Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains logic for simplifying instructions based on information
     11 // about how they are used.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 
     16 #include "InstCombine.h"
     17 #include "llvm/Target/TargetData.h"
     18 #include "llvm/IntrinsicInst.h"
     19 
     20 using namespace llvm;
     21 
     22 
     23 /// ShrinkDemandedConstant - Check to see if the specified operand of the
     24 /// specified instruction is a constant integer.  If so, check to see if there
     25 /// are any bits set in the constant that are not demanded.  If so, shrink the
     26 /// constant and return true.
     27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
     28                                    APInt Demanded) {
     29   assert(I && "No instruction?");
     30   assert(OpNo < I->getNumOperands() && "Operand index too large");
     31 
     32   // If the operand is not a constant integer, nothing to do.
     33   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
     34   if (!OpC) return false;
     35 
     36   // If there are no bits set that aren't demanded, nothing to do.
     37   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
     38   if ((~Demanded & OpC->getValue()) == 0)
     39     return false;
     40 
     41   // This instruction is producing bits that are not demanded. Shrink the RHS.
     42   Demanded &= OpC->getValue();
     43   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
     44   return true;
     45 }
     46 
     47 
     48 
     49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
     50 /// SimplifyDemandedBits knows about.  See if the instruction has any
     51 /// properties that allow us to simplify its operands.
     52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
     53   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
     54   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
     55   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
     56 
     57   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
     58                                      KnownZero, KnownOne, 0);
     59   if (V == 0) return false;
     60   if (V == &Inst) return true;
     61   ReplaceInstUsesWith(Inst, V);
     62   return true;
     63 }
     64 
     65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
     66 /// specified instruction operand if possible, updating it in place.  It returns
     67 /// true if it made any change and false otherwise.
     68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
     69                                         APInt &KnownZero, APInt &KnownOne,
     70                                         unsigned Depth) {
     71   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
     72                                           KnownZero, KnownOne, Depth);
     73   if (NewVal == 0) return false;
     74   U = NewVal;
     75   return true;
     76 }
     77 
     78 
     79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
     80 /// value based on the demanded bits.  When this function is called, it is known
     81 /// that only the bits set in DemandedMask of the result of V are ever used
     82 /// downstream. Consequently, depending on the mask and V, it may be possible
     83 /// to replace V with a constant or one of its operands. In such cases, this
     84 /// function does the replacement and returns true. In all other cases, it
     85 /// returns false after analyzing the expression and setting KnownOne and known
     86 /// to be one in the expression.  KnownZero contains all the bits that are known
     87 /// to be zero in the expression. These are provided to potentially allow the
     88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
     89 /// the expression. KnownOne and KnownZero always follow the invariant that
     90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
     91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
     92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
     93 /// and KnownOne must all be the same.
     94 ///
     95 /// This returns null if it did not change anything and it permits no
     96 /// simplification.  This returns V itself if it did some simplification of V's
     97 /// operands based on the information about what bits are demanded. This returns
     98 /// some other non-null value if it found out that V is equal to another value
     99 /// in the context where the specified bits are demanded, but not for all users.
    100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
    101                                              APInt &KnownZero, APInt &KnownOne,
    102                                              unsigned Depth) {
    103   assert(V != 0 && "Null pointer of Value???");
    104   assert(Depth <= 6 && "Limit Search Depth");
    105   uint32_t BitWidth = DemandedMask.getBitWidth();
    106   Type *VTy = V->getType();
    107   assert((TD || !VTy->isPointerTy()) &&
    108          "SimplifyDemandedBits needs to know bit widths!");
    109   assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
    110          (!VTy->isIntOrIntVectorTy() ||
    111           VTy->getScalarSizeInBits() == BitWidth) &&
    112          KnownZero.getBitWidth() == BitWidth &&
    113          KnownOne.getBitWidth() == BitWidth &&
    114          "Value *V, DemandedMask, KnownZero and KnownOne "
    115          "must have same BitWidth");
    116   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    117     // We know all of the bits for a constant!
    118     KnownOne = CI->getValue() & DemandedMask;
    119     KnownZero = ~KnownOne & DemandedMask;
    120     return 0;
    121   }
    122   if (isa<ConstantPointerNull>(V)) {
    123     // We know all of the bits for a constant!
    124     KnownOne.clearAllBits();
    125     KnownZero = DemandedMask;
    126     return 0;
    127   }
    128 
    129   KnownZero.clearAllBits();
    130   KnownOne.clearAllBits();
    131   if (DemandedMask == 0) {   // Not demanding any bits from V.
    132     if (isa<UndefValue>(V))
    133       return 0;
    134     return UndefValue::get(VTy);
    135   }
    136 
    137   if (Depth == 6)        // Limit search depth.
    138     return 0;
    139 
    140   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    141   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    142 
    143   Instruction *I = dyn_cast<Instruction>(V);
    144   if (!I) {
    145     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
    146     return 0;        // Only analyze instructions.
    147   }
    148 
    149   // If there are multiple uses of this value and we aren't at the root, then
    150   // we can't do any simplifications of the operands, because DemandedMask
    151   // only reflects the bits demanded by *one* of the users.
    152   if (Depth != 0 && !I->hasOneUse()) {
    153     // Despite the fact that we can't simplify this instruction in all User's
    154     // context, we can at least compute the knownzero/knownone bits, and we can
    155     // do simplifications that apply to *just* the one user if we know that
    156     // this instruction has a simpler value in that context.
    157     if (I->getOpcode() == Instruction::And) {
    158       // If either the LHS or the RHS are Zero, the result is zero.
    159       ComputeMaskedBits(I->getOperand(1), DemandedMask,
    160                         RHSKnownZero, RHSKnownOne, Depth+1);
    161       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
    162                         LHSKnownZero, LHSKnownOne, Depth+1);
    163 
    164       // If all of the demanded bits are known 1 on one side, return the other.
    165       // These bits cannot contribute to the result of the 'and' in this
    166       // context.
    167       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
    168           (DemandedMask & ~LHSKnownZero))
    169         return I->getOperand(0);
    170       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
    171           (DemandedMask & ~RHSKnownZero))
    172         return I->getOperand(1);
    173 
    174       // If all of the demanded bits in the inputs are known zeros, return zero.
    175       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
    176         return Constant::getNullValue(VTy);
    177 
    178     } else if (I->getOpcode() == Instruction::Or) {
    179       // We can simplify (X|Y) -> X or Y in the user's context if we know that
    180       // only bits from X or Y are demanded.
    181 
    182       // If either the LHS or the RHS are One, the result is One.
    183       ComputeMaskedBits(I->getOperand(1), DemandedMask,
    184                         RHSKnownZero, RHSKnownOne, Depth+1);
    185       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
    186                         LHSKnownZero, LHSKnownOne, Depth+1);
    187 
    188       // If all of the demanded bits are known zero on one side, return the
    189       // other.  These bits cannot contribute to the result of the 'or' in this
    190       // context.
    191       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
    192           (DemandedMask & ~LHSKnownOne))
    193         return I->getOperand(0);
    194       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
    195           (DemandedMask & ~RHSKnownOne))
    196         return I->getOperand(1);
    197 
    198       // If all of the potentially set bits on one side are known to be set on
    199       // the other side, just use the 'other' side.
    200       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
    201           (DemandedMask & (~RHSKnownZero)))
    202         return I->getOperand(0);
    203       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
    204           (DemandedMask & (~LHSKnownZero)))
    205         return I->getOperand(1);
    206     }
    207 
    208     // Compute the KnownZero/KnownOne bits to simplify things downstream.
    209     ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
    210     return 0;
    211   }
    212 
    213   // If this is the root being simplified, allow it to have multiple uses,
    214   // just set the DemandedMask to all bits so that we can try to simplify the
    215   // operands.  This allows visitTruncInst (for example) to simplify the
    216   // operand of a trunc without duplicating all the logic below.
    217   if (Depth == 0 && !V->hasOneUse())
    218     DemandedMask = APInt::getAllOnesValue(BitWidth);
    219 
    220   switch (I->getOpcode()) {
    221   default:
    222     ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
    223     break;
    224   case Instruction::And:
    225     // If either the LHS or the RHS are Zero, the result is zero.
    226     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
    227                              RHSKnownZero, RHSKnownOne, Depth+1) ||
    228         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
    229                              LHSKnownZero, LHSKnownOne, Depth+1))
    230       return I;
    231     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    232     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    233 
    234     // If all of the demanded bits are known 1 on one side, return the other.
    235     // These bits cannot contribute to the result of the 'and'.
    236     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
    237         (DemandedMask & ~LHSKnownZero))
    238       return I->getOperand(0);
    239     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
    240         (DemandedMask & ~RHSKnownZero))
    241       return I->getOperand(1);
    242 
    243     // If all of the demanded bits in the inputs are known zeros, return zero.
    244     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
    245       return Constant::getNullValue(VTy);
    246 
    247     // If the RHS is a constant, see if we can simplify it.
    248     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
    249       return I;
    250 
    251     // Output known-1 bits are only known if set in both the LHS & RHS.
    252     KnownOne = RHSKnownOne & LHSKnownOne;
    253     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    254     KnownZero = RHSKnownZero | LHSKnownZero;
    255     break;
    256   case Instruction::Or:
    257     // If either the LHS or the RHS are One, the result is One.
    258     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
    259                              RHSKnownZero, RHSKnownOne, Depth+1) ||
    260         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
    261                              LHSKnownZero, LHSKnownOne, Depth+1))
    262       return I;
    263     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    264     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    265 
    266     // If all of the demanded bits are known zero on one side, return the other.
    267     // These bits cannot contribute to the result of the 'or'.
    268     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
    269         (DemandedMask & ~LHSKnownOne))
    270       return I->getOperand(0);
    271     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
    272         (DemandedMask & ~RHSKnownOne))
    273       return I->getOperand(1);
    274 
    275     // If all of the potentially set bits on one side are known to be set on
    276     // the other side, just use the 'other' side.
    277     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
    278         (DemandedMask & (~RHSKnownZero)))
    279       return I->getOperand(0);
    280     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
    281         (DemandedMask & (~LHSKnownZero)))
    282       return I->getOperand(1);
    283 
    284     // If the RHS is a constant, see if we can simplify it.
    285     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    286       return I;
    287 
    288     // Output known-0 bits are only known if clear in both the LHS & RHS.
    289     KnownZero = RHSKnownZero & LHSKnownZero;
    290     // Output known-1 are known to be set if set in either the LHS | RHS.
    291     KnownOne = RHSKnownOne | LHSKnownOne;
    292     break;
    293   case Instruction::Xor: {
    294     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
    295                              RHSKnownZero, RHSKnownOne, Depth+1) ||
    296         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
    297                              LHSKnownZero, LHSKnownOne, Depth+1))
    298       return I;
    299     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    300     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    301 
    302     // If all of the demanded bits are known zero on one side, return the other.
    303     // These bits cannot contribute to the result of the 'xor'.
    304     if ((DemandedMask & RHSKnownZero) == DemandedMask)
    305       return I->getOperand(0);
    306     if ((DemandedMask & LHSKnownZero) == DemandedMask)
    307       return I->getOperand(1);
    308 
    309     // If all of the demanded bits are known to be zero on one side or the
    310     // other, turn this into an *inclusive* or.
    311     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    312     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
    313       Instruction *Or =
    314         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
    315                                  I->getName());
    316       return InsertNewInstWith(Or, *I);
    317     }
    318 
    319     // If all of the demanded bits on one side are known, and all of the set
    320     // bits on that side are also known to be set on the other side, turn this
    321     // into an AND, as we know the bits will be cleared.
    322     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    323     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
    324       // all known
    325       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
    326         Constant *AndC = Constant::getIntegerValue(VTy,
    327                                                    ~RHSKnownOne & DemandedMask);
    328         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    329         return InsertNewInstWith(And, *I);
    330       }
    331     }
    332 
    333     // If the RHS is a constant, see if we can simplify it.
    334     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    335     if (ShrinkDemandedConstant(I, 1, DemandedMask))
    336       return I;
    337 
    338     // If our LHS is an 'and' and if it has one use, and if any of the bits we
    339     // are flipping are known to be set, then the xor is just resetting those
    340     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    341     // simplifying both of them.
    342     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
    343       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
    344           isa<ConstantInt>(I->getOperand(1)) &&
    345           isa<ConstantInt>(LHSInst->getOperand(1)) &&
    346           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
    347         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
    348         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
    349         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
    350 
    351         Constant *AndC =
    352           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
    353         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
    354         InsertNewInstWith(NewAnd, *I);
    355 
    356         Constant *XorC =
    357           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
    358         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
    359         return InsertNewInstWith(NewXor, *I);
    360       }
    361 
    362     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    363     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
    364     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    365     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
    366     break;
    367   }
    368   case Instruction::Select:
    369     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
    370                              RHSKnownZero, RHSKnownOne, Depth+1) ||
    371         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
    372                              LHSKnownZero, LHSKnownOne, Depth+1))
    373       return I;
    374     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    375     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
    376 
    377     // If the operands are constants, see if we can simplify them.
    378     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
    379         ShrinkDemandedConstant(I, 2, DemandedMask))
    380       return I;
    381 
    382     // Only known if known in both the LHS and RHS.
    383     KnownOne = RHSKnownOne & LHSKnownOne;
    384     KnownZero = RHSKnownZero & LHSKnownZero;
    385     break;
    386   case Instruction::Trunc: {
    387     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
    388     DemandedMask = DemandedMask.zext(truncBf);
    389     KnownZero = KnownZero.zext(truncBf);
    390     KnownOne = KnownOne.zext(truncBf);
    391     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
    392                              KnownZero, KnownOne, Depth+1))
    393       return I;
    394     DemandedMask = DemandedMask.trunc(BitWidth);
    395     KnownZero = KnownZero.trunc(BitWidth);
    396     KnownOne = KnownOne.trunc(BitWidth);
    397     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    398     break;
    399   }
    400   case Instruction::BitCast:
    401     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
    402       return 0;  // vector->int or fp->int?
    403 
    404     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
    405       if (VectorType *SrcVTy =
    406             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
    407         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
    408           // Don't touch a bitcast between vectors of different element counts.
    409           return 0;
    410       } else
    411         // Don't touch a scalar-to-vector bitcast.
    412         return 0;
    413     } else if (I->getOperand(0)->getType()->isVectorTy())
    414       // Don't touch a vector-to-scalar bitcast.
    415       return 0;
    416 
    417     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
    418                              KnownZero, KnownOne, Depth+1))
    419       return I;
    420     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    421     break;
    422   case Instruction::ZExt: {
    423     // Compute the bits in the result that are not present in the input.
    424     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
    425 
    426     DemandedMask = DemandedMask.trunc(SrcBitWidth);
    427     KnownZero = KnownZero.trunc(SrcBitWidth);
    428     KnownOne = KnownOne.trunc(SrcBitWidth);
    429     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
    430                              KnownZero, KnownOne, Depth+1))
    431       return I;
    432     DemandedMask = DemandedMask.zext(BitWidth);
    433     KnownZero = KnownZero.zext(BitWidth);
    434     KnownOne = KnownOne.zext(BitWidth);
    435     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    436     // The top bits are known to be zero.
    437     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    438     break;
    439   }
    440   case Instruction::SExt: {
    441     // Compute the bits in the result that are not present in the input.
    442     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
    443 
    444     APInt InputDemandedBits = DemandedMask &
    445                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
    446 
    447     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
    448     // If any of the sign extended bits are demanded, we know that the sign
    449     // bit is demanded.
    450     if ((NewBits & DemandedMask) != 0)
    451       InputDemandedBits.setBit(SrcBitWidth-1);
    452 
    453     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
    454     KnownZero = KnownZero.trunc(SrcBitWidth);
    455     KnownOne = KnownOne.trunc(SrcBitWidth);
    456     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
    457                              KnownZero, KnownOne, Depth+1))
    458       return I;
    459     InputDemandedBits = InputDemandedBits.zext(BitWidth);
    460     KnownZero = KnownZero.zext(BitWidth);
    461     KnownOne = KnownOne.zext(BitWidth);
    462     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    463 
    464     // If the sign bit of the input is known set or clear, then we know the
    465     // top bits of the result.
    466 
    467     // If the input sign bit is known zero, or if the NewBits are not demanded
    468     // convert this into a zero extension.
    469     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
    470       // Convert to ZExt cast
    471       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
    472       return InsertNewInstWith(NewCast, *I);
    473     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
    474       KnownOne |= NewBits;
    475     }
    476     break;
    477   }
    478   case Instruction::Add: {
    479     // Figure out what the input bits are.  If the top bits of the and result
    480     // are not demanded, then the add doesn't demand them from its input
    481     // either.
    482     unsigned NLZ = DemandedMask.countLeadingZeros();
    483 
    484     // If there is a constant on the RHS, there are a variety of xformations
    485     // we can do.
    486     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
    487       // If null, this should be simplified elsewhere.  Some of the xforms here
    488       // won't work if the RHS is zero.
    489       if (RHS->isZero())
    490         break;
    491 
    492       // If the top bit of the output is demanded, demand everything from the
    493       // input.  Otherwise, we demand all the input bits except NLZ top bits.
    494       APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
    495 
    496       // Find information about known zero/one bits in the input.
    497       if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
    498                                LHSKnownZero, LHSKnownOne, Depth+1))
    499         return I;
    500 
    501       // If the RHS of the add has bits set that can't affect the input, reduce
    502       // the constant.
    503       if (ShrinkDemandedConstant(I, 1, InDemandedBits))
    504         return I;
    505 
    506       // Avoid excess work.
    507       if (LHSKnownZero == 0 && LHSKnownOne == 0)
    508         break;
    509 
    510       // Turn it into OR if input bits are zero.
    511       if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
    512         Instruction *Or =
    513           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
    514                                    I->getName());
    515         return InsertNewInstWith(Or, *I);
    516       }
    517 
    518       // We can say something about the output known-zero and known-one bits,
    519       // depending on potential carries from the input constant and the
    520       // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
    521       // bits set and the RHS constant is 0x01001, then we know we have a known
    522       // one mask of 0x00001 and a known zero mask of 0xE0F0E.
    523 
    524       // To compute this, we first compute the potential carry bits.  These are
    525       // the bits which may be modified.  I'm not aware of a better way to do
    526       // this scan.
    527       const APInt &RHSVal = RHS->getValue();
    528       APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
    529 
    530       // Now that we know which bits have carries, compute the known-1/0 sets.
    531 
    532       // Bits are known one if they are known zero in one operand and one in the
    533       // other, and there is no input carry.
    534       KnownOne = ((LHSKnownZero & RHSVal) |
    535                   (LHSKnownOne & ~RHSVal)) & ~CarryBits;
    536 
    537       // Bits are known zero if they are known zero in both operands and there
    538       // is no input carry.
    539       KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
    540     } else {
    541       // If the high-bits of this ADD are not demanded, then it does not demand
    542       // the high bits of its LHS or RHS.
    543       if (DemandedMask[BitWidth-1] == 0) {
    544         // Right fill the mask of bits for this ADD to demand the most
    545         // significant bit and all those below it.
    546         APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
    547         if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
    548                                  LHSKnownZero, LHSKnownOne, Depth+1) ||
    549             SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
    550                                  LHSKnownZero, LHSKnownOne, Depth+1))
    551           return I;
    552       }
    553     }
    554     break;
    555   }
    556   case Instruction::Sub:
    557     // If the high-bits of this SUB are not demanded, then it does not demand
    558     // the high bits of its LHS or RHS.
    559     if (DemandedMask[BitWidth-1] == 0) {
    560       // Right fill the mask of bits for this SUB to demand the most
    561       // significant bit and all those below it.
    562       uint32_t NLZ = DemandedMask.countLeadingZeros();
    563       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
    564       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
    565                                LHSKnownZero, LHSKnownOne, Depth+1) ||
    566           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
    567                                LHSKnownZero, LHSKnownOne, Depth+1))
    568         return I;
    569     }
    570     // Otherwise just hand the sub off to ComputeMaskedBits to fill in
    571     // the known zeros and ones.
    572     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
    573     break;
    574   case Instruction::Shl:
    575     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    576       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    577       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
    578 
    579       // If the shift is NUW/NSW, then it does demand the high bits.
    580       ShlOperator *IOp = cast<ShlOperator>(I);
    581       if (IOp->hasNoSignedWrap())
    582         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
    583       else if (IOp->hasNoUnsignedWrap())
    584         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    585 
    586       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
    587                                KnownZero, KnownOne, Depth+1))
    588         return I;
    589       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    590       KnownZero <<= ShiftAmt;
    591       KnownOne  <<= ShiftAmt;
    592       // low bits known zero.
    593       if (ShiftAmt)
    594         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    595     }
    596     break;
    597   case Instruction::LShr:
    598     // For a logical shift right
    599     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    600       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    601 
    602       // Unsigned shift right.
    603       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    604 
    605       // If the shift is exact, then it does demand the low bits (and knows that
    606       // they are zero).
    607       if (cast<LShrOperator>(I)->isExact())
    608         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    609 
    610       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
    611                                KnownZero, KnownOne, Depth+1))
    612         return I;
    613       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    614       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    615       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    616       if (ShiftAmt) {
    617         // Compute the new bits that are at the top now.
    618         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    619         KnownZero |= HighBits;  // high bits known zero.
    620       }
    621     }
    622     break;
    623   case Instruction::AShr:
    624     // If this is an arithmetic shift right and only the low-bit is set, we can
    625     // always convert this into a logical shr, even if the shift amount is
    626     // variable.  The low bit of the shift cannot be an input sign bit unless
    627     // the shift amount is >= the size of the datatype, which is undefined.
    628     if (DemandedMask == 1) {
    629       // Perform the logical shift right.
    630       Instruction *NewVal = BinaryOperator::CreateLShr(
    631                         I->getOperand(0), I->getOperand(1), I->getName());
    632       return InsertNewInstWith(NewVal, *I);
    633     }
    634 
    635     // If the sign bit is the only bit demanded by this ashr, then there is no
    636     // need to do it, the shift doesn't change the high bit.
    637     if (DemandedMask.isSignBit())
    638       return I->getOperand(0);
    639 
    640     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    641       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    642 
    643       // Signed shift right.
    644       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
    645       // If any of the "high bits" are demanded, we should set the sign bit as
    646       // demanded.
    647       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
    648         DemandedMaskIn.setBit(BitWidth-1);
    649 
    650       // If the shift is exact, then it does demand the low bits (and knows that
    651       // they are zero).
    652       if (cast<AShrOperator>(I)->isExact())
    653         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    654 
    655       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
    656                                KnownZero, KnownOne, Depth+1))
    657         return I;
    658       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    659       // Compute the new bits that are at the top now.
    660       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    661       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    662       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    663 
    664       // Handle the sign bits.
    665       APInt SignBit(APInt::getSignBit(BitWidth));
    666       // Adjust to where it is now in the mask.
    667       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
    668 
    669       // If the input sign bit is known to be zero, or if none of the top bits
    670       // are demanded, turn this into an unsigned shift right.
    671       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
    672           (HighBits & ~DemandedMask) == HighBits) {
    673         // Perform the logical shift right.
    674         Instruction *NewVal = BinaryOperator::CreateLShr(
    675                           I->getOperand(0), SA, I->getName());
    676         return InsertNewInstWith(NewVal, *I);
    677       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
    678         KnownOne |= HighBits;
    679       }
    680     }
    681     break;
    682   case Instruction::SRem:
    683     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    684       // X % -1 demands all the bits because we don't want to introduce
    685       // INT_MIN % -1 (== undef) by accident.
    686       if (Rem->isAllOnesValue())
    687         break;
    688       APInt RA = Rem->getValue().abs();
    689       if (RA.isPowerOf2()) {
    690         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
    691           return I->getOperand(0);
    692 
    693         APInt LowBits = RA - 1;
    694         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
    695         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
    696                                  LHSKnownZero, LHSKnownOne, Depth+1))
    697           return I;
    698 
    699         // The low bits of LHS are unchanged by the srem.
    700         KnownZero = LHSKnownZero & LowBits;
    701         KnownOne = LHSKnownOne & LowBits;
    702 
    703         // If LHS is non-negative or has all low bits zero, then the upper bits
    704         // are all zero.
    705         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
    706           KnownZero |= ~LowBits;
    707 
    708         // If LHS is negative and not all low bits are zero, then the upper bits
    709         // are all one.
    710         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
    711           KnownOne |= ~LowBits;
    712 
    713         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    714       }
    715     }
    716 
    717     // The sign bit is the LHS's sign bit, except when the result of the
    718     // remainder is zero.
    719     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
    720       APInt Mask2 = APInt::getSignBit(BitWidth);
    721       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    722       ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne,
    723                         Depth+1);
    724       // If it's known zero, our sign bit is also zero.
    725       if (LHSKnownZero.isNegative())
    726         KnownZero |= LHSKnownZero;
    727     }
    728     break;
    729   case Instruction::URem: {
    730     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
    731     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    732     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
    733                              KnownZero2, KnownOne2, Depth+1) ||
    734         SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
    735                              KnownZero2, KnownOne2, Depth+1))
    736       return I;
    737 
    738     unsigned Leaders = KnownZero2.countLeadingOnes();
    739     Leaders = std::max(Leaders,
    740                        KnownZero2.countLeadingOnes());
    741     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    742     break;
    743   }
    744   case Instruction::Call:
    745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    746       switch (II->getIntrinsicID()) {
    747       default: break;
    748       case Intrinsic::bswap: {
    749         // If the only bits demanded come from one byte of the bswap result,
    750         // just shift the input byte into position to eliminate the bswap.
    751         unsigned NLZ = DemandedMask.countLeadingZeros();
    752         unsigned NTZ = DemandedMask.countTrailingZeros();
    753 
    754         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
    755         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
    756         // have 14 leading zeros, round to 8.
    757         NLZ &= ~7;
    758         NTZ &= ~7;
    759         // If we need exactly one byte, we can do this transformation.
    760         if (BitWidth-NLZ-NTZ == 8) {
    761           unsigned ResultBit = NTZ;
    762           unsigned InputBit = BitWidth-NTZ-8;
    763 
    764           // Replace this with either a left or right shift to get the byte into
    765           // the right place.
    766           Instruction *NewVal;
    767           if (InputBit > ResultBit)
    768             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
    769                     ConstantInt::get(I->getType(), InputBit-ResultBit));
    770           else
    771             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
    772                     ConstantInt::get(I->getType(), ResultBit-InputBit));
    773           NewVal->takeName(I);
    774           return InsertNewInstWith(NewVal, *I);
    775         }
    776 
    777         // TODO: Could compute known zero/one bits based on the input.
    778         break;
    779       }
    780       case Intrinsic::x86_sse42_crc32_64_8:
    781       case Intrinsic::x86_sse42_crc32_64_64:
    782         KnownZero = APInt::getHighBitsSet(64, 32);
    783         return 0;
    784       }
    785     }
    786     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
    787     break;
    788   }
    789 
    790   // If the client is only demanding bits that we know, return the known
    791   // constant.
    792   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
    793     return Constant::getIntegerValue(VTy, KnownOne);
    794   return 0;
    795 }
    796 
    797 
    798 /// SimplifyDemandedVectorElts - The specified value produces a vector with
    799 /// any number of elements. DemandedElts contains the set of elements that are
    800 /// actually used by the caller.  This method analyzes which elements of the
    801 /// operand are undef and returns that information in UndefElts.
    802 ///
    803 /// If the information about demanded elements can be used to simplify the
    804 /// operation, the operation is simplified, then the resultant value is
    805 /// returned.  This returns null if no change was made.
    806 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    807                                                 APInt &UndefElts,
    808                                                 unsigned Depth) {
    809   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
    810   APInt EltMask(APInt::getAllOnesValue(VWidth));
    811   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
    812 
    813   if (isa<UndefValue>(V)) {
    814     // If the entire vector is undefined, just return this info.
    815     UndefElts = EltMask;
    816     return 0;
    817   }
    818 
    819   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
    820     UndefElts = EltMask;
    821     return UndefValue::get(V->getType());
    822   }
    823 
    824   UndefElts = 0;
    825   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
    826     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    827     Constant *Undef = UndefValue::get(EltTy);
    828 
    829     std::vector<Constant*> Elts;
    830     for (unsigned i = 0; i != VWidth; ++i)
    831       if (!DemandedElts[i]) {   // If not demanded, set to undef.
    832         Elts.push_back(Undef);
    833         UndefElts.setBit(i);
    834       } else if (isa<UndefValue>(CV->getOperand(i))) {   // Already undef.
    835         Elts.push_back(Undef);
    836         UndefElts.setBit(i);
    837       } else {                               // Otherwise, defined.
    838         Elts.push_back(CV->getOperand(i));
    839       }
    840 
    841     // If we changed the constant, return it.
    842     Constant *NewCP = ConstantVector::get(Elts);
    843     return NewCP != CV ? NewCP : 0;
    844   }
    845 
    846   if (isa<ConstantAggregateZero>(V)) {
    847     // Simplify the CAZ to a ConstantVector where the non-demanded elements are
    848     // set to undef.
    849 
    850     // Check if this is identity. If so, return 0 since we are not simplifying
    851     // anything.
    852     if (DemandedElts.isAllOnesValue())
    853       return 0;
    854 
    855     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    856     Constant *Zero = Constant::getNullValue(EltTy);
    857     Constant *Undef = UndefValue::get(EltTy);
    858     std::vector<Constant*> Elts;
    859     for (unsigned i = 0; i != VWidth; ++i) {
    860       Constant *Elt = DemandedElts[i] ? Zero : Undef;
    861       Elts.push_back(Elt);
    862     }
    863     UndefElts = DemandedElts ^ EltMask;
    864     return ConstantVector::get(Elts);
    865   }
    866 
    867   // Limit search depth.
    868   if (Depth == 10)
    869     return 0;
    870 
    871   // If multiple users are using the root value, proceed with
    872   // simplification conservatively assuming that all elements
    873   // are needed.
    874   if (!V->hasOneUse()) {
    875     // Quit if we find multiple users of a non-root value though.
    876     // They'll be handled when it's their turn to be visited by
    877     // the main instcombine process.
    878     if (Depth != 0)
    879       // TODO: Just compute the UndefElts information recursively.
    880       return 0;
    881 
    882     // Conservatively assume that all elements are needed.
    883     DemandedElts = EltMask;
    884   }
    885 
    886   Instruction *I = dyn_cast<Instruction>(V);
    887   if (!I) return 0;        // Only analyze instructions.
    888 
    889   bool MadeChange = false;
    890   APInt UndefElts2(VWidth, 0);
    891   Value *TmpV;
    892   switch (I->getOpcode()) {
    893   default: break;
    894 
    895   case Instruction::InsertElement: {
    896     // If this is a variable index, we don't know which element it overwrites.
    897     // demand exactly the same input as we produce.
    898     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    899     if (Idx == 0) {
    900       // Note that we can't propagate undef elt info, because we don't know
    901       // which elt is getting updated.
    902       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
    903                                         UndefElts2, Depth+1);
    904       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    905       break;
    906     }
    907 
    908     // If this is inserting an element that isn't demanded, remove this
    909     // insertelement.
    910     unsigned IdxNo = Idx->getZExtValue();
    911     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
    912       Worklist.Add(I);
    913       return I->getOperand(0);
    914     }
    915 
    916     // Otherwise, the element inserted overwrites whatever was there, so the
    917     // input demanded set is simpler than the output set.
    918     APInt DemandedElts2 = DemandedElts;
    919     DemandedElts2.clearBit(IdxNo);
    920     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
    921                                       UndefElts, Depth+1);
    922     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    923 
    924     // The inserted element is defined.
    925     UndefElts.clearBit(IdxNo);
    926     break;
    927   }
    928   case Instruction::ShuffleVector: {
    929     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    930     uint64_t LHSVWidth =
    931       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
    932     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
    933     for (unsigned i = 0; i < VWidth; i++) {
    934       if (DemandedElts[i]) {
    935         unsigned MaskVal = Shuffle->getMaskValue(i);
    936         if (MaskVal != -1u) {
    937           assert(MaskVal < LHSVWidth * 2 &&
    938                  "shufflevector mask index out of range!");
    939           if (MaskVal < LHSVWidth)
    940             LeftDemanded.setBit(MaskVal);
    941           else
    942             RightDemanded.setBit(MaskVal - LHSVWidth);
    943         }
    944       }
    945     }
    946 
    947     APInt UndefElts4(LHSVWidth, 0);
    948     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
    949                                       UndefElts4, Depth+1);
    950     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    951 
    952     APInt UndefElts3(LHSVWidth, 0);
    953     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
    954                                       UndefElts3, Depth+1);
    955     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
    956 
    957     bool NewUndefElts = false;
    958     for (unsigned i = 0; i < VWidth; i++) {
    959       unsigned MaskVal = Shuffle->getMaskValue(i);
    960       if (MaskVal == -1u) {
    961         UndefElts.setBit(i);
    962       } else if (!DemandedElts[i]) {
    963         NewUndefElts = true;
    964         UndefElts.setBit(i);
    965       } else if (MaskVal < LHSVWidth) {
    966         if (UndefElts4[MaskVal]) {
    967           NewUndefElts = true;
    968           UndefElts.setBit(i);
    969         }
    970       } else {
    971         if (UndefElts3[MaskVal - LHSVWidth]) {
    972           NewUndefElts = true;
    973           UndefElts.setBit(i);
    974         }
    975       }
    976     }
    977 
    978     if (NewUndefElts) {
    979       // Add additional discovered undefs.
    980       std::vector<Constant*> Elts;
    981       for (unsigned i = 0; i < VWidth; ++i) {
    982         if (UndefElts[i])
    983           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
    984         else
    985           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
    986                                           Shuffle->getMaskValue(i)));
    987       }
    988       I->setOperand(2, ConstantVector::get(Elts));
    989       MadeChange = true;
    990     }
    991     break;
    992   }
    993   case Instruction::BitCast: {
    994     // Vector->vector casts only.
    995     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
    996     if (!VTy) break;
    997     unsigned InVWidth = VTy->getNumElements();
    998     APInt InputDemandedElts(InVWidth, 0);
    999     unsigned Ratio;
   1000 
   1001     if (VWidth == InVWidth) {
   1002       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
   1003       // elements as are demanded of us.
   1004       Ratio = 1;
   1005       InputDemandedElts = DemandedElts;
   1006     } else if (VWidth > InVWidth) {
   1007       // Untested so far.
   1008       break;
   1009 
   1010       // If there are more elements in the result than there are in the source,
   1011       // then an input element is live if any of the corresponding output
   1012       // elements are live.
   1013       Ratio = VWidth/InVWidth;
   1014       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
   1015         if (DemandedElts[OutIdx])
   1016           InputDemandedElts.setBit(OutIdx/Ratio);
   1017       }
   1018     } else {
   1019       // Untested so far.
   1020       break;
   1021 
   1022       // If there are more elements in the source than there are in the result,
   1023       // then an input element is live if the corresponding output element is
   1024       // live.
   1025       Ratio = InVWidth/VWidth;
   1026       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
   1027         if (DemandedElts[InIdx/Ratio])
   1028           InputDemandedElts.setBit(InIdx);
   1029     }
   1030 
   1031     // div/rem demand all inputs, because they don't want divide by zero.
   1032     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
   1033                                       UndefElts2, Depth+1);
   1034     if (TmpV) {
   1035       I->setOperand(0, TmpV);
   1036       MadeChange = true;
   1037     }
   1038 
   1039     UndefElts = UndefElts2;
   1040     if (VWidth > InVWidth) {
   1041       llvm_unreachable("Unimp");
   1042       // If there are more elements in the result than there are in the source,
   1043       // then an output element is undef if the corresponding input element is
   1044       // undef.
   1045       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
   1046         if (UndefElts2[OutIdx/Ratio])
   1047           UndefElts.setBit(OutIdx);
   1048     } else if (VWidth < InVWidth) {
   1049       llvm_unreachable("Unimp");
   1050       // If there are more elements in the source than there are in the result,
   1051       // then a result element is undef if all of the corresponding input
   1052       // elements are undef.
   1053       UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
   1054       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
   1055         if (!UndefElts2[InIdx])            // Not undef?
   1056           UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
   1057     }
   1058     break;
   1059   }
   1060   case Instruction::And:
   1061   case Instruction::Or:
   1062   case Instruction::Xor:
   1063   case Instruction::Add:
   1064   case Instruction::Sub:
   1065   case Instruction::Mul:
   1066     // div/rem demand all inputs, because they don't want divide by zero.
   1067     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
   1068                                       UndefElts, Depth+1);
   1069     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
   1070     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
   1071                                       UndefElts2, Depth+1);
   1072     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
   1073 
   1074     // Output elements are undefined if both are undefined.  Consider things
   1075     // like undef&0.  The result is known zero, not undef.
   1076     UndefElts &= UndefElts2;
   1077     break;
   1078 
   1079   case Instruction::Call: {
   1080     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
   1081     if (!II) break;
   1082     switch (II->getIntrinsicID()) {
   1083     default: break;
   1084 
   1085     // Binary vector operations that work column-wise.  A dest element is a
   1086     // function of the corresponding input elements from the two inputs.
   1087     case Intrinsic::x86_sse_sub_ss:
   1088     case Intrinsic::x86_sse_mul_ss:
   1089     case Intrinsic::x86_sse_min_ss:
   1090     case Intrinsic::x86_sse_max_ss:
   1091     case Intrinsic::x86_sse2_sub_sd:
   1092     case Intrinsic::x86_sse2_mul_sd:
   1093     case Intrinsic::x86_sse2_min_sd:
   1094     case Intrinsic::x86_sse2_max_sd:
   1095       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
   1096                                         UndefElts, Depth+1);
   1097       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
   1098       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
   1099                                         UndefElts2, Depth+1);
   1100       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
   1101 
   1102       // If only the low elt is demanded and this is a scalarizable intrinsic,
   1103       // scalarize it now.
   1104       if (DemandedElts == 1) {
   1105         switch (II->getIntrinsicID()) {
   1106         default: break;
   1107         case Intrinsic::x86_sse_sub_ss:
   1108         case Intrinsic::x86_sse_mul_ss:
   1109         case Intrinsic::x86_sse2_sub_sd:
   1110         case Intrinsic::x86_sse2_mul_sd:
   1111           // TODO: Lower MIN/MAX/ABS/etc
   1112           Value *LHS = II->getArgOperand(0);
   1113           Value *RHS = II->getArgOperand(1);
   1114           // Extract the element as scalars.
   1115           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
   1116             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
   1117           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
   1118             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
   1119 
   1120           switch (II->getIntrinsicID()) {
   1121           default: llvm_unreachable("Case stmts out of sync!");
   1122           case Intrinsic::x86_sse_sub_ss:
   1123           case Intrinsic::x86_sse2_sub_sd:
   1124             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
   1125                                                         II->getName()), *II);
   1126             break;
   1127           case Intrinsic::x86_sse_mul_ss:
   1128           case Intrinsic::x86_sse2_mul_sd:
   1129             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
   1130                                                          II->getName()), *II);
   1131             break;
   1132           }
   1133 
   1134           Instruction *New =
   1135             InsertElementInst::Create(
   1136               UndefValue::get(II->getType()), TmpV,
   1137               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
   1138                                       II->getName());
   1139           InsertNewInstWith(New, *II);
   1140           return New;
   1141         }
   1142       }
   1143 
   1144       // Output elements are undefined if both are undefined.  Consider things
   1145       // like undef&0.  The result is known zero, not undef.
   1146       UndefElts &= UndefElts2;
   1147       break;
   1148     }
   1149     break;
   1150   }
   1151   }
   1152   return MadeChange ? I : 0;
   1153 }
   1154