : I<0x8D, MRMSrcMem,
     29                   (outs GR32:$dst), (ins lea64_32mem:$src),
     30                   "lea{l}\t{$src|$dst}, {$dst|$src}",
     31                   [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
     32 
     33 let isReMaterializable = 1 in
     34 def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
     35                   "lea{q}\t{$src|$dst}, {$dst|$src}",
     36                   [(set GR64:$dst, lea64addr:$src)]>;
     37 
     38 
     39 
     40 //===----------------------------------------------------------------------===//
     41 //  Fixed-Register Multiplication and Division Instructions.
     42 //
     43 
     44 // Extra precision multiplication
     45 
     46 // AL is really implied by AX, but the registers in Defs must match the
     47 // SDNode results (i8, i32).
     48 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
     49 def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
     50                // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
     51                // This probably ought to be moved to a def : Pat<> if the
     52                // syntax can be accepted.
     53                [(set AL, (mul AL, GR8:$src)),
     54                 (implicit EFLAGS)]>;     // AL,AH = AL*GR8
     55 
     56 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
     57 def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
     58                "mul{w}\t$src", 
     59                []>, OpSize;    // AX,DX = AX*GR16
     60 
     61 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
     62 def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
     63                "mul{l}\t$src",   // EAX,EDX = EAX*GR32
     64                [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>;
     65 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
     66 def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
     67                 "mul{q}\t$src",          // RAX,RDX = RAX*GR64
     68                 [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>;
     69 
     70 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
     71 def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
     72                "mul{b}\t$src",
     73                // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
     74                // This probably ought to be moved to a def : Pat<> if the
     75                // syntax can be accepted.
     76                [(set AL, (mul AL, (loadi8 addr:$src))),
     77                 (implicit EFLAGS)]>;   // AL,AH = AL*[mem8]
     78 
     79 let mayLoad = 1, neverHasSideEffects = 1 in {
     80 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
     81 def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
     82                "mul{w}\t$src",
     83                []>, OpSize; // AX,DX = AX*[mem16]
     84 
     85 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
     86 def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
     87               "mul{l}\t$src",
     88               []>;          // EAX,EDX = EAX*[mem32]
     89 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
     90 def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
     91                 "mul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
     92 }
     93 
     94 let neverHasSideEffects = 1 in {
     95 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
     96 def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", []>;
     97               // AL,AH = AL*GR8
     98 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
     99 def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", []>,
    100               OpSize;    // AX,DX = AX*GR16
    101 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
    102 def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", []>;
    103               // EAX,EDX = EAX*GR32
    104 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
    105 def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>;
    106               // RAX,RDX = RAX*GR64
    107 
    108 let mayLoad = 1 in {
    109 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
    110 def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
    111                 "imul{b}\t$src", []>;    // AL,AH = AL*[mem8]
    112 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
    113 def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
    114                 "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16]
    115 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
    116 def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
    117                 "imul{l}\t$src", []>;  // EAX,EDX = EAX*[mem32]
    118 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
    119 def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
    120                  "imul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
    121 }
    122 } // neverHasSideEffects
    123 
    124 
    125 let Defs = [EFLAGS] in {
    126 let Constraints = "$src1 = $dst" in {
    127 
    128 let isCommutable = 1 in {  // X = IMUL Y, Z --> X = IMUL Z, Y
    129 // Register-Register Signed Integer Multiply
    130 def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
    131                  "imul{w}\t{$src2, $dst|$dst, $src2}",
    132                  [(set GR16:$dst, EFLAGS,
    133                        (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize;
    134 def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
    135                  "imul{l}\t{$src2, $dst|$dst, $src2}",
    136                  [(set GR32:$dst, EFLAGS,
    137                        (X86smul_flag GR32:$src1, GR32:$src2))]>, TB;
    138 def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
    139                                    (ins GR64:$src1, GR64:$src2),
    140                   "imul{q}\t{$src2, $dst|$dst, $src2}",
    141                   [(set GR64:$dst, EFLAGS,
    142                         (X86smul_flag GR64:$src1, GR64:$src2))]>, TB;
    143 }
    144 
    145 // Register-Memory Signed Integer Multiply
    146 def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
    147                                   (ins GR16:$src1, i16mem:$src2),
    148                  "imul{w}\t{$src2, $dst|$dst, $src2}",
    149                  [(set GR16:$dst, EFLAGS,
    150                        (X86smul_flag GR16:$src1, (load addr:$src2)))]>,
    151                TB, OpSize;
    152 def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), 
    153                  (ins GR32:$src1, i32mem:$src2),
    154                  "imul{l}\t{$src2, $dst|$dst, $src2}",
    155                  [(set GR32:$dst, EFLAGS,
    156                        (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB;
    157 def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
    158                                    (ins GR64:$src1, i64mem:$src2),
    159                   "imul{q}\t{$src2, $dst|$dst, $src2}",
    160                   [(set GR64:$dst, EFLAGS,
    161                         (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB;
    162 } // Constraints = "$src1 = $dst"
    163 
    164 } // Defs = [EFLAGS]
    165 
    166 // Surprisingly enough, these are not two address instructions!
    167 let Defs = [EFLAGS] in {
    168 // Register-Integer Signed Integer Multiply
    169 def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
    170                       (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
    171                       "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    172                       [(set GR16:$dst, EFLAGS, 
    173                             (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize;
    174 def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
    175                      (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
    176                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    177                      [(set GR16:$dst, EFLAGS,
    178                            (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
    179                  OpSize;
    180 def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
    181                       (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
    182                       "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    183                       [(set GR32:$dst, EFLAGS,
    184                             (X86smul_flag GR32:$src1, imm:$src2))]>;
    185 def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
    186                      (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
    187                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    188                      [(set GR32:$dst, EFLAGS,
    189                            (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>;
    190 def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
    191                         (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
    192                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    193                        [(set GR64:$dst, EFLAGS,
    194                              (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>;
    195 def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
    196                       (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
    197                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    198                       [(set GR64:$dst, EFLAGS,
    199                             (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>;
    200 
    201 
    202 // Memory-Integer Signed Integer Multiply
    203 def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
    204                       (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
    205                       "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    206                       [(set GR16:$dst, EFLAGS,
    207                             (X86smul_flag (load addr:$src1), imm:$src2))]>,
    208                  OpSize;
    209 def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
    210                      (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
    211                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    212                      [(set GR16:$dst, EFLAGS,
    213                            (X86smul_flag (load addr:$src1),
    214                                          i16immSExt8:$src2))]>, OpSize;
    215 def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
    216                       (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
    217                       "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    218                       [(set GR32:$dst, EFLAGS,
    219                             (X86smul_flag (load addr:$src1), imm:$src2))]>;
    220 def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
    221                      (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
    222                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    223                      [(set GR32:$dst, EFLAGS,
    224                            (X86smul_flag (load addr:$src1),
    225                                          i32immSExt8:$src2))]>;
    226 def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
    227                         (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
    228                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    229                         [(set GR64:$dst, EFLAGS,
    230                               (X86smul_flag (load addr:$src1),
    231                                             i64immSExt32:$src2))]>;
    232 def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
    233                       (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
    234                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
    235                       [(set GR64:$dst, EFLAGS,
    236                             (X86smul_flag (load addr:$src1),
    237                                           i64immSExt8:$src2))]>;
    238 } // Defs = [EFLAGS]
    239 
    240 
    241 
    242 
    243 // unsigned division/remainder
    244 let Defs = [AL,EFLAGS,AX], Uses = [AX] in
    245 def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
    246                "div{b}\t$src", []>;
    247 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    248 def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
    249                "div{w}\t$src", []>, OpSize;
    250 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
    251 def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
    252                "div{l}\t$src", []>;
    253 // RDX:RAX/r64 = RAX,RDX
    254 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    255 def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
    256                 "div{q}\t$src", []>;
    257 
    258 let mayLoad = 1 in {
    259 let Defs = [AL,EFLAGS,AX], Uses = [AX] in
    260 def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
    261                "div{b}\t$src", []>;
    262 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    263 def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
    264                "div{w}\t$src", []>, OpSize;
    265 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
    266 def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
    267                "div{l}\t$src", []>;
    268 // RDX:RAX/[mem64] = RAX,RDX
    269 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    270 def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
    271                 "div{q}\t$src", []>;
    272 }
    273 
    274 // Signed division/remainder.
    275 let Defs = [AL,EFLAGS,AX], Uses = [AX] in
    276 def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
    277                "idiv{b}\t$src", []>;
    278 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    279 def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
    280                "idiv{w}\t$src", []>, OpSize;
    281 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
    282 def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
    283                "idiv{l}\t$src", []>;
    284 // RDX:RAX/r64 = RAX,RDX
    285 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
    286 def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
    287                 "idiv{q}\t$src", []>;
    288                
    289 let mayLoad = 1, mayLoad = 1 in {
    290 let Defs = [AL,EFLAGS,AX], Uses = [AX] in
    291 def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
    292                "idiv{b}\t$src", []>;
    293 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
    294 def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
    295                "idiv{w}\t$src", []>, OpSize;
    296 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
    297 def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), 
    298                "idiv{l}\t$src", []>;
    299 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
    300 def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
    301                 "idiv{q}\t$src", []>;
    302 }
    303 
    304 //===----------------------------------------------------------------------===//
    305 //  Two address Instructions.
    306 //
    307 
    308 // unary instructions
    309 let CodeSize = 2 in {
    310 let Defs = [EFLAGS] in {
    311 let Constraints = "$src1 = $dst" in {
    312 def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
    313                "neg{b}\t$dst",
    314                [(set GR8:$dst, (ineg GR8:$src1)),
    315                 (implicit EFLAGS)]>;
    316 def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
    317                "neg{w}\t$dst",
    318                [(set GR16:$dst, (ineg GR16:$src1)),
    319                 (implicit EFLAGS)]>, OpSize;
    320 def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
    321                "neg{l}\t$dst",
    322                [(set GR32:$dst, (ineg GR32:$src1)),
    323                 (implicit EFLAGS)]>;
    324 def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
    325                 [(set GR64:$dst, (ineg GR64:$src1)),
    326                  (implicit EFLAGS)]>;
    327 } // Constraints = "$src1 = $dst"
    328 
    329 def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
    330                "neg{b}\t$dst",
    331                [(store (ineg (loadi8 addr:$dst)), addr:$dst),
    332                 (implicit EFLAGS)]>;
    333 def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
    334                "neg{w}\t$dst",
    335                [(store (ineg (loadi16 addr:$dst)), addr:$dst),
    336                 (implicit EFLAGS)]>, OpSize;
    337 def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
    338                "neg{l}\t$dst",
    339                [(store (ineg (loadi32 addr:$dst)), addr:$dst),
    340                 (implicit EFLAGS)]>;
    341 def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
    342                 [(store (ineg (loadi64 addr:$dst)), addr:$dst),
    343                  (implicit EFLAGS)]>;
    344 } // Defs = [EFLAGS]
    345 
    346 
    347 // Note: NOT does not set EFLAGS!
    348 
    349 let Constraints = "$src1 = $dst" in {
    350 // Match xor -1 to not. Favors these over a move imm + xor to save code size.
    351 let AddedComplexity = 15 in {
    352 def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
    353                "not{b}\t$dst",
    354                [(set GR8:$dst, (not GR8:$src1))]>;
    355 def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
    356                "not{w}\t$dst",
    357                [(set GR16:$dst, (not GR16:$src1))]>, OpSize;
    358 def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
    359                "not{l}\t$dst",
    360                [(set GR32:$dst, (not GR32:$src1))]>;
    361 def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
    362                 [(set GR64:$dst, (not GR64:$src1))]>;
    363 }
    364 } // Constraints = "$src1 = $dst"
    365 
    366 def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
    367                "not{b}\t$dst",
    368                [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
    369 def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
    370                "not{w}\t$dst",
    371                [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
    372 def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
    373                "not{l}\t$dst",
    374                [(store (not (loadi32 addr:$dst)), addr:$dst)]>;
    375 def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
    376                 [(store (not (loadi64 addr:$dst)), addr:$dst)]>;
    377 } // CodeSize
    378 
    379 // TODO: inc/dec is slow for P4, but fast for Pentium-M.
    380 let Defs = [EFLAGS] in {
    381 let Constraints = "$src1 = $dst" in {
    382 let CodeSize = 2 in
    383 def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
    384                "inc{b}\t$dst",
    385                [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>;
    386 
    387 let isConvertibleToThreeAddress = 1, CodeSize = 1 in {  // Can xform into LEA.
    388 def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), 
    389                "inc{w}\t$dst",
    390                [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
    391              OpSize, Requires<[In32BitMode]>;
    392 def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), 
    393                "inc{l}\t$dst",
    394                [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
    395              Requires<[In32BitMode]>;
    396 def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
    397                 [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>;
    398 } // isConvertibleToThreeAddress = 1, CodeSize = 1
    399 
    400 
    401 // In 64-bit mode, single byte INC and DEC cannot be encoded.
    402 let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
    403 // Can transform into LEA.
    404 def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), 
    405                   "inc{w}\t$dst",
    406                   [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
    407                 OpSize, Requires<[In64BitMode]>;
    408 def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), 
    409                   "inc{l}\t$dst",
    410                   [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
    411                 Requires<[In64BitMode]>;
    412 def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), 
    413                   "dec{w}\t$dst",
    414                   [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
    415                 OpSize, Requires<[In64BitMode]>;
    416 def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), 
    417                   "dec{l}\t$dst",
    418                   [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
    419                 Requires<[In64BitMode]>;
    420 } // isConvertibleToThreeAddress = 1, CodeSize = 2
    421 
    422 } // Constraints = "$src1 = $dst"
    423 
    424 let CodeSize = 2 in {
    425   def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
    426                [(store (add (loadi8 addr:$dst), 1), addr:$dst),
    427                 (implicit EFLAGS)]>;
    428   def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
    429                [(store (add (loadi16 addr:$dst), 1), addr:$dst),
    430                 (implicit EFLAGS)]>,
    431                OpSize, Requires<[In32BitMode]>;
    432   def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
    433                [(store (add (loadi32 addr:$dst), 1), addr:$dst),
    434                 (implicit EFLAGS)]>,
    435                Requires<[In32BitMode]>;
    436   def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
    437                   [(store (add (loadi64 addr:$dst), 1), addr:$dst),
    438                    (implicit EFLAGS)]>;
    439                    
    440 // These are duplicates of their 32-bit counterparts. Only needed so X86 knows
    441 // how to unfold them.
    442 // FIXME: What is this for??
    443 def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
    444                   [(store (add (loadi16 addr:$dst), 1), addr:$dst),
    445                     (implicit EFLAGS)]>,
    446                 OpSize, Requires<[In64BitMode]>;
    447 def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
    448                   [(store (add (loadi32 addr:$dst), 1), addr:$dst),
    449                     (implicit EFLAGS)]>,
    450                 Requires<[In64BitMode]>;
    451 def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
    452                   [(store (add (loadi16 addr:$dst), -1), addr:$dst),
    453                     (implicit EFLAGS)]>,
    454                 OpSize, Requires<[In64BitMode]>;
    455 def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
    456                   [(store (add (loadi32 addr:$dst), -1), addr:$dst),
    457                     (implicit EFLAGS)]>,
    458                 Requires<[In64BitMode]>;
    459 } // CodeSize = 2
    460 
    461 let Constraints = "$src1 = $dst" in {
    462 let CodeSize = 2 in
    463 def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
    464                "dec{b}\t$dst",
    465                [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>;
    466 let isConvertibleToThreeAddress = 1, CodeSize = 1 in {   // Can xform into LEA.
    467 def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), 
    468                "dec{w}\t$dst",
    469                [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
    470              OpSize, Requires<[In32BitMode]>;
    471 def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), 
    472                "dec{l}\t$dst",
    473                [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
    474              Requires<[In32BitMode]>;
    475 def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
    476                 [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>;
    477 } // CodeSize = 2
    478 } // Constraints = "$src1 = $dst"
    479 
    480 
    481 let CodeSize = 2 in {
    482   def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
    483                [(store (add (loadi8 addr:$dst), -1), addr:$dst),
    484                 (implicit EFLAGS)]>;
    485   def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
    486                [(store (add (loadi16 addr:$dst), -1), addr:$dst),
    487                 (implicit EFLAGS)]>,
    488                OpSize, Requires<[In32BitMode]>;
    489   def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
    490                [(store (add (loadi32 addr:$dst), -1), addr:$dst),
    491                 (implicit EFLAGS)]>,
    492                Requires<[In32BitMode]>;
    493   def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
    494                   [(store (add (loadi64 addr:$dst), -1), addr:$dst),
    495                    (implicit EFLAGS)]>;
    496 } // CodeSize = 2
    497 } // Defs = [EFLAGS]
    498 
    499 
    500 /// X86TypeInfo - This is a bunch of information that describes relevant X86
    501 /// information about value types.  For example, it can tell you what the
    502 /// register class and preferred load to use.
    503 class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
    504                   PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
    505                   Operand immoperand, SDPatternOperator immoperator,
    506                   Operand imm8operand, SDPatternOperator imm8operator,
    507                   bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
    508   /// VT - This is the value type itself.
    509   ValueType VT = vt;
    510   
    511   /// InstrSuffix - This is the suffix used on instructions with this type.  For
    512   /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
    513   string InstrSuffix = instrsuffix;
    514   
    515   /// RegClass - This is the register class associated with this type.  For
    516   /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
    517   RegisterClass RegClass = regclass;
    518   
    519   /// LoadNode - This is the load node associated with this type.  For
    520   /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
    521   PatFrag LoadNode = loadnode;
    522   
    523   /// MemOperand - This is the memory operand associated with this type.  For
    524   /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
    525   X86MemOperand MemOperand = memoperand;
    526   
    527   /// ImmEncoding - This is the encoding of an immediate of this type.  For
    528   /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
    529   /// since the immediate fields of i64 instructions is a 32-bit sign extended
    530   /// value.
    531   ImmType ImmEncoding = immkind;
    532   
    533   /// ImmOperand - This is the operand kind of an immediate of this type.  For
    534   /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
    535   /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
    536   /// extended value.
    537   Operand ImmOperand = immoperand;
    538   
    539   /// ImmOperator - This is the operator that should be used to match an
    540   /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
    541   SDPatternOperator ImmOperator = immoperator;
    542   
    543   /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
    544   /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
    545   /// only used for instructions that have a sign-extended imm8 field form.
    546   Operand Imm8Operand = imm8operand;
    547   
    548   /// Imm8Operator - This is the operator that should be used to match an 8-bit
    549   /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
    550   SDPatternOperator Imm8Operator = imm8operator;
    551   
    552   /// HasOddOpcode - This bit is true if the instruction should have an odd (as
    553   /// opposed to even) opcode.  Operations on i8 are usually even, operations on
    554   /// other datatypes are odd.
    555   bit HasOddOpcode = hasOddOpcode;
    556   
    557   /// HasOpSizePrefix - This bit is set to true if the instruction should have
    558   /// the 0x66 operand size prefix.  This is set for i16 types.
    559   bit HasOpSizePrefix = hasOpSizePrefix;
    560   
    561   /// HasREX_WPrefix - This bit is set to true if the instruction should have
    562   /// the 0x40 REX prefix.  This is set for i64 types.
    563   bit HasREX_WPrefix = hasREX_WPrefix;
    564 }
    565 
    566 def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
    567 
    568 
    569 def Xi8  : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
    570                        Imm8 , i8imm ,    imm,          i8imm   , invalid_node,
    571                        0, 0, 0>;
    572 def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
    573                        Imm16, i16imm,    imm,          i16i8imm, i16immSExt8,
    574                        1, 1, 0>;
    575 def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
    576                        Imm32, i32imm,    imm,          i32i8imm, i32immSExt8,
    577                        1, 0, 0>;
    578 def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
    579                        Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
    580                        1, 0, 1>;
    581 
    582 /// ITy - This instruction base class takes the type info for the instruction.
    583 /// Using this, it:
    584 /// 1. Concatenates together the instruction mnemonic with the appropriate
    585 ///    suffix letter, a tab, and the arguments.
    586 /// 2. Infers whether the instruction should have a 0x66 prefix byte.
    587 /// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
    588 /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
    589 ///    or 1 (for i16,i32,i64 operations).
    590 class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, 
    591           string mnemonic, string args, list<dag> pattern>
    592   : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
    593        opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
    594       f, outs, ins, 
    595       !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
    596 
    597   // Infer instruction prefixes from type info.
    598   let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
    599   let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
    600 }
    601 
    602 // BinOpRR - Instructions like "add reg, reg, reg".
    603 class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    604               dag outlist, list<dag> pattern, Format f = MRMDestReg>
    605   : ITy<opcode, f, typeinfo, outlist,
    606         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    607         mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
    608 
    609 // BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
    610 // just a regclass (no eflags) as a result.
    611 class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    612                 SDNode opnode>
    613   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    614             [(set typeinfo.RegClass:$dst,
    615                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
    616 
    617 // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
    618 // just a EFLAGS as a result.
    619 class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    620                 SDPatternOperator opnode, Format f = MRMDestReg>
    621   : BinOpRR<opcode, mnemonic, typeinfo, (outs),
    622             [(set EFLAGS,
    623                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
    624             f>;
    625 
    626 // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
    627 // both a regclass and EFLAGS as a result.
    628 class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    629                  SDNode opnode>
    630   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    631             [(set typeinfo.RegClass:$dst, EFLAGS,
    632                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
    633 
    634 // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
    635 // both a regclass and EFLAGS as a result, and has EFLAGS as input.
    636 class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    637                   SDNode opnode>
    638   : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    639             [(set typeinfo.RegClass:$dst, EFLAGS,
    640                   (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
    641                           EFLAGS))]>;
    642 
    643 // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
    644 class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
    645   : ITy<opcode, MRMSrcReg, typeinfo,
    646         (outs typeinfo.RegClass:$dst),
    647         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    648         mnemonic, "{$src2, $dst|$dst, $src2}", []> {
    649   // The disassembler should know about this, but not the asmparser.
    650   let isCodeGenOnly = 1;
    651 }
    652 
    653 // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
    654 class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
    655   : ITy<opcode, MRMSrcReg, typeinfo, (outs),
    656         (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
    657         mnemonic, "{$src2, $src1|$src1, $src2}", []> {
    658   // The disassembler should know about this, but not the asmparser.
    659   let isCodeGenOnly = 1;
    660 }
    661 
    662 // BinOpRM - Instructions like "add reg, reg, [mem]".
    663 class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    664               dag outlist, list<dag> pattern>
    665   : ITy<opcode, MRMSrcMem, typeinfo, outlist,
    666         (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
    667         mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
    668 
    669 // BinOpRM_R - Instructions like "add reg, reg, [mem]".
    670 class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    671               SDNode opnode>
    672   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    673             [(set typeinfo.RegClass:$dst,
    674             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    675 
    676 // BinOpRM_F - Instructions like "cmp reg, [mem]".
    677 class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    678               SDPatternOperator opnode>
    679   : BinOpRM<opcode, mnemonic, typeinfo, (outs),
    680             [(set EFLAGS,
    681             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    682 
    683 // BinOpRM_RF - Instructions like "add reg, reg, [mem]".
    684 class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    685                  SDNode opnode>
    686   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    687             [(set typeinfo.RegClass:$dst, EFLAGS,
    688             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
    689 
    690 // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
    691 class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    692                  SDNode opnode>
    693   : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
    694             [(set typeinfo.RegClass:$dst, EFLAGS,
    695             (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
    696                     EFLAGS))]>;
    697 
    698 // BinOpRI - Instructions like "add reg, reg, imm".
    699 class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    700               Format f, dag outlist, list<dag> pattern>
    701   : ITy<opcode, f, typeinfo, outlist,
    702         (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
    703         mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
    704   let ImmT = typeinfo.ImmEncoding;
    705 }
    706 
    707 // BinOpRI_R - Instructions like "add reg, reg, imm".
    708 class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    709                 SDNode opnode, Format f>
    710   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    711             [(set typeinfo.RegClass:$dst,
    712                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    713 
    714 // BinOpRI_F - Instructions like "cmp reg, imm".
    715 class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    716                 SDPatternOperator opnode, Format f>
    717   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
    718             [(set EFLAGS,
    719                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    720 
    721 // BinOpRI_RF - Instructions like "add reg, reg, imm".
    722 class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    723                  SDNode opnode, Format f>
    724   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    725             [(set typeinfo.RegClass:$dst, EFLAGS, 
    726                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
    727 
    728 // BinOpRI_RFF - Instructions like "adc reg, reg, imm".
    729 class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    730                  SDNode opnode, Format f>
    731   : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    732             [(set typeinfo.RegClass:$dst, EFLAGS, 
    733                 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
    734                         EFLAGS))]>;
    735 
    736 // BinOpRI8 - Instructions like "add reg, reg, imm8".
    737 class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    738                Format f, dag outlist, list<dag> pattern>
    739   : ITy<opcode, f, typeinfo, outlist,
    740         (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
    741         mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
    742   let ImmT = Imm8; // Always 8-bit immediate.
    743 }
    744 
    745 // BinOpRI8_R - Instructions like "add reg, reg, imm8".
    746 class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    747                   SDNode opnode, Format f>
    748   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    749              [(set typeinfo.RegClass:$dst,
    750                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    751                
    752 // BinOpRI8_F - Instructions like "cmp reg, imm8".
    753 class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    754                   SDNode opnode, Format f>
    755   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
    756              [(set EFLAGS,
    757                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    758 
    759 // BinOpRI8_RF - Instructions like "add reg, reg, imm8".
    760 class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    761                   SDNode opnode, Format f>
    762   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    763              [(set typeinfo.RegClass:$dst, EFLAGS,
    764                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
    765 
    766 // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
    767 class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    768                    SDNode opnode, Format f>
    769   : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
    770              [(set typeinfo.RegClass:$dst, EFLAGS,
    771                (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
    772                        EFLAGS))]>;
    773 
    774 // BinOpMR - Instructions like "add [mem], reg".
    775 class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    776               list<dag> pattern>
    777   : ITy<opcode, MRMDestMem, typeinfo,
    778         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
    779         mnemonic, "{$src, $dst|$dst, $src}", pattern>;
    780 
    781 // BinOpMR_RMW - Instructions like "add [mem], reg".
    782 class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    783                   SDNode opnode>
    784   : BinOpMR<opcode, mnemonic, typeinfo,
    785           [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
    786            (implicit EFLAGS)]>;
    787 
    788 // BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
    789 class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    790                     SDNode opnode>
    791   : BinOpMR<opcode, mnemonic, typeinfo,
    792           [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
    793                   addr:$dst),
    794            (implicit EFLAGS)]>;
    795 
    796 // BinOpMR_F - Instructions like "cmp [mem], reg".
    797 class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    798                   SDNode opnode>
    799   : BinOpMR<opcode, mnemonic, typeinfo,
    800             [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
    801 
    802 // BinOpMI - Instructions like "add [mem], imm".
    803 class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
    804               Format f, list<dag> pattern, bits<8> opcode = 0x80>
    805   : ITy<opcode, f, typeinfo,
    806         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
    807         mnemonic, "{$src, $dst|$dst, $src}", pattern> {
    808   let ImmT = typeinfo.ImmEncoding;
    809 }
    810 
    811 // BinOpMI_RMW - Instructions like "add [mem], imm".
    812 class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
    813                   SDNode opnode, Format f>
    814   : BinOpMI<mnemonic, typeinfo, f, 
    815             [(store (opnode (typeinfo.VT (load addr:$dst)),
    816                             typeinfo.ImmOperator:$src), addr:$dst),
    817              (implicit EFLAGS)]>;
    818 
    819 // BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
    820 class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
    821                   SDNode opnode, Format f>
    822   : BinOpMI<mnemonic, typeinfo, f, 
    823             [(store (opnode (typeinfo.VT (load addr:$dst)),
    824                             typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
    825              (implicit EFLAGS)]>;
    826 
    827 // BinOpMI_F - Instructions like "cmp [mem], imm".
    828 class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
    829                 SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
    830   : BinOpMI<mnemonic, typeinfo, f, 
    831             [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
    832                                                typeinfo.ImmOperator:$src))],
    833             opcode>;
    834 
    835 // BinOpMI8 - Instructions like "add [mem], imm8".
    836 class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
    837                Format f, list<dag> pattern>
    838   : ITy<0x82, f, typeinfo,
    839         (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
    840         mnemonic, "{$src, $dst|$dst, $src}", pattern> {
    841   let ImmT = Imm8; // Always 8-bit immediate.
    842 }
    843 
    844 // BinOpMI8_RMW - Instructions like "add [mem], imm8".
    845 class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
    846                    SDNode opnode, Format f>
    847   : BinOpMI8<mnemonic, typeinfo, f,
    848              [(store (opnode (load addr:$dst),
    849                              typeinfo.Imm8Operator:$src), addr:$dst),
    850               (implicit EFLAGS)]>;
    851 
    852 // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
    853 class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
    854                    SDNode opnode, Format f>
    855   : BinOpMI8<mnemonic, typeinfo, f,
    856              [(store (opnode (load addr:$dst),
    857                              typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
    858               (implicit EFLAGS)]>;
    859 
    860 // BinOpMI8_F - Instructions like "cmp [mem], imm8".
    861 class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
    862                  SDNode opnode, Format f>
    863   : BinOpMI8<mnemonic, typeinfo, f,
    864              [(set EFLAGS, (opnode (load addr:$dst),
    865                                    typeinfo.Imm8Operator:$src))]>;
    866 
    867 // BinOpAI - Instructions like "add %eax, %eax, imm".
    868 class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
    869               Register areg, string operands>
    870   : ITy<opcode, RawFrm, typeinfo,
    871         (outs), (ins typeinfo.ImmOperand:$src),
    872         mnemonic, operands, []> {
    873   let ImmT = typeinfo.ImmEncoding;
    874   let Uses = [areg];
    875   let Defs = [areg];
    876 }
    877 
    878 /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
    879 /// defined with "(set GPR:$dst, EFLAGS, (...".
    880 ///
    881 /// It would be nice to get rid of the second and third argument here, but
    882 /// tblgen can't handle dependent type references aggressively enough: PR8330
    883 multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
    884                          string mnemonic, Format RegMRM, Format MemMRM,
    885                          SDNode opnodeflag, SDNode opnode,
    886                          bit CommutableRR, bit ConvertibleToThreeAddress> {
    887   let Defs = [EFLAGS] in {
    888     let Constraints = "$src1 = $dst" in {
    889       let isCommutable = CommutableRR,
    890           isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    891         def #NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
    892         def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
    893         def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
    894         def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
    895       } // isCommutable
    896 
    897       def #NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
    898       def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
    899       def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
    900       def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
    901 
    902       def #NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
    903       def #NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
    904       def #NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
    905       def #NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
    906 
    907       let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    908         // NOTE: These are order specific, we want the ri8 forms to be listed
    909         // first so that they are slightly preferred to the ri forms.
    910         def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
    911         def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
    912         def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
    913 
    914         def #NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
    915         def #NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
    916         def #NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
    917         def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
    918       }
    919     } // Constraints = "$src1 = $dst"
    920 
    921     def #NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
    922     def #NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
    923     def #NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
    924     def #NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
    925 
    926     // NOTE: These are order specific, we want the mi8 forms to be listed
    927     // first so that they are slightly preferred to the mi forms.
    928     def #NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
    929     def #NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
    930     def #NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
    931                        
    932     def #NAME#8mi    : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
    933     def #NAME#16mi   : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
    934     def #NAME#32mi   : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
    935     def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
    936 
    937     def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
    938                               "{$src, %al|AL, $src}">;
    939     def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
    940                               "{$src, %ax|AX, $src}">;
    941     def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
    942                               "{$src, %eax|EAX, $src}">;
    943     def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
    944                               "{$src, %rax|RAX, $src}">;
    945   }                          
    946 }
    947 
    948 /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
    949 /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
    950 /// SBB.
    951 ///
    952 /// It would be nice to get rid of the second and third argument here, but
    953 /// tblgen can't handle dependent type references aggressively enough: PR8330
    954 multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
    955                           string mnemonic, Format RegMRM, Format MemMRM,
    956                           SDNode opnode, bit CommutableRR,
    957                            bit ConvertibleToThreeAddress> {
    958   let Defs = [EFLAGS] in {
    959     let Constraints = "$src1 = $dst" in {
    960       let isCommutable = CommutableRR,
    961           isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    962         def #NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
    963         def #NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
    964         def #NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
    965         def #NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
    966       } // isCommutable
    967 
    968       def #NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
    969       def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
    970       def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
    971       def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
    972 
    973       def #NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
    974       def #NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
    975       def #NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
    976       def #NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
    977 
    978       let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
    979         // NOTE: These are order specific, we want the ri8 forms to be listed
    980         // first so that they are slightly preferred to the ri forms.
    981         def #NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
    982         def #NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
    983         def #NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
    984 
    985         def #NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
    986         def #NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
    987         def #NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
    988         def #NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
    989       }
    990     } // Constraints = "$src1 = $dst"
    991 
    992     def #NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
    993     def #NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
    994     def #NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
    995     def #NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
    996 
    997     // NOTE: These are order specific, we want the mi8 forms to be listed
    998     // first so that they are slightly preferred to the mi forms.
    999     def #NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
   1000     def #NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
   1001     def #NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
   1002                        
   1003     def #NAME#8mi    : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
   1004     def #NAME#16mi   : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
   1005     def #NAME#32mi   : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
   1006     def #NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
   1007 
   1008     def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
   1009                               "{$src, %al|AL, $src}">;
   1010     def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
   1011                               "{$src, %ax|AX, $src}">;
   1012     def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
   1013                               "{$src, %eax|EAX, $src}">;
   1014     def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, 
   1015                               "{$src, %rax|RAX, $src}">;
   1016   }                          
   1017 }
   1018 
   1019 /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
   1020 /// defined with "(set EFLAGS, (...".  It would be really nice to find a way
   1021 /// to factor this with the other ArithBinOp_*.
   1022 ///
   1023 multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
   1024                         string mnemonic, Format RegMRM, Format MemMRM,
   1025                         SDNode opnode,
   1026                         bit CommutableRR, bit ConvertibleToThreeAddress> {
   1027   let Defs = [EFLAGS] in {
   1028     let isCommutable = CommutableRR,
   1029         isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1030       def #NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
   1031       def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
   1032       def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
   1033       def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
   1034     } // isCommutable
   1035 
   1036     def #NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
   1037     def #NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
   1038     def #NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
   1039     def #NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
   1040 
   1041     def #NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
   1042     def #NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
   1043     def #NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
   1044     def #NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
   1045 
   1046     let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
   1047       // NOTE: These are order specific, we want the ri8 forms to be listed
   1048       // first so that they are slightly preferred to the ri forms.
   1049       def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
   1050       def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
   1051       def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
   1052       
   1053       def #NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
   1054       def #NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
   1055       def #NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
   1056       def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
   1057     }
   1058 
   1059     def #NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
   1060     def #NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
   1061     def #NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
   1062     def #NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
   1063 
   1064     // NOTE: These are order specific, we want the mi8 forms to be listed
   1065     // first so that they are slightly preferred to the mi forms.
   1066     def #NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
   1067     def #NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
   1068     def #NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
   1069                        
   1070     def #NAME#8mi    : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
   1071     def #NAME#16mi   : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
   1072     def #NAME#32mi   : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
   1073     def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
   1074 
   1075     def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
   1076                               "{$src, %al|AL, $src}">;
   1077     def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
   1078                               "{$src, %ax|AX, $src}">;
   1079     def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
   1080                               "{$src, %eax|EAX, $src}">;
   1081     def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
   1082                               "{$src, %rax|RAX, $src}">;
   1083   }                          
   1084 }
   1085 
   1086 
   1087 defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
   1088                          X86and_flag, and, 1, 0>;
   1089 defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
   1090                          X86or_flag, or, 1, 0>;
   1091 defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
   1092                          X86xor_flag, xor, 1, 0>;
   1093 defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
   1094                          X86add_flag, add, 1, 1>;
   1095 defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
   1096                          X86sub_flag, sub, 0, 0>;
   1097 
   1098 // Arithmetic.
   1099 let Uses = [EFLAGS] in {
   1100   defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
   1101                             1, 0>;
   1102   defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
   1103                             0, 0>;
   1104 }
   1105 
   1106 defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
   1107 
   1108 
   1109 //===----------------------------------------------------------------------===//
   1110 // Semantically, test instructions are similar like AND, except they don't
   1111 // generate a result.  From an encoding perspective, they are very different:
   1112 // they don't have all the usual imm8 and REV forms, and are encoded into a
   1113 // different space.
   1114 def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
   1115                          (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
   1116 
   1117 let Defs = [EFLAGS] in {
   1118   let isCommutable = 1 in {
   1119     def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
   1120     def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
   1121     def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
   1122     def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
   1123   } // isCommutable
   1124 
   1125   def TEST8rm    : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
   1126   def TEST16rm   : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
   1127   def TEST32rm   : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
   1128   def TEST64rm   : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
   1129 
   1130   def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
   1131   def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
   1132   def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
   1133   def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
   1134 
   1135   def TEST8mi    : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
   1136   def TEST16mi   : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
   1137   def TEST32mi   : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
   1138   def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
   1139                      
   1140   def TEST8i8    : BinOpAI<0xA8, "test", Xi8 , AL,
   1141                            "{$src, %al|AL, $src}">;
   1142   def TEST16i16  : BinOpAI<0xA8, "test", Xi16, AX,
   1143                            "{$src, %ax|AX, $src}">;
   1144   def TEST32i32  : BinOpAI<0xA8, "test", Xi32, EAX,
   1145                            "{$src, %eax|EAX, $src}">;
   1146   def TEST64i32  : BinOpAI<0xA8, "test", Xi64, RAX,
   1147                            "{$src, %rax|RAX, $src}">;
   1148 
   1149   // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
   1150   // register class is constrained to GR8_NOREX.
   1151   let isPseudo = 1 in
   1152   def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
   1153                         "", []>;
   1154 }
   1155 
   1156 //===----------------------------------------------------------------------===//
   1157 // ANDN Instruction
   1158 //
   1159 multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
   1160                     PatFrag ld_frag> {
   1161   def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
   1162             !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1163             [(set RC:$dst, EFLAGS, (X86andn_flag RC:$src1, RC:$src2))]>;
   1164   def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
   1165             !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
   1166             [(set RC:$dst, EFLAGS,
   1167              (X86andn_flag RC:$src1, (ld_frag addr:$src2)))]>;
   1168 }
   1169 
   1170 let Predicates = [HasBMI], Defs = [EFLAGS] in {
   1171   defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V;
   1172   defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W;
   1173 }
   1174