Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/TableGen/Error.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 
     22 using namespace llvm;
     23 
     24 //===----------------------------------------------------------------------===//
     25 //                              CodeGenRegister
     26 //===----------------------------------------------------------------------===//
     27 
     28 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
     29   : TheDef(R),
     30     EnumValue(Enum),
     31     CostPerUse(R->getValueAsInt("CostPerUse")),
     32     SubRegsComplete(false)
     33 {}
     34 
     35 const std::string &CodeGenRegister::getName() const {
     36   return TheDef->getName();
     37 }
     38 
     39 namespace {
     40   struct Orphan {
     41     CodeGenRegister *SubReg;
     42     Record *First, *Second;
     43     Orphan(CodeGenRegister *r, Record *a, Record *b)
     44       : SubReg(r), First(a), Second(b) {}
     45   };
     46 }
     47 
     48 const CodeGenRegister::SubRegMap &
     49 CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
     50   // Only compute this map once.
     51   if (SubRegsComplete)
     52     return SubRegs;
     53   SubRegsComplete = true;
     54 
     55   std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
     56   std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
     57   if (SubList.size() != Indices.size())
     58     throw TGError(TheDef->getLoc(), "Register " + getName() +
     59                   " SubRegIndices doesn't match SubRegs");
     60 
     61   // First insert the direct subregs and make sure they are fully indexed.
     62   for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
     63     CodeGenRegister *SR = RegBank.getReg(SubList[i]);
     64     if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second)
     65       throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() +
     66                     " appears twice in Register " + getName());
     67   }
     68 
     69   // Keep track of inherited subregs and how they can be reached.
     70   SmallVector<Orphan, 8> Orphans;
     71 
     72   // Clone inherited subregs and place duplicate entries on Orphans.
     73   // Here the order is important - earlier subregs take precedence.
     74   for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
     75     CodeGenRegister *SR = RegBank.getReg(SubList[i]);
     76     const SubRegMap &Map = SR->getSubRegs(RegBank);
     77 
     78     // Add this as a super-register of SR now all sub-registers are in the list.
     79     // This creates a topological ordering, the exact order depends on the
     80     // order getSubRegs is called on all registers.
     81     SR->SuperRegs.push_back(this);
     82 
     83     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
     84          ++SI) {
     85       if (!SubRegs.insert(*SI).second)
     86         Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));
     87 
     88       // Noop sub-register indexes are possible, so avoid duplicates.
     89       if (SI->second != SR)
     90         SI->second->SuperRegs.push_back(this);
     91     }
     92   }
     93 
     94   // Process the composites.
     95   ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
     96   for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
     97     DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
     98     if (!Pat)
     99       throw TGError(TheDef->getLoc(), "Invalid dag '" +
    100                     Comps->getElement(i)->getAsString() +
    101                     "' in CompositeIndices");
    102     DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
    103     if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
    104       throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
    105                     Pat->getAsString());
    106 
    107     // Resolve list of subreg indices into R2.
    108     CodeGenRegister *R2 = this;
    109     for (DagInit::const_arg_iterator di = Pat->arg_begin(),
    110          de = Pat->arg_end(); di != de; ++di) {
    111       DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
    112       if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
    113         throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
    114                       Pat->getAsString());
    115       const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
    116       SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef());
    117       if (ni == R2Subs.end())
    118         throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
    119                       " refers to bad index in " + R2->getName());
    120       R2 = ni->second;
    121     }
    122 
    123     // Insert composite index. Allow overriding inherited indices etc.
    124     SubRegs[BaseIdxInit->getDef()] = R2;
    125 
    126     // R2 is no longer an orphan.
    127     for (unsigned j = 0, je = Orphans.size(); j != je; ++j)
    128       if (Orphans[j].SubReg == R2)
    129           Orphans[j].SubReg = 0;
    130   }
    131 
    132   // Now Orphans contains the inherited subregisters without a direct index.
    133   // Create inferred indexes for all missing entries.
    134   for (unsigned i = 0, e = Orphans.size(); i != e; ++i) {
    135     Orphan &O = Orphans[i];
    136     if (!O.SubReg)
    137       continue;
    138     SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] =
    139       O.SubReg;
    140   }
    141   return SubRegs;
    142 }
    143 
    144 void
    145 CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
    146   assert(SubRegsComplete && "Must precompute sub-registers");
    147   std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
    148   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
    149     CodeGenRegister *SR = SubRegs.find(Indices[i])->second;
    150     if (OSet.insert(SR))
    151       SR->addSubRegsPreOrder(OSet);
    152   }
    153 }
    154 
    155 //===----------------------------------------------------------------------===//
    156 //                               RegisterTuples
    157 //===----------------------------------------------------------------------===//
    158 
    159 // A RegisterTuples def is used to generate pseudo-registers from lists of
    160 // sub-registers. We provide a SetTheory expander class that returns the new
    161 // registers.
    162 namespace {
    163 struct TupleExpander : SetTheory::Expander {
    164   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
    165     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    166     unsigned Dim = Indices.size();
    167     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    168     if (Dim != SubRegs->getSize())
    169       throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    170     if (Dim < 2)
    171       throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
    172 
    173     // Evaluate the sub-register lists to be zipped.
    174     unsigned Length = ~0u;
    175     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    176     for (unsigned i = 0; i != Dim; ++i) {
    177       ST.evaluate(SubRegs->getElement(i), Lists[i]);
    178       Length = std::min(Length, unsigned(Lists[i].size()));
    179     }
    180 
    181     if (Length == 0)
    182       return;
    183 
    184     // Precompute some types.
    185     Record *RegisterCl = Def->getRecords().getClass("Register");
    186     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    187     StringInit *BlankName = StringInit::get("");
    188 
    189     // Zip them up.
    190     for (unsigned n = 0; n != Length; ++n) {
    191       std::string Name;
    192       Record *Proto = Lists[0][n];
    193       std::vector<Init*> Tuple;
    194       unsigned CostPerUse = 0;
    195       for (unsigned i = 0; i != Dim; ++i) {
    196         Record *Reg = Lists[i][n];
    197         if (i) Name += '_';
    198         Name += Reg->getName();
    199         Tuple.push_back(DefInit::get(Reg));
    200         CostPerUse = std::max(CostPerUse,
    201                               unsigned(Reg->getValueAsInt("CostPerUse")));
    202       }
    203 
    204       // Create a new Record representing the synthesized register. This record
    205       // is only for consumption by CodeGenRegister, it is not added to the
    206       // RecordKeeper.
    207       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    208       Elts.insert(NewReg);
    209 
    210       // Copy Proto super-classes.
    211       for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
    212         NewReg->addSuperClass(Proto->getSuperClasses()[i]);
    213 
    214       // Copy Proto fields.
    215       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    216         RecordVal RV = Proto->getValues()[i];
    217 
    218         // Replace the sub-register list with Tuple.
    219         if (RV.getName() == "SubRegs")
    220           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    221 
    222         // Provide a blank AsmName. MC hacks are required anyway.
    223         if (RV.getName() == "AsmName")
    224           RV.setValue(BlankName);
    225 
    226         // CostPerUse is aggregated from all Tuple members.
    227         if (RV.getName() == "CostPerUse")
    228           RV.setValue(IntInit::get(CostPerUse));
    229 
    230         // Copy fields from the RegisterTuples def.
    231         if (RV.getName() == "SubRegIndices" ||
    232             RV.getName() == "CompositeIndices") {
    233           NewReg->addValue(*Def->getValue(RV.getName()));
    234           continue;
    235         }
    236 
    237         // Some fields get their default uninitialized value.
    238         if (RV.getName() == "DwarfNumbers" ||
    239             RV.getName() == "DwarfAlias" ||
    240             RV.getName() == "Aliases") {
    241           if (const RecordVal *DefRV = RegisterCl->getValue(RV.getName()))
    242             NewReg->addValue(*DefRV);
    243           continue;
    244         }
    245 
    246         // Everything else is copied from Proto.
    247         NewReg->addValue(RV);
    248       }
    249     }
    250   }
    251 };
    252 }
    253 
    254 //===----------------------------------------------------------------------===//
    255 //                            CodeGenRegisterClass
    256 //===----------------------------------------------------------------------===//
    257 
    258 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    259   : TheDef(R), Name(R->getName()), EnumValue(-1) {
    260   // Rename anonymous register classes.
    261   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    262     static unsigned AnonCounter = 0;
    263     R->setName("AnonRegClass_"+utostr(AnonCounter++));
    264   }
    265 
    266   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    267   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    268     Record *Type = TypeList[i];
    269     if (!Type->isSubClassOf("ValueType"))
    270       throw "RegTypes list member '" + Type->getName() +
    271         "' does not derive from the ValueType class!";
    272     VTs.push_back(getValueType(Type));
    273   }
    274   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    275 
    276   // Allocation order 0 is the full set. AltOrders provides others.
    277   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    278   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    279   Orders.resize(1 + AltOrders->size());
    280 
    281   // Default allocation order always contains all registers.
    282   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    283     Orders[0].push_back((*Elements)[i]);
    284     Members.insert(RegBank.getReg((*Elements)[i]));
    285   }
    286 
    287   // Alternative allocation orders may be subsets.
    288   SetTheory::RecSet Order;
    289   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    290     RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
    291     Orders[1 + i].append(Order.begin(), Order.end());
    292     // Verify that all altorder members are regclass members.
    293     while (!Order.empty()) {
    294       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    295       Order.pop_back();
    296       if (!contains(Reg))
    297         throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
    298                       " is not a class member");
    299     }
    300   }
    301 
    302   // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
    303   ListInit *SRC = R->getValueAsListInit("SubRegClasses");
    304   for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
    305     DagInit *DAG = dynamic_cast<DagInit*>(*i);
    306     if (!DAG) throw "SubRegClasses must contain DAGs";
    307     DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
    308     Record *RCRec;
    309     if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
    310       throw "Operator '" + DAG->getOperator()->getAsString() +
    311         "' in SubRegClasses is not a RegisterClass";
    312     // Iterate over args, all SubRegIndex instances.
    313     for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
    314          ai != ae; ++ai) {
    315       DefInit *Idx = dynamic_cast<DefInit*>(*ai);
    316       Record *IdxRec;
    317       if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
    318         throw "Argument '" + (*ai)->getAsString() +
    319           "' in SubRegClasses is not a SubRegIndex";
    320       if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
    321         throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
    322     }
    323   }
    324 
    325   // Allow targets to override the size in bits of the RegisterClass.
    326   unsigned Size = R->getValueAsInt("Size");
    327 
    328   Namespace = R->getValueAsString("Namespace");
    329   SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
    330   SpillAlignment = R->getValueAsInt("Alignment");
    331   CopyCost = R->getValueAsInt("CopyCost");
    332   Allocatable = R->getValueAsBit("isAllocatable");
    333   AltOrderSelect = R->getValueAsCode("AltOrderSelect");
    334 }
    335 
    336 // Create an inferred register class that was missing from the .td files.
    337 // Most properties will be inherited from the closest super-class after the
    338 // class structure has been computed.
    339 CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props)
    340   : Members(*Props.Members),
    341     TheDef(0),
    342     Name(Name),
    343     EnumValue(-1),
    344     SpillSize(Props.SpillSize),
    345     SpillAlignment(Props.SpillAlignment),
    346     CopyCost(0),
    347     Allocatable(true) {
    348 }
    349 
    350 // Compute inherited propertied for a synthesized register class.
    351 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    352   assert(!getDef() && "Only synthesized classes can inherit properties");
    353   assert(!SuperClasses.empty() && "Synthesized class without super class");
    354 
    355   // The last super-class is the smallest one.
    356   CodeGenRegisterClass &Super = *SuperClasses.back();
    357 
    358   // Most properties are copied directly.
    359   // Exceptions are members, size, and alignment
    360   Namespace = Super.Namespace;
    361   VTs = Super.VTs;
    362   CopyCost = Super.CopyCost;
    363   Allocatable = Super.Allocatable;
    364   AltOrderSelect = Super.AltOrderSelect;
    365 
    366   // Copy all allocation orders, filter out foreign registers from the larger
    367   // super-class.
    368   Orders.resize(Super.Orders.size());
    369   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    370     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    371       if (contains(RegBank.getReg(Super.Orders[i][j])))
    372         Orders[i].push_back(Super.Orders[i][j]);
    373 }
    374 
    375 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    376   return Members.count(Reg);
    377 }
    378 
    379 namespace llvm {
    380   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    381     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    382     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
    383          E = K.Members->end(); I != E; ++I)
    384       OS << ", " << (*I)->getName();
    385     return OS << " }";
    386   }
    387 }
    388 
    389 // This is a simple lexicographical order that can be used to search for sets.
    390 // It is not the same as the topological order provided by TopoOrderRC.
    391 bool CodeGenRegisterClass::Key::
    392 operator<(const CodeGenRegisterClass::Key &B) const {
    393   assert(Members && B.Members);
    394   if (*Members != *B.Members)
    395     return *Members < *B.Members;
    396   if (SpillSize != B.SpillSize)
    397     return SpillSize < B.SpillSize;
    398   return SpillAlignment < B.SpillAlignment;
    399 }
    400 
    401 // Returns true if RC is a strict subclass.
    402 // RC is a sub-class of this class if it is a valid replacement for any
    403 // instruction operand where a register of this classis required. It must
    404 // satisfy these conditions:
    405 //
    406 // 1. All RC registers are also in this.
    407 // 2. The RC spill size must not be smaller than our spill size.
    408 // 3. RC spill alignment must be compatible with ours.
    409 //
    410 static bool testSubClass(const CodeGenRegisterClass *A,
    411                          const CodeGenRegisterClass *B) {
    412   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    413     A->SpillSize <= B->SpillSize &&
    414     std::includes(A->getMembers().begin(), A->getMembers().end(),
    415                   B->getMembers().begin(), B->getMembers().end(),
    416                   CodeGenRegister::Less());
    417 }
    418 
    419 /// Sorting predicate for register classes.  This provides a topological
    420 /// ordering that arranges all register classes before their sub-classes.
    421 ///
    422 /// Register classes with the same registers, spill size, and alignment form a
    423 /// clique.  They will be ordered alphabetically.
    424 ///
    425 static int TopoOrderRC(const void *PA, const void *PB) {
    426   const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
    427   const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
    428   if (A == B)
    429     return 0;
    430 
    431   // Order by descending set size.  Note that the classes' allocation order may
    432   // not have been computed yet.  The Members set is always vaild.
    433   if (A->getMembers().size() > B->getMembers().size())
    434     return -1;
    435   if (A->getMembers().size() < B->getMembers().size())
    436     return 1;
    437 
    438   // Order by ascending spill size.
    439   if (A->SpillSize < B->SpillSize)
    440     return -1;
    441   if (A->SpillSize > B->SpillSize)
    442     return 1;
    443 
    444   // Order by ascending spill alignment.
    445   if (A->SpillAlignment < B->SpillAlignment)
    446     return -1;
    447   if (A->SpillAlignment > B->SpillAlignment)
    448     return 1;
    449 
    450   // Finally order by name as a tie breaker.
    451   return A->getName() < B->getName();
    452 }
    453 
    454 std::string CodeGenRegisterClass::getQualifiedName() const {
    455   if (Namespace.empty())
    456     return getName();
    457   else
    458     return Namespace + "::" + getName();
    459 }
    460 
    461 // Compute sub-classes of all register classes.
    462 // Assume the classes are ordered topologically.
    463 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    464   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
    465 
    466   // Visit backwards so sub-classes are seen first.
    467   for (unsigned rci = RegClasses.size(); rci; --rci) {
    468     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
    469     RC.SubClasses.resize(RegClasses.size());
    470     RC.SubClasses.set(RC.EnumValue);
    471 
    472     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    473     for (unsigned s = rci; s != RegClasses.size(); ++s) {
    474       if (RC.SubClasses.test(s))
    475         continue;
    476       CodeGenRegisterClass *SubRC = RegClasses[s];
    477       if (!testSubClass(&RC, SubRC))
    478         continue;
    479       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    480       // check them again.
    481       RC.SubClasses |= SubRC->SubClasses;
    482     }
    483 
    484     // Sweep up missed clique members.  They will be immediately preceeding RC.
    485     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
    486       RC.SubClasses.set(s - 1);
    487   }
    488 
    489   // Compute the SuperClasses lists from the SubClasses vectors.
    490   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    491     const BitVector &SC = RegClasses[rci]->getSubClasses();
    492     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
    493       if (unsigned(s) == rci)
    494         continue;
    495       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
    496     }
    497   }
    498 
    499   // With the class hierarchy in place, let synthesized register classes inherit
    500   // properties from their closest super-class. The iteration order here can
    501   // propagate properties down multiple levels.
    502   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
    503     if (!RegClasses[rci]->getDef())
    504       RegClasses[rci]->inheritProperties(RegBank);
    505 }
    506 
    507 //===----------------------------------------------------------------------===//
    508 //                               CodeGenRegBank
    509 //===----------------------------------------------------------------------===//
    510 
    511 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
    512   // Configure register Sets to understand register classes and tuples.
    513   Sets.addFieldExpander("RegisterClass", "MemberList");
    514   Sets.addExpander("RegisterTuples", new TupleExpander());
    515 
    516   // Read in the user-defined (named) sub-register indices.
    517   // More indices will be synthesized later.
    518   SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex");
    519   std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord());
    520   NumNamedIndices = SubRegIndices.size();
    521 
    522   // Read in the register definitions.
    523   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    524   std::sort(Regs.begin(), Regs.end(), LessRecord());
    525   Registers.reserve(Regs.size());
    526   // Assign the enumeration values.
    527   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    528     getReg(Regs[i]);
    529 
    530   // Expand tuples and number the new registers.
    531   std::vector<Record*> Tups =
    532     Records.getAllDerivedDefinitions("RegisterTuples");
    533   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
    534     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
    535     for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
    536       getReg((*TupRegs)[j]);
    537   }
    538 
    539   // Precompute all sub-register maps now all the registers are known.
    540   // This will create Composite entries for all inferred sub-register indices.
    541   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    542     Registers[i]->getSubRegs(*this);
    543 
    544   // Read in register class definitions.
    545   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
    546   if (RCs.empty())
    547     throw std::string("No 'RegisterClass' subclasses defined!");
    548 
    549   // Allocate user-defined register classes.
    550   RegClasses.reserve(RCs.size());
    551   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
    552     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
    553 
    554   // Infer missing classes to create a full algebra.
    555   computeInferredRegisterClasses();
    556 
    557   // Order register classes topologically and assign enum values.
    558   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
    559   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
    560     RegClasses[i]->EnumValue = i;
    561   CodeGenRegisterClass::computeSubClasses(*this);
    562 }
    563 
    564 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
    565   CodeGenRegister *&Reg = Def2Reg[Def];
    566   if (Reg)
    567     return Reg;
    568   Reg = new CodeGenRegister(Def, Registers.size() + 1);
    569   Registers.push_back(Reg);
    570   return Reg;
    571 }
    572 
    573 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
    574   RegClasses.push_back(RC);
    575 
    576   if (Record *Def = RC->getDef())
    577     Def2RC.insert(std::make_pair(Def, RC));
    578 
    579   // Duplicate classes are rejected by insert().
    580   // That's OK, we only care about the properties handled by CGRC::Key.
    581   CodeGenRegisterClass::Key K(*RC);
    582   Key2RC.insert(std::make_pair(K, RC));
    583 }
    584 
    585 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
    586   if (CodeGenRegisterClass *RC = Def2RC[Def])
    587     return RC;
    588 
    589   throw TGError(Def->getLoc(), "Not a known RegisterClass!");
    590 }
    591 
    592 Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B,
    593                                                 bool create) {
    594   // Look for an existing entry.
    595   Record *&Comp = Composite[std::make_pair(A, B)];
    596   if (Comp || !create)
    597     return Comp;
    598 
    599   // None exists, synthesize one.
    600   std::string Name = A->getName() + "_then_" + B->getName();
    601   Comp = new Record(Name, SMLoc(), Records);
    602   SubRegIndices.push_back(Comp);
    603   return Comp;
    604 }
    605 
    606 unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) {
    607   std::vector<Record*>::const_iterator i =
    608     std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
    609   assert(i != SubRegIndices.end() && "Not a SubRegIndex");
    610   return (i - SubRegIndices.begin()) + 1;
    611 }
    612 
    613 void CodeGenRegBank::computeComposites() {
    614   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
    615     CodeGenRegister *Reg1 = Registers[i];
    616     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
    617     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
    618          e1 = SRM1.end(); i1 != e1; ++i1) {
    619       Record *Idx1 = i1->first;
    620       CodeGenRegister *Reg2 = i1->second;
    621       // Ignore identity compositions.
    622       if (Reg1 == Reg2)
    623         continue;
    624       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
    625       // Try composing Idx1 with another SubRegIndex.
    626       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
    627            e2 = SRM2.end(); i2 != e2; ++i2) {
    628         std::pair<Record*, Record*> IdxPair(Idx1, i2->first);
    629         CodeGenRegister *Reg3 = i2->second;
    630         // Ignore identity compositions.
    631         if (Reg2 == Reg3)
    632           continue;
    633         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
    634         for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
    635              e1d = SRM1.end(); i1d != e1d; ++i1d) {
    636           if (i1d->second == Reg3) {
    637             std::pair<CompositeMap::iterator, bool> Ins =
    638               Composite.insert(std::make_pair(IdxPair, i1d->first));
    639             // Conflicting composition? Emit a warning but allow it.
    640             if (!Ins.second && Ins.first->second != i1d->first) {
    641               errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1)
    642                      << " and " << getQualifiedName(IdxPair.second)
    643                      << " compose ambiguously as "
    644                      << getQualifiedName(Ins.first->second) << " or "
    645                      << getQualifiedName(i1d->first) << "\n";
    646             }
    647           }
    648         }
    649       }
    650     }
    651   }
    652 
    653   // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
    654   // compositions, so remove any mappings of that form.
    655   for (CompositeMap::iterator i = Composite.begin(), e = Composite.end();
    656        i != e;) {
    657     CompositeMap::iterator j = i;
    658     ++i;
    659     if (j->first.second == j->second)
    660       Composite.erase(j);
    661   }
    662 }
    663 
    664 // Compute sets of overlapping registers.
    665 //
    666 // The standard set is all super-registers and all sub-registers, but the
    667 // target description can add arbitrary overlapping registers via the 'Aliases'
    668 // field. This complicates things, but we can compute overlapping sets using
    669 // the following rules:
    670 //
    671 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
    672 //
    673 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
    674 //
    675 // Alternatively:
    676 //
    677 //    overlap(A, B) iff there exists:
    678 //    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
    679 //    A' = B' or A' in aliases(B') or B' in aliases(A').
    680 //
    681 // Here subregs(A) is the full flattened sub-register set returned by
    682 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
    683 // description of register A.
    684 //
    685 // This also implies that registers with a common sub-register are considered
    686 // overlapping. This can happen when forming register pairs:
    687 //
    688 //    P0 = (R0, R1)
    689 //    P1 = (R1, R2)
    690 //    P2 = (R2, R3)
    691 //
    692 // In this case, we will infer an overlap between P0 and P1 because of the
    693 // shared sub-register R1. There is no overlap between P0 and P2.
    694 //
    695 void CodeGenRegBank::
    696 computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
    697   assert(Map.empty());
    698 
    699   // Collect overlaps that don't follow from rule 2.
    700   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
    701     CodeGenRegister *Reg = Registers[i];
    702     CodeGenRegister::Set &Overlaps = Map[Reg];
    703 
    704     // Reg overlaps itself.
    705     Overlaps.insert(Reg);
    706 
    707     // All super-registers overlap.
    708     const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
    709     Overlaps.insert(Supers.begin(), Supers.end());
    710 
    711     // Form symmetrical relations from the special Aliases[] lists.
    712     std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
    713     for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
    714       CodeGenRegister *Reg2 = getReg(RegList[i2]);
    715       CodeGenRegister::Set &Overlaps2 = Map[Reg2];
    716       const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
    717       // Reg overlaps Reg2 which implies it overlaps supers(Reg2).
    718       Overlaps.insert(Reg2);
    719       Overlaps.insert(Supers2.begin(), Supers2.end());
    720       Overlaps2.insert(Reg);
    721       Overlaps2.insert(Supers.begin(), Supers.end());
    722     }
    723   }
    724 
    725   // Apply rule 2. and inherit all sub-register overlaps.
    726   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
    727     CodeGenRegister *Reg = Registers[i];
    728     CodeGenRegister::Set &Overlaps = Map[Reg];
    729     const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
    730     for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
    731          e2 = SRM.end(); i2 != e2; ++i2) {
    732       CodeGenRegister::Set &Overlaps2 = Map[i2->second];
    733       Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
    734     }
    735   }
    736 }
    737 
    738 void CodeGenRegBank::computeDerivedInfo() {
    739   computeComposites();
    740 }
    741 
    742 // Infer missing register classes.
    743 //
    744 // For every register class RC, make sure that the set of registers in RC with
    745 // a given SubIxx sub-register form a register class.
    746 void CodeGenRegBank::computeInferredRegisterClasses() {
    747   // When this function is called, the register classes have not been sorted
    748   // and assigned EnumValues yet.  That means getSubClasses(),
    749   // getSuperClasses(), and hasSubClass() functions are defunct.
    750 
    751   // Map SubRegIndex to register set.
    752   typedef std::map<Record*, CodeGenRegister::Set, LessRecord> SubReg2SetMap;
    753 
    754   // Visit all register classes, including the ones being added by the loop.
    755   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    756     CodeGenRegisterClass &RC = *RegClasses[rci];
    757 
    758     // Compute the set of registers supporting each SubRegIndex.
    759     SubReg2SetMap SRSets;
    760     for (CodeGenRegister::Set::const_iterator RI = RC.getMembers().begin(),
    761          RE = RC.getMembers().end(); RI != RE; ++RI) {
    762       const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
    763       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
    764            E = SRM.end(); I != E; ++I)
    765         SRSets[I->first].insert(*RI);
    766     }
    767 
    768     // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
    769     // numerical order to visit synthetic indices last.
    770     for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
    771       Record *SubIdx = SubRegIndices[sri];
    772       SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
    773       // Unsupported SubRegIndex. Skip it.
    774       if (I == SRSets.end())
    775         continue;
    776       // In most cases, all RC registers support the SubRegIndex.
    777       if (I->second.size() == RC.getMembers().size()) {
    778         RC.setSubClassWithSubReg(SubIdx, &RC);
    779         continue;
    780       }
    781 
    782       // This is a real subset.  See if we have a matching class.
    783       CodeGenRegisterClass::Key K(&I->second, RC.SpillSize, RC.SpillAlignment);
    784       RCKeyMap::const_iterator FoundI = Key2RC.find(K);
    785       if (FoundI != Key2RC.end()) {
    786         RC.setSubClassWithSubReg(SubIdx, FoundI->second);
    787         continue;
    788       }
    789 
    790       // Class doesn't exist.
    791       CodeGenRegisterClass *NewRC =
    792         new CodeGenRegisterClass(RC.getName() + "_with_" +
    793                                  I->first->getName(), K);
    794       addToMaps(NewRC);
    795       RC.setSubClassWithSubReg(SubIdx, NewRC);
    796     }
    797   }
    798 }
    799 
    800 /// getRegisterClassForRegister - Find the register class that contains the
    801 /// specified physical register.  If the register is not in a register class,
    802 /// return null. If the register is in multiple classes, and the classes have a
    803 /// superset-subset relationship and the same set of types, return the
    804 /// superclass.  Otherwise return null.
    805 const CodeGenRegisterClass*
    806 CodeGenRegBank::getRegClassForRegister(Record *R) {
    807   const CodeGenRegister *Reg = getReg(R);
    808   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
    809   const CodeGenRegisterClass *FoundRC = 0;
    810   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
    811     const CodeGenRegisterClass &RC = *RCs[i];
    812     if (!RC.contains(Reg))
    813       continue;
    814 
    815     // If this is the first class that contains the register,
    816     // make a note of it and go on to the next class.
    817     if (!FoundRC) {
    818       FoundRC = &RC;
    819       continue;
    820     }
    821 
    822     // If a register's classes have different types, return null.
    823     if (RC.getValueTypes() != FoundRC->getValueTypes())
    824       return 0;
    825 
    826     // Check to see if the previously found class that contains
    827     // the register is a subclass of the current class. If so,
    828     // prefer the superclass.
    829     if (RC.hasSubClass(FoundRC)) {
    830       FoundRC = &RC;
    831       continue;
    832     }
    833 
    834     // Check to see if the previously found class that contains
    835     // the register is a superclass of the current class. If so,
    836     // prefer the superclass.
    837     if (FoundRC->hasSubClass(&RC))
    838       continue;
    839 
    840     // Multiple classes, and neither is a superclass of the other.
    841     // Return null.
    842     return 0;
    843   }
    844   return FoundRC;
    845 }
    846