Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstring>
     24 #include <string>
     25 
     26 namespace llvm {
     27 class FoldingSetNodeID;
     28 class StringRef;
     29 class hash_code;
     30 class raw_ostream;
     31 
     32 template <typename T> class SmallVectorImpl;
     33 template <typename T> class ArrayRef;
     34 
     35 // An unsigned host type used as a single part of a multi-part
     36 // bignum.
     37 typedef uint64_t integerPart;
     38 
     39 const unsigned int host_char_bit = 8;
     40 const unsigned int integerPartWidth =
     41     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
     42 
     43 class APInt;
     44 
     45 inline APInt operator-(APInt);
     46 
     47 //===----------------------------------------------------------------------===//
     48 //                              APInt Class
     49 //===----------------------------------------------------------------------===//
     50 
     51 /// \brief Class for arbitrary precision integers.
     52 ///
     53 /// APInt is a functional replacement for common case unsigned integer type like
     54 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     55 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     56 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     57 /// and methods to manipulate integer values of any bit-width. It supports both
     58 /// the typical integer arithmetic and comparison operations as well as bitwise
     59 /// manipulation.
     60 ///
     61 /// The class has several invariants worth noting:
     62 ///   * All bit, byte, and word positions are zero-based.
     63 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     64 ///     SignExtend, or ZeroExtend operations.
     65 ///   * All binary operators must be on APInt instances of the same bit width.
     66 ///     Attempting to use these operators on instances with different bit
     67 ///     widths will yield an assertion.
     68 ///   * The value is stored canonically as an unsigned value. For operations
     69 ///     where it makes a difference, there are both signed and unsigned variants
     70 ///     of the operation. For example, sdiv and udiv. However, because the bit
     71 ///     widths must be the same, operations such as Mul and Add produce the same
     72 ///     results regardless of whether the values are interpreted as signed or
     73 ///     not.
     74 ///   * In general, the class tries to follow the style of computation that LLVM
     75 ///     uses in its IR. This simplifies its use for LLVM.
     76 ///
     77 class LLVM_NODISCARD APInt {
     78   unsigned BitWidth; ///< The number of bits in this APInt.
     79 
     80   /// This union is used to store the integer value. When the
     81   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     82   union {
     83     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     84     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     85   };
     86 
     87   /// This enum is used to hold the constants we needed for APInt.
     88   enum {
     89     /// Bits in a word
     90     APINT_BITS_PER_WORD =
     91         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
     92     /// Byte size of a word
     93     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     94   };
     95 
     96   friend struct DenseMapAPIntKeyInfo;
     97 
     98   /// \brief Fast internal constructor
     99   ///
    100   /// This constructor is used only internally for speed of construction of
    101   /// temporaries. It is unsafe for general use so it is not public.
    102   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
    103 
    104   /// \brief Determine if this APInt just has one word to store value.
    105   ///
    106   /// \returns true if the number of bits <= 64, false otherwise.
    107   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    108 
    109   /// \brief Determine which word a bit is in.
    110   ///
    111   /// \returns the word position for the specified bit position.
    112   static unsigned whichWord(unsigned bitPosition) {
    113     return bitPosition / APINT_BITS_PER_WORD;
    114   }
    115 
    116   /// \brief Determine which bit in a word a bit is in.
    117   ///
    118   /// \returns the bit position in a word for the specified bit position
    119   /// in the APInt.
    120   static unsigned whichBit(unsigned bitPosition) {
    121     return bitPosition % APINT_BITS_PER_WORD;
    122   }
    123 
    124   /// \brief Get a single bit mask.
    125   ///
    126   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    127   /// This method generates and returns a uint64_t (word) mask for a single
    128   /// bit at a specific bit position. This is used to mask the bit in the
    129   /// corresponding word.
    130   static uint64_t maskBit(unsigned bitPosition) {
    131     return 1ULL << whichBit(bitPosition);
    132   }
    133 
    134   /// \brief Clear unused high order bits
    135   ///
    136   /// This method is used internally to clear the top "N" bits in the high order
    137   /// word that are not used by the APInt. This is needed after the most
    138   /// significant word is assigned a value to ensure that those bits are
    139   /// zero'd out.
    140   APInt &clearUnusedBits() {
    141     // Compute how many bits are used in the final word
    142     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    143     if (wordBits == 0)
    144       // If all bits are used, we want to leave the value alone. This also
    145       // avoids the undefined behavior of >> when the shift is the same size as
    146       // the word size (64).
    147       return *this;
    148 
    149     // Mask out the high bits.
    150     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    151     if (isSingleWord())
    152       VAL &= mask;
    153     else
    154       pVal[getNumWords() - 1] &= mask;
    155     return *this;
    156   }
    157 
    158   /// \brief Get the word corresponding to a bit position
    159   /// \returns the corresponding word for the specified bit position.
    160   uint64_t getWord(unsigned bitPosition) const {
    161     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    162   }
    163 
    164   /// \brief Convert a char array into an APInt
    165   ///
    166   /// \param radix 2, 8, 10, 16, or 36
    167   /// Converts a string into a number.  The string must be non-empty
    168   /// and well-formed as a number of the given base. The bit-width
    169   /// must be sufficient to hold the result.
    170   ///
    171   /// This is used by the constructors that take string arguments.
    172   ///
    173   /// StringRef::getAsInteger is superficially similar but (1) does
    174   /// not assume that the string is well-formed and (2) grows the
    175   /// result to hold the input.
    176   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    177 
    178   /// \brief An internal division function for dividing APInts.
    179   ///
    180   /// This is used by the toString method to divide by the radix. It simply
    181   /// provides a more convenient form of divide for internal use since KnuthDiv
    182   /// has specific constraints on its inputs. If those constraints are not met
    183   /// then it provides a simpler form of divide.
    184   static void divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS,
    185                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
    186 
    187   /// out-of-line slow case for inline constructor
    188   void initSlowCase(uint64_t val, bool isSigned);
    189 
    190   /// shared code between two array constructors
    191   void initFromArray(ArrayRef<uint64_t> array);
    192 
    193   /// out-of-line slow case for inline copy constructor
    194   void initSlowCase(const APInt &that);
    195 
    196   /// out-of-line slow case for shl
    197   APInt shlSlowCase(unsigned shiftAmt) const;
    198 
    199   /// out-of-line slow case for operator&
    200   APInt AndSlowCase(const APInt &RHS) const;
    201 
    202   /// out-of-line slow case for operator|
    203   APInt OrSlowCase(const APInt &RHS) const;
    204 
    205   /// out-of-line slow case for operator^
    206   APInt XorSlowCase(const APInt &RHS) const;
    207 
    208   /// out-of-line slow case for operator=
    209   APInt &AssignSlowCase(const APInt &RHS);
    210 
    211   /// out-of-line slow case for operator==
    212   bool EqualSlowCase(const APInt &RHS) const;
    213 
    214   /// out-of-line slow case for operator==
    215   bool EqualSlowCase(uint64_t Val) const;
    216 
    217   /// out-of-line slow case for countLeadingZeros
    218   unsigned countLeadingZerosSlowCase() const;
    219 
    220   /// out-of-line slow case for countTrailingOnes
    221   unsigned countTrailingOnesSlowCase() const;
    222 
    223   /// out-of-line slow case for countPopulation
    224   unsigned countPopulationSlowCase() const;
    225 
    226 public:
    227   /// \name Constructors
    228   /// @{
    229 
    230   /// \brief Create a new APInt of numBits width, initialized as val.
    231   ///
    232   /// If isSigned is true then val is treated as if it were a signed value
    233   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    234   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    235   /// the range of val are zero filled).
    236   ///
    237   /// \param numBits the bit width of the constructed APInt
    238   /// \param val the initial value of the APInt
    239   /// \param isSigned how to treat signedness of val
    240   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    241       : BitWidth(numBits), VAL(0) {
    242     assert(BitWidth && "bitwidth too small");
    243     if (isSingleWord())
    244       VAL = val;
    245     else
    246       initSlowCase(val, isSigned);
    247     clearUnusedBits();
    248   }
    249 
    250   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    251   ///
    252   /// Note that bigVal.size() can be smaller or larger than the corresponding
    253   /// bit width but any extraneous bits will be dropped.
    254   ///
    255   /// \param numBits the bit width of the constructed APInt
    256   /// \param bigVal a sequence of words to form the initial value of the APInt
    257   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    258 
    259   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    260   /// deprecated because this constructor is prone to ambiguity with the
    261   /// APInt(unsigned, uint64_t, bool) constructor.
    262   ///
    263   /// If this overload is ever deleted, care should be taken to prevent calls
    264   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    265   /// constructor.
    266   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    267 
    268   /// \brief Construct an APInt from a string representation.
    269   ///
    270   /// This constructor interprets the string \p str in the given radix. The
    271   /// interpretation stops when the first character that is not suitable for the
    272   /// radix is encountered, or the end of the string. Acceptable radix values
    273   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    274   /// string to require more bits than numBits.
    275   ///
    276   /// \param numBits the bit width of the constructed APInt
    277   /// \param str the string to be interpreted
    278   /// \param radix the radix to use for the conversion
    279   APInt(unsigned numBits, StringRef str, uint8_t radix);
    280 
    281   /// Simply makes *this a copy of that.
    282   /// @brief Copy Constructor.
    283   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
    284     if (isSingleWord())
    285       VAL = that.VAL;
    286     else
    287       initSlowCase(that);
    288   }
    289 
    290   /// \brief Move Constructor.
    291   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    292     that.BitWidth = 0;
    293   }
    294 
    295   /// \brief Destructor.
    296   ~APInt() {
    297     if (needsCleanup())
    298       delete[] pVal;
    299   }
    300 
    301   /// \brief Default constructor that creates an uninteresting APInt
    302   /// representing a 1-bit zero value.
    303   ///
    304   /// This is useful for object deserialization (pair this with the static
    305   ///  method Read).
    306   explicit APInt() : BitWidth(1), VAL(0) {}
    307 
    308   /// \brief Returns whether this instance allocated memory.
    309   bool needsCleanup() const { return !isSingleWord(); }
    310 
    311   /// Used to insert APInt objects, or objects that contain APInt objects, into
    312   ///  FoldingSets.
    313   void Profile(FoldingSetNodeID &id) const;
    314 
    315   /// @}
    316   /// \name Value Tests
    317   /// @{
    318 
    319   /// \brief Determine sign of this APInt.
    320   ///
    321   /// This tests the high bit of this APInt to determine if it is set.
    322   ///
    323   /// \returns true if this APInt is negative, false otherwise
    324   bool isNegative() const { return (*this)[BitWidth - 1]; }
    325 
    326   /// \brief Determine if this APInt Value is non-negative (>= 0)
    327   ///
    328   /// This tests the high bit of the APInt to determine if it is unset.
    329   bool isNonNegative() const { return !isNegative(); }
    330 
    331   /// \brief Determine if this APInt Value is positive.
    332   ///
    333   /// This tests if the value of this APInt is positive (> 0). Note
    334   /// that 0 is not a positive value.
    335   ///
    336   /// \returns true if this APInt is positive.
    337   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
    338 
    339   /// \brief Determine if all bits are set
    340   ///
    341   /// This checks to see if the value has all bits of the APInt are set or not.
    342   bool isAllOnesValue() const {
    343     if (isSingleWord())
    344       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
    345     return countPopulationSlowCase() == BitWidth;
    346   }
    347 
    348   /// \brief Determine if this is the largest unsigned value.
    349   ///
    350   /// This checks to see if the value of this APInt is the maximum unsigned
    351   /// value for the APInt's bit width.
    352   bool isMaxValue() const { return isAllOnesValue(); }
    353 
    354   /// \brief Determine if this is the largest signed value.
    355   ///
    356   /// This checks to see if the value of this APInt is the maximum signed
    357   /// value for the APInt's bit width.
    358   bool isMaxSignedValue() const {
    359     return !isNegative() && countPopulation() == BitWidth - 1;
    360   }
    361 
    362   /// \brief Determine if this is the smallest unsigned value.
    363   ///
    364   /// This checks to see if the value of this APInt is the minimum unsigned
    365   /// value for the APInt's bit width.
    366   bool isMinValue() const { return !*this; }
    367 
    368   /// \brief Determine if this is the smallest signed value.
    369   ///
    370   /// This checks to see if the value of this APInt is the minimum signed
    371   /// value for the APInt's bit width.
    372   bool isMinSignedValue() const {
    373     return isNegative() && isPowerOf2();
    374   }
    375 
    376   /// \brief Check if this APInt has an N-bits unsigned integer value.
    377   bool isIntN(unsigned N) const {
    378     assert(N && "N == 0 ???");
    379     return getActiveBits() <= N;
    380   }
    381 
    382   /// \brief Check if this APInt has an N-bits signed integer value.
    383   bool isSignedIntN(unsigned N) const {
    384     assert(N && "N == 0 ???");
    385     return getMinSignedBits() <= N;
    386   }
    387 
    388   /// \brief Check if this APInt's value is a power of two greater than zero.
    389   ///
    390   /// \returns true if the argument APInt value is a power of two > 0.
    391   bool isPowerOf2() const {
    392     if (isSingleWord())
    393       return isPowerOf2_64(VAL);
    394     return countPopulationSlowCase() == 1;
    395   }
    396 
    397   /// \brief Check if the APInt's value is returned by getSignBit.
    398   ///
    399   /// \returns true if this is the value returned by getSignBit.
    400   bool isSignBit() const { return isMinSignedValue(); }
    401 
    402   /// \brief Convert APInt to a boolean value.
    403   ///
    404   /// This converts the APInt to a boolean value as a test against zero.
    405   bool getBoolValue() const { return !!*this; }
    406 
    407   /// If this value is smaller than the specified limit, return it, otherwise
    408   /// return the limit value.  This causes the value to saturate to the limit.
    409   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    410     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
    411                                                             : getZExtValue();
    412   }
    413 
    414   /// \brief Check if the APInt consists of a repeated bit pattern.
    415   ///
    416   /// e.g. 0x01010101 satisfies isSplat(8).
    417   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
    418   /// width without remainder.
    419   bool isSplat(unsigned SplatSizeInBits) const;
    420 
    421   /// @}
    422   /// \name Value Generators
    423   /// @{
    424 
    425   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    426   static APInt getMaxValue(unsigned numBits) {
    427     return getAllOnesValue(numBits);
    428   }
    429 
    430   /// \brief Gets maximum signed value of APInt for a specific bit width.
    431   static APInt getSignedMaxValue(unsigned numBits) {
    432     APInt API = getAllOnesValue(numBits);
    433     API.clearBit(numBits - 1);
    434     return API;
    435   }
    436 
    437   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    438   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    439 
    440   /// \brief Gets minimum signed value of APInt for a specific bit width.
    441   static APInt getSignedMinValue(unsigned numBits) {
    442     APInt API(numBits, 0);
    443     API.setBit(numBits - 1);
    444     return API;
    445   }
    446 
    447   /// \brief Get the SignBit for a specific bit width.
    448   ///
    449   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    450   /// readability when we want to get a SignBit.
    451   static APInt getSignBit(unsigned BitWidth) {
    452     return getSignedMinValue(BitWidth);
    453   }
    454 
    455   /// \brief Get the all-ones value.
    456   ///
    457   /// \returns the all-ones value for an APInt of the specified bit-width.
    458   static APInt getAllOnesValue(unsigned numBits) {
    459     return APInt(numBits, UINT64_MAX, true);
    460   }
    461 
    462   /// \brief Get the '0' value.
    463   ///
    464   /// \returns the '0' value for an APInt of the specified bit-width.
    465   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    466 
    467   /// \brief Compute an APInt containing numBits highbits from this APInt.
    468   ///
    469   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    470   /// the low bits and right shift to the least significant bit.
    471   ///
    472   /// \returns the high "numBits" bits of this APInt.
    473   APInt getHiBits(unsigned numBits) const;
    474 
    475   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    476   ///
    477   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    478   /// the high bits.
    479   ///
    480   /// \returns the low "numBits" bits of this APInt.
    481   APInt getLoBits(unsigned numBits) const;
    482 
    483   /// \brief Return an APInt with exactly one bit set in the result.
    484   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    485     APInt Res(numBits, 0);
    486     Res.setBit(BitNo);
    487     return Res;
    488   }
    489 
    490   /// \brief Get a value with a block of bits set.
    491   ///
    492   /// Constructs an APInt value that has a contiguous range of bits set. The
    493   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    494   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    495   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    496   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    497   ///
    498   /// \param numBits the intended bit width of the result
    499   /// \param loBit the index of the lowest bit set.
    500   /// \param hiBit the index of the highest bit set.
    501   ///
    502   /// \returns An APInt value with the requested bits set.
    503   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    504     assert(hiBit <= numBits && "hiBit out of range");
    505     assert(loBit < numBits && "loBit out of range");
    506     if (hiBit < loBit)
    507       return getLowBitsSet(numBits, hiBit) |
    508              getHighBitsSet(numBits, numBits - loBit);
    509     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
    510   }
    511 
    512   /// \brief Get a value with high bits set
    513   ///
    514   /// Constructs an APInt value that has the top hiBitsSet bits set.
    515   ///
    516   /// \param numBits the bitwidth of the result
    517   /// \param hiBitsSet the number of high-order bits set in the result.
    518   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    519     assert(hiBitsSet <= numBits && "Too many bits to set!");
    520     // Handle a degenerate case, to avoid shifting by word size
    521     if (hiBitsSet == 0)
    522       return APInt(numBits, 0);
    523     unsigned shiftAmt = numBits - hiBitsSet;
    524     // For small values, return quickly
    525     if (numBits <= APINT_BITS_PER_WORD)
    526       return APInt(numBits, ~0ULL << shiftAmt);
    527     return getAllOnesValue(numBits).shl(shiftAmt);
    528   }
    529 
    530   /// \brief Get a value with low bits set
    531   ///
    532   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    533   ///
    534   /// \param numBits the bitwidth of the result
    535   /// \param loBitsSet the number of low-order bits set in the result.
    536   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    537     assert(loBitsSet <= numBits && "Too many bits to set!");
    538     // Handle a degenerate case, to avoid shifting by word size
    539     if (loBitsSet == 0)
    540       return APInt(numBits, 0);
    541     if (loBitsSet == APINT_BITS_PER_WORD)
    542       return APInt(numBits, UINT64_MAX);
    543     // For small values, return quickly.
    544     if (loBitsSet <= APINT_BITS_PER_WORD)
    545       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    546     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    547   }
    548 
    549   /// \brief Return a value containing V broadcasted over NewLen bits.
    550   static APInt getSplat(unsigned NewLen, const APInt &V) {
    551     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
    552 
    553     APInt Val = V.zextOrSelf(NewLen);
    554     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    555       Val |= Val << I;
    556 
    557     return Val;
    558   }
    559 
    560   /// \brief Determine if two APInts have the same value, after zero-extending
    561   /// one of them (if needed!) to ensure that the bit-widths match.
    562   static bool isSameValue(const APInt &I1, const APInt &I2) {
    563     if (I1.getBitWidth() == I2.getBitWidth())
    564       return I1 == I2;
    565 
    566     if (I1.getBitWidth() > I2.getBitWidth())
    567       return I1 == I2.zext(I1.getBitWidth());
    568 
    569     return I1.zext(I2.getBitWidth()) == I2;
    570   }
    571 
    572   /// \brief Overload to compute a hash_code for an APInt value.
    573   friend hash_code hash_value(const APInt &Arg);
    574 
    575   /// This function returns a pointer to the internal storage of the APInt.
    576   /// This is useful for writing out the APInt in binary form without any
    577   /// conversions.
    578   const uint64_t *getRawData() const {
    579     if (isSingleWord())
    580       return &VAL;
    581     return &pVal[0];
    582   }
    583 
    584   /// @}
    585   /// \name Unary Operators
    586   /// @{
    587 
    588   /// \brief Postfix increment operator.
    589   ///
    590   /// \returns a new APInt value representing *this incremented by one
    591   const APInt operator++(int) {
    592     APInt API(*this);
    593     ++(*this);
    594     return API;
    595   }
    596 
    597   /// \brief Prefix increment operator.
    598   ///
    599   /// \returns *this incremented by one
    600   APInt &operator++();
    601 
    602   /// \brief Postfix decrement operator.
    603   ///
    604   /// \returns a new APInt representing *this decremented by one.
    605   const APInt operator--(int) {
    606     APInt API(*this);
    607     --(*this);
    608     return API;
    609   }
    610 
    611   /// \brief Prefix decrement operator.
    612   ///
    613   /// \returns *this decremented by one.
    614   APInt &operator--();
    615 
    616   /// \brief Unary bitwise complement operator.
    617   ///
    618   /// Performs a bitwise complement operation on this APInt.
    619   ///
    620   /// \returns an APInt that is the bitwise complement of *this
    621   APInt operator~() const {
    622     APInt Result(*this);
    623     Result.flipAllBits();
    624     return Result;
    625   }
    626 
    627   /// \brief Logical negation operator.
    628   ///
    629   /// Performs logical negation operation on this APInt.
    630   ///
    631   /// \returns true if *this is zero, false otherwise.
    632   bool operator!() const {
    633     if (isSingleWord())
    634       return !VAL;
    635 
    636     for (unsigned i = 0; i != getNumWords(); ++i)
    637       if (pVal[i])
    638         return false;
    639     return true;
    640   }
    641 
    642   /// @}
    643   /// \name Assignment Operators
    644   /// @{
    645 
    646   /// \brief Copy assignment operator.
    647   ///
    648   /// \returns *this after assignment of RHS.
    649   APInt &operator=(const APInt &RHS) {
    650     // If the bitwidths are the same, we can avoid mucking with memory
    651     if (isSingleWord() && RHS.isSingleWord()) {
    652       VAL = RHS.VAL;
    653       BitWidth = RHS.BitWidth;
    654       return clearUnusedBits();
    655     }
    656 
    657     return AssignSlowCase(RHS);
    658   }
    659 
    660   /// @brief Move assignment operator.
    661   APInt &operator=(APInt &&that) {
    662     if (!isSingleWord()) {
    663       // The MSVC STL shipped in 2013 requires that self move assignment be a
    664       // no-op.  Otherwise algorithms like stable_sort will produce answers
    665       // where half of the output is left in a moved-from state.
    666       if (this == &that)
    667         return *this;
    668       delete[] pVal;
    669     }
    670 
    671     // Use memcpy so that type based alias analysis sees both VAL and pVal
    672     // as modified.
    673     memcpy(&VAL, &that.VAL, sizeof(uint64_t));
    674 
    675     // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
    676     // first.
    677     unsigned ThatBitWidth = that.BitWidth;
    678     that.BitWidth = 0;
    679     BitWidth = ThatBitWidth;
    680 
    681     return *this;
    682   }
    683 
    684   /// \brief Assignment operator.
    685   ///
    686   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    687   /// the bit width, the excess bits are truncated. If the bit width is larger
    688   /// than 64, the value is zero filled in the unspecified high order bits.
    689   ///
    690   /// \returns *this after assignment of RHS value.
    691   APInt &operator=(uint64_t RHS);
    692 
    693   /// \brief Bitwise AND assignment operator.
    694   ///
    695   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    696   /// assigned to *this.
    697   ///
    698   /// \returns *this after ANDing with RHS.
    699   APInt &operator&=(const APInt &RHS);
    700 
    701   /// \brief Bitwise OR assignment operator.
    702   ///
    703   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    704   /// assigned *this;
    705   ///
    706   /// \returns *this after ORing with RHS.
    707   APInt &operator|=(const APInt &RHS);
    708 
    709   /// \brief Bitwise OR assignment operator.
    710   ///
    711   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    712   /// logically zero-extended or truncated to match the bit-width of
    713   /// the LHS.
    714   APInt &operator|=(uint64_t RHS) {
    715     if (isSingleWord()) {
    716       VAL |= RHS;
    717       clearUnusedBits();
    718     } else {
    719       pVal[0] |= RHS;
    720     }
    721     return *this;
    722   }
    723 
    724   /// \brief Bitwise XOR assignment operator.
    725   ///
    726   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    727   /// assigned to *this.
    728   ///
    729   /// \returns *this after XORing with RHS.
    730   APInt &operator^=(const APInt &RHS);
    731 
    732   /// \brief Multiplication assignment operator.
    733   ///
    734   /// Multiplies this APInt by RHS and assigns the result to *this.
    735   ///
    736   /// \returns *this
    737   APInt &operator*=(const APInt &RHS);
    738 
    739   /// \brief Addition assignment operator.
    740   ///
    741   /// Adds RHS to *this and assigns the result to *this.
    742   ///
    743   /// \returns *this
    744   APInt &operator+=(const APInt &RHS);
    745   APInt &operator+=(uint64_t RHS);
    746 
    747   /// \brief Subtraction assignment operator.
    748   ///
    749   /// Subtracts RHS from *this and assigns the result to *this.
    750   ///
    751   /// \returns *this
    752   APInt &operator-=(const APInt &RHS);
    753   APInt &operator-=(uint64_t RHS);
    754 
    755   /// \brief Left-shift assignment function.
    756   ///
    757   /// Shifts *this left by shiftAmt and assigns the result to *this.
    758   ///
    759   /// \returns *this after shifting left by shiftAmt
    760   APInt &operator<<=(unsigned shiftAmt) {
    761     *this = shl(shiftAmt);
    762     return *this;
    763   }
    764 
    765   /// @}
    766   /// \name Binary Operators
    767   /// @{
    768 
    769   /// \brief Bitwise AND operator.
    770   ///
    771   /// Performs a bitwise AND operation on *this and RHS.
    772   ///
    773   /// \returns An APInt value representing the bitwise AND of *this and RHS.
    774   APInt operator&(const APInt &RHS) const {
    775     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    776     if (isSingleWord())
    777       return APInt(getBitWidth(), VAL & RHS.VAL);
    778     return AndSlowCase(RHS);
    779   }
    780   APInt And(const APInt &RHS) const { return this->operator&(RHS); }
    781 
    782   /// \brief Bitwise OR operator.
    783   ///
    784   /// Performs a bitwise OR operation on *this and RHS.
    785   ///
    786   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    787   APInt operator|(const APInt &RHS) const {
    788     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    789     if (isSingleWord())
    790       return APInt(getBitWidth(), VAL | RHS.VAL);
    791     return OrSlowCase(RHS);
    792   }
    793 
    794   /// \brief Bitwise OR function.
    795   ///
    796   /// Performs a bitwise or on *this and RHS. This is implemented by simply
    797   /// calling operator|.
    798   ///
    799   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    800   APInt Or(const APInt &RHS) const { return this->operator|(RHS); }
    801 
    802   /// \brief Bitwise XOR operator.
    803   ///
    804   /// Performs a bitwise XOR operation on *this and RHS.
    805   ///
    806   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    807   APInt operator^(const APInt &RHS) const {
    808     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    809     if (isSingleWord())
    810       return APInt(BitWidth, VAL ^ RHS.VAL);
    811     return XorSlowCase(RHS);
    812   }
    813 
    814   /// \brief Bitwise XOR function.
    815   ///
    816   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
    817   /// through the usage of operator^.
    818   ///
    819   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    820   APInt Xor(const APInt &RHS) const { return this->operator^(RHS); }
    821 
    822   /// \brief Multiplication operator.
    823   ///
    824   /// Multiplies this APInt by RHS and returns the result.
    825   APInt operator*(const APInt &RHS) const;
    826 
    827   /// \brief Left logical shift operator.
    828   ///
    829   /// Shifts this APInt left by \p Bits and returns the result.
    830   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    831 
    832   /// \brief Left logical shift operator.
    833   ///
    834   /// Shifts this APInt left by \p Bits and returns the result.
    835   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    836 
    837   /// \brief Arithmetic right-shift function.
    838   ///
    839   /// Arithmetic right-shift this APInt by shiftAmt.
    840   APInt ashr(unsigned shiftAmt) const;
    841 
    842   /// \brief Logical right-shift function.
    843   ///
    844   /// Logical right-shift this APInt by shiftAmt.
    845   APInt lshr(unsigned shiftAmt) const;
    846 
    847   /// \brief Left-shift function.
    848   ///
    849   /// Left-shift this APInt by shiftAmt.
    850   APInt shl(unsigned shiftAmt) const {
    851     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    852     if (isSingleWord()) {
    853       if (shiftAmt >= BitWidth)
    854         return APInt(BitWidth, 0); // avoid undefined shift results
    855       return APInt(BitWidth, VAL << shiftAmt);
    856     }
    857     return shlSlowCase(shiftAmt);
    858   }
    859 
    860   /// \brief Rotate left by rotateAmt.
    861   APInt rotl(unsigned rotateAmt) const;
    862 
    863   /// \brief Rotate right by rotateAmt.
    864   APInt rotr(unsigned rotateAmt) const;
    865 
    866   /// \brief Arithmetic right-shift function.
    867   ///
    868   /// Arithmetic right-shift this APInt by shiftAmt.
    869   APInt ashr(const APInt &shiftAmt) const;
    870 
    871   /// \brief Logical right-shift function.
    872   ///
    873   /// Logical right-shift this APInt by shiftAmt.
    874   APInt lshr(const APInt &shiftAmt) const;
    875 
    876   /// \brief Left-shift function.
    877   ///
    878   /// Left-shift this APInt by shiftAmt.
    879   APInt shl(const APInt &shiftAmt) const;
    880 
    881   /// \brief Rotate left by rotateAmt.
    882   APInt rotl(const APInt &rotateAmt) const;
    883 
    884   /// \brief Rotate right by rotateAmt.
    885   APInt rotr(const APInt &rotateAmt) const;
    886 
    887   /// \brief Unsigned division operation.
    888   ///
    889   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    890   /// RHS are treated as unsigned quantities for purposes of this division.
    891   ///
    892   /// \returns a new APInt value containing the division result
    893   APInt udiv(const APInt &RHS) const;
    894 
    895   /// \brief Signed division function for APInt.
    896   ///
    897   /// Signed divide this APInt by APInt RHS.
    898   APInt sdiv(const APInt &RHS) const;
    899 
    900   /// \brief Unsigned remainder operation.
    901   ///
    902   /// Perform an unsigned remainder operation on this APInt with RHS being the
    903   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    904   /// of this operation. Note that this is a true remainder operation and not a
    905   /// modulo operation because the sign follows the sign of the dividend which
    906   /// is *this.
    907   ///
    908   /// \returns a new APInt value containing the remainder result
    909   APInt urem(const APInt &RHS) const;
    910 
    911   /// \brief Function for signed remainder operation.
    912   ///
    913   /// Signed remainder operation on APInt.
    914   APInt srem(const APInt &RHS) const;
    915 
    916   /// \brief Dual division/remainder interface.
    917   ///
    918   /// Sometimes it is convenient to divide two APInt values and obtain both the
    919   /// quotient and remainder. This function does both operations in the same
    920   /// computation making it a little more efficient. The pair of input arguments
    921   /// may overlap with the pair of output arguments. It is safe to call
    922   /// udivrem(X, Y, X, Y), for example.
    923   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    924                       APInt &Remainder);
    925 
    926   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    927                       APInt &Remainder);
    928 
    929   // Operations that return overflow indicators.
    930   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    931   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    932   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    933   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    934   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    935   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    936   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    937   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
    938   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
    939 
    940   /// \brief Array-indexing support.
    941   ///
    942   /// \returns the bit value at bitPosition
    943   bool operator[](unsigned bitPosition) const {
    944     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    945     return (maskBit(bitPosition) &
    946             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
    947            0;
    948   }
    949 
    950   /// @}
    951   /// \name Comparison Operators
    952   /// @{
    953 
    954   /// \brief Equality operator.
    955   ///
    956   /// Compares this APInt with RHS for the validity of the equality
    957   /// relationship.
    958   bool operator==(const APInt &RHS) const {
    959     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    960     if (isSingleWord())
    961       return VAL == RHS.VAL;
    962     return EqualSlowCase(RHS);
    963   }
    964 
    965   /// \brief Equality operator.
    966   ///
    967   /// Compares this APInt with a uint64_t for the validity of the equality
    968   /// relationship.
    969   ///
    970   /// \returns true if *this == Val
    971   bool operator==(uint64_t Val) const {
    972     if (isSingleWord())
    973       return VAL == Val;
    974     return EqualSlowCase(Val);
    975   }
    976 
    977   /// \brief Equality comparison.
    978   ///
    979   /// Compares this APInt with RHS for the validity of the equality
    980   /// relationship.
    981   ///
    982   /// \returns true if *this == Val
    983   bool eq(const APInt &RHS) const { return (*this) == RHS; }
    984 
    985   /// \brief Inequality operator.
    986   ///
    987   /// Compares this APInt with RHS for the validity of the inequality
    988   /// relationship.
    989   ///
    990   /// \returns true if *this != Val
    991   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
    992 
    993   /// \brief Inequality operator.
    994   ///
    995   /// Compares this APInt with a uint64_t for the validity of the inequality
    996   /// relationship.
    997   ///
    998   /// \returns true if *this != Val
    999   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
   1000 
   1001   /// \brief Inequality comparison
   1002   ///
   1003   /// Compares this APInt with RHS for the validity of the inequality
   1004   /// relationship.
   1005   ///
   1006   /// \returns true if *this != Val
   1007   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1008 
   1009   /// \brief Unsigned less than comparison
   1010   ///
   1011   /// Regards both *this and RHS as unsigned quantities and compares them for
   1012   /// the validity of the less-than relationship.
   1013   ///
   1014   /// \returns true if *this < RHS when both are considered unsigned.
   1015   bool ult(const APInt &RHS) const;
   1016 
   1017   /// \brief Unsigned less than comparison
   1018   ///
   1019   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1020   /// the validity of the less-than relationship.
   1021   ///
   1022   /// \returns true if *this < RHS when considered unsigned.
   1023   bool ult(uint64_t RHS) const {
   1024     return getActiveBits() > 64 ? false : getZExtValue() < RHS;
   1025   }
   1026 
   1027   /// \brief Signed less than comparison
   1028   ///
   1029   /// Regards both *this and RHS as signed quantities and compares them for
   1030   /// validity of the less-than relationship.
   1031   ///
   1032   /// \returns true if *this < RHS when both are considered signed.
   1033   bool slt(const APInt &RHS) const;
   1034 
   1035   /// \brief Signed less than comparison
   1036   ///
   1037   /// Regards both *this as a signed quantity and compares it with RHS for
   1038   /// the validity of the less-than relationship.
   1039   ///
   1040   /// \returns true if *this < RHS when considered signed.
   1041   bool slt(int64_t RHS) const {
   1042     return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
   1043   }
   1044 
   1045   /// \brief Unsigned less or equal comparison
   1046   ///
   1047   /// Regards both *this and RHS as unsigned quantities and compares them for
   1048   /// validity of the less-or-equal relationship.
   1049   ///
   1050   /// \returns true if *this <= RHS when both are considered unsigned.
   1051   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
   1052 
   1053   /// \brief Unsigned less or equal comparison
   1054   ///
   1055   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1056   /// the validity of the less-or-equal relationship.
   1057   ///
   1058   /// \returns true if *this <= RHS when considered unsigned.
   1059   bool ule(uint64_t RHS) const { return !ugt(RHS); }
   1060 
   1061   /// \brief Signed less or equal comparison
   1062   ///
   1063   /// Regards both *this and RHS as signed quantities and compares them for
   1064   /// validity of the less-or-equal relationship.
   1065   ///
   1066   /// \returns true if *this <= RHS when both are considered signed.
   1067   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
   1068 
   1069   /// \brief Signed less or equal comparison
   1070   ///
   1071   /// Regards both *this as a signed quantity and compares it with RHS for the
   1072   /// validity of the less-or-equal relationship.
   1073   ///
   1074   /// \returns true if *this <= RHS when considered signed.
   1075   bool sle(uint64_t RHS) const { return !sgt(RHS); }
   1076 
   1077   /// \brief Unsigned greather than comparison
   1078   ///
   1079   /// Regards both *this and RHS as unsigned quantities and compares them for
   1080   /// the validity of the greater-than relationship.
   1081   ///
   1082   /// \returns true if *this > RHS when both are considered unsigned.
   1083   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
   1084 
   1085   /// \brief Unsigned greater than comparison
   1086   ///
   1087   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1088   /// the validity of the greater-than relationship.
   1089   ///
   1090   /// \returns true if *this > RHS when considered unsigned.
   1091   bool ugt(uint64_t RHS) const {
   1092     return getActiveBits() > 64 ? true : getZExtValue() > RHS;
   1093   }
   1094 
   1095   /// \brief Signed greather than comparison
   1096   ///
   1097   /// Regards both *this and RHS as signed quantities and compares them for the
   1098   /// validity of the greater-than relationship.
   1099   ///
   1100   /// \returns true if *this > RHS when both are considered signed.
   1101   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
   1102 
   1103   /// \brief Signed greater than comparison
   1104   ///
   1105   /// Regards both *this as a signed quantity and compares it with RHS for
   1106   /// the validity of the greater-than relationship.
   1107   ///
   1108   /// \returns true if *this > RHS when considered signed.
   1109   bool sgt(int64_t RHS) const {
   1110     return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
   1111   }
   1112 
   1113   /// \brief Unsigned greater or equal comparison
   1114   ///
   1115   /// Regards both *this and RHS as unsigned quantities and compares them for
   1116   /// validity of the greater-or-equal relationship.
   1117   ///
   1118   /// \returns true if *this >= RHS when both are considered unsigned.
   1119   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1120 
   1121   /// \brief Unsigned greater or equal comparison
   1122   ///
   1123   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1124   /// the validity of the greater-or-equal relationship.
   1125   ///
   1126   /// \returns true if *this >= RHS when considered unsigned.
   1127   bool uge(uint64_t RHS) const { return !ult(RHS); }
   1128 
   1129   /// \brief Signed greather or equal comparison
   1130   ///
   1131   /// Regards both *this and RHS as signed quantities and compares them for
   1132   /// validity of the greater-or-equal relationship.
   1133   ///
   1134   /// \returns true if *this >= RHS when both are considered signed.
   1135   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1136 
   1137   /// \brief Signed greater or equal comparison
   1138   ///
   1139   /// Regards both *this as a signed quantity and compares it with RHS for
   1140   /// the validity of the greater-or-equal relationship.
   1141   ///
   1142   /// \returns true if *this >= RHS when considered signed.
   1143   bool sge(int64_t RHS) const { return !slt(RHS); }
   1144 
   1145   /// This operation tests if there are any pairs of corresponding bits
   1146   /// between this APInt and RHS that are both set.
   1147   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
   1148 
   1149   /// @}
   1150   /// \name Resizing Operators
   1151   /// @{
   1152 
   1153   /// \brief Truncate to new width.
   1154   ///
   1155   /// Truncate the APInt to a specified width. It is an error to specify a width
   1156   /// that is greater than or equal to the current width.
   1157   APInt trunc(unsigned width) const;
   1158 
   1159   /// \brief Sign extend to a new width.
   1160   ///
   1161   /// This operation sign extends the APInt to a new width. If the high order
   1162   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1163   /// It is an error to specify a width that is less than or equal to the
   1164   /// current width.
   1165   APInt sext(unsigned width) const;
   1166 
   1167   /// \brief Zero extend to a new width.
   1168   ///
   1169   /// This operation zero extends the APInt to a new width. The high order bits
   1170   /// are filled with 0 bits.  It is an error to specify a width that is less
   1171   /// than or equal to the current width.
   1172   APInt zext(unsigned width) const;
   1173 
   1174   /// \brief Sign extend or truncate to width
   1175   ///
   1176   /// Make this APInt have the bit width given by \p width. The value is sign
   1177   /// extended, truncated, or left alone to make it that width.
   1178   APInt sextOrTrunc(unsigned width) const;
   1179 
   1180   /// \brief Zero extend or truncate to width
   1181   ///
   1182   /// Make this APInt have the bit width given by \p width. The value is zero
   1183   /// extended, truncated, or left alone to make it that width.
   1184   APInt zextOrTrunc(unsigned width) const;
   1185 
   1186   /// \brief Sign extend or truncate to width
   1187   ///
   1188   /// Make this APInt have the bit width given by \p width. The value is sign
   1189   /// extended, or left alone to make it that width.
   1190   APInt sextOrSelf(unsigned width) const;
   1191 
   1192   /// \brief Zero extend or truncate to width
   1193   ///
   1194   /// Make this APInt have the bit width given by \p width. The value is zero
   1195   /// extended, or left alone to make it that width.
   1196   APInt zextOrSelf(unsigned width) const;
   1197 
   1198   /// @}
   1199   /// \name Bit Manipulation Operators
   1200   /// @{
   1201 
   1202   /// \brief Set every bit to 1.
   1203   void setAllBits() {
   1204     if (isSingleWord())
   1205       VAL = UINT64_MAX;
   1206     else {
   1207       // Set all the bits in all the words.
   1208       for (unsigned i = 0; i < getNumWords(); ++i)
   1209         pVal[i] = UINT64_MAX;
   1210     }
   1211     // Clear the unused ones
   1212     clearUnusedBits();
   1213   }
   1214 
   1215   /// \brief Set a given bit to 1.
   1216   ///
   1217   /// Set the given bit to 1 whose position is given as "bitPosition".
   1218   void setBit(unsigned bitPosition);
   1219 
   1220   /// \brief Set every bit to 0.
   1221   void clearAllBits() {
   1222     if (isSingleWord())
   1223       VAL = 0;
   1224     else
   1225       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1226   }
   1227 
   1228   /// \brief Set a given bit to 0.
   1229   ///
   1230   /// Set the given bit to 0 whose position is given as "bitPosition".
   1231   void clearBit(unsigned bitPosition);
   1232 
   1233   /// \brief Toggle every bit to its opposite value.
   1234   void flipAllBits() {
   1235     if (isSingleWord())
   1236       VAL ^= UINT64_MAX;
   1237     else {
   1238       for (unsigned i = 0; i < getNumWords(); ++i)
   1239         pVal[i] ^= UINT64_MAX;
   1240     }
   1241     clearUnusedBits();
   1242   }
   1243 
   1244   /// \brief Toggles a given bit to its opposite value.
   1245   ///
   1246   /// Toggle a given bit to its opposite value whose position is given
   1247   /// as "bitPosition".
   1248   void flipBit(unsigned bitPosition);
   1249 
   1250   /// @}
   1251   /// \name Value Characterization Functions
   1252   /// @{
   1253 
   1254   /// \brief Return the number of bits in the APInt.
   1255   unsigned getBitWidth() const { return BitWidth; }
   1256 
   1257   /// \brief Get the number of words.
   1258   ///
   1259   /// Here one word's bitwidth equals to that of uint64_t.
   1260   ///
   1261   /// \returns the number of words to hold the integer value of this APInt.
   1262   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1263 
   1264   /// \brief Get the number of words.
   1265   ///
   1266   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1267   ///
   1268   /// \returns the number of words to hold the integer value with a given bit
   1269   /// width.
   1270   static unsigned getNumWords(unsigned BitWidth) {
   1271     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1272   }
   1273 
   1274   /// \brief Compute the number of active bits in the value
   1275   ///
   1276   /// This function returns the number of active bits which is defined as the
   1277   /// bit width minus the number of leading zeros. This is used in several
   1278   /// computations to see how "wide" the value is.
   1279   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1280 
   1281   /// \brief Compute the number of active words in the value of this APInt.
   1282   ///
   1283   /// This is used in conjunction with getActiveData to extract the raw value of
   1284   /// the APInt.
   1285   unsigned getActiveWords() const {
   1286     unsigned numActiveBits = getActiveBits();
   1287     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1288   }
   1289 
   1290   /// \brief Get the minimum bit size for this signed APInt
   1291   ///
   1292   /// Computes the minimum bit width for this APInt while considering it to be a
   1293   /// signed (and probably negative) value. If the value is not negative, this
   1294   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1295   /// returns the smallest bit width that will retain the negative value. For
   1296   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1297   /// for -1, this function will always return 1.
   1298   unsigned getMinSignedBits() const {
   1299     if (isNegative())
   1300       return BitWidth - countLeadingOnes() + 1;
   1301     return getActiveBits() + 1;
   1302   }
   1303 
   1304   /// \brief Get zero extended value
   1305   ///
   1306   /// This method attempts to return the value of this APInt as a zero extended
   1307   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1308   /// uint64_t. Otherwise an assertion will result.
   1309   uint64_t getZExtValue() const {
   1310     if (isSingleWord())
   1311       return VAL;
   1312     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1313     return pVal[0];
   1314   }
   1315 
   1316   /// \brief Get sign extended value
   1317   ///
   1318   /// This method attempts to return the value of this APInt as a sign extended
   1319   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1320   /// int64_t. Otherwise an assertion will result.
   1321   int64_t getSExtValue() const {
   1322     if (isSingleWord())
   1323       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1324              (APINT_BITS_PER_WORD - BitWidth);
   1325     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1326     return int64_t(pVal[0]);
   1327   }
   1328 
   1329   /// \brief Get bits required for string value.
   1330   ///
   1331   /// This method determines how many bits are required to hold the APInt
   1332   /// equivalent of the string given by \p str.
   1333   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1334 
   1335   /// \brief The APInt version of the countLeadingZeros functions in
   1336   ///   MathExtras.h.
   1337   ///
   1338   /// It counts the number of zeros from the most significant bit to the first
   1339   /// one bit.
   1340   ///
   1341   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1342   ///   zeros from the most significant bit to the first one bits.
   1343   unsigned countLeadingZeros() const {
   1344     if (isSingleWord()) {
   1345       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1346       return llvm::countLeadingZeros(VAL) - unusedBits;
   1347     }
   1348     return countLeadingZerosSlowCase();
   1349   }
   1350 
   1351   /// \brief Count the number of leading one bits.
   1352   ///
   1353   /// This function is an APInt version of the countLeadingOnes
   1354   /// functions in MathExtras.h. It counts the number of ones from the most
   1355   /// significant bit to the first zero bit.
   1356   ///
   1357   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1358   /// of 1 bits from the most significant to the least
   1359   unsigned countLeadingOnes() const;
   1360 
   1361   /// Computes the number of leading bits of this APInt that are equal to its
   1362   /// sign bit.
   1363   unsigned getNumSignBits() const {
   1364     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1365   }
   1366 
   1367   /// \brief Count the number of trailing zero bits.
   1368   ///
   1369   /// This function is an APInt version of the countTrailingZeros
   1370   /// functions in MathExtras.h. It counts the number of zeros from the least
   1371   /// significant bit to the first set bit.
   1372   ///
   1373   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1374   /// zeros from the least significant bit to the first one bit.
   1375   unsigned countTrailingZeros() const;
   1376 
   1377   /// \brief Count the number of trailing one bits.
   1378   ///
   1379   /// This function is an APInt version of the countTrailingOnes
   1380   /// functions in MathExtras.h. It counts the number of ones from the least
   1381   /// significant bit to the first zero bit.
   1382   ///
   1383   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1384   /// of ones from the least significant bit to the first zero bit.
   1385   unsigned countTrailingOnes() const {
   1386     if (isSingleWord())
   1387       return llvm::countTrailingOnes(VAL);
   1388     return countTrailingOnesSlowCase();
   1389   }
   1390 
   1391   /// \brief Count the number of bits set.
   1392   ///
   1393   /// This function is an APInt version of the countPopulation functions
   1394   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1395   ///
   1396   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1397   unsigned countPopulation() const {
   1398     if (isSingleWord())
   1399       return llvm::countPopulation(VAL);
   1400     return countPopulationSlowCase();
   1401   }
   1402 
   1403   /// @}
   1404   /// \name Conversion Functions
   1405   /// @{
   1406   void print(raw_ostream &OS, bool isSigned) const;
   1407 
   1408   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1409   /// SmallString.
   1410   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1411                 bool formatAsCLiteral = false) const;
   1412 
   1413   /// Considers the APInt to be unsigned and converts it into a string in the
   1414   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1415   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1416     toString(Str, Radix, false, false);
   1417   }
   1418 
   1419   /// Considers the APInt to be signed and converts it into a string in the
   1420   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1421   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1422     toString(Str, Radix, true, false);
   1423   }
   1424 
   1425   /// \brief Return the APInt as a std::string.
   1426   ///
   1427   /// Note that this is an inefficient method.  It is better to pass in a
   1428   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1429   /// for the string.
   1430   std::string toString(unsigned Radix, bool Signed) const;
   1431 
   1432   /// \returns a byte-swapped representation of this APInt Value.
   1433   APInt byteSwap() const;
   1434 
   1435   /// \returns the value with the bit representation reversed of this APInt
   1436   /// Value.
   1437   APInt reverseBits() const;
   1438 
   1439   /// \brief Converts this APInt to a double value.
   1440   double roundToDouble(bool isSigned) const;
   1441 
   1442   /// \brief Converts this unsigned APInt to a double value.
   1443   double roundToDouble() const { return roundToDouble(false); }
   1444 
   1445   /// \brief Converts this signed APInt to a double value.
   1446   double signedRoundToDouble() const { return roundToDouble(true); }
   1447 
   1448   /// \brief Converts APInt bits to a double
   1449   ///
   1450   /// The conversion does not do a translation from integer to double, it just
   1451   /// re-interprets the bits as a double. Note that it is valid to do this on
   1452   /// any bit width. Exactly 64 bits will be translated.
   1453   double bitsToDouble() const {
   1454     union {
   1455       uint64_t I;
   1456       double D;
   1457     } T;
   1458     T.I = (isSingleWord() ? VAL : pVal[0]);
   1459     return T.D;
   1460   }
   1461 
   1462   /// \brief Converts APInt bits to a double
   1463   ///
   1464   /// The conversion does not do a translation from integer to float, it just
   1465   /// re-interprets the bits as a float. Note that it is valid to do this on
   1466   /// any bit width. Exactly 32 bits will be translated.
   1467   float bitsToFloat() const {
   1468     union {
   1469       unsigned I;
   1470       float F;
   1471     } T;
   1472     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1473     return T.F;
   1474   }
   1475 
   1476   /// \brief Converts a double to APInt bits.
   1477   ///
   1478   /// The conversion does not do a translation from double to integer, it just
   1479   /// re-interprets the bits of the double.
   1480   static APInt doubleToBits(double V) {
   1481     union {
   1482       uint64_t I;
   1483       double D;
   1484     } T;
   1485     T.D = V;
   1486     return APInt(sizeof T * CHAR_BIT, T.I);
   1487   }
   1488 
   1489   /// \brief Converts a float to APInt bits.
   1490   ///
   1491   /// The conversion does not do a translation from float to integer, it just
   1492   /// re-interprets the bits of the float.
   1493   static APInt floatToBits(float V) {
   1494     union {
   1495       unsigned I;
   1496       float F;
   1497     } T;
   1498     T.F = V;
   1499     return APInt(sizeof T * CHAR_BIT, T.I);
   1500   }
   1501 
   1502   /// @}
   1503   /// \name Mathematics Operations
   1504   /// @{
   1505 
   1506   /// \returns the floor log base 2 of this APInt.
   1507   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
   1508 
   1509   /// \returns the ceil log base 2 of this APInt.
   1510   unsigned ceilLogBase2() const {
   1511     APInt temp(*this);
   1512     --temp;
   1513     return BitWidth - temp.countLeadingZeros();
   1514   }
   1515 
   1516   /// \returns the nearest log base 2 of this APInt. Ties round up.
   1517   ///
   1518   /// NOTE: When we have a BitWidth of 1, we define:
   1519   ///
   1520   ///   log2(0) = UINT32_MAX
   1521   ///   log2(1) = 0
   1522   ///
   1523   /// to get around any mathematical concerns resulting from
   1524   /// referencing 2 in a space where 2 does no exist.
   1525   unsigned nearestLogBase2() const {
   1526     // Special case when we have a bitwidth of 1. If VAL is 1, then we
   1527     // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
   1528     // UINT32_MAX.
   1529     if (BitWidth == 1)
   1530       return VAL - 1;
   1531 
   1532     // Handle the zero case.
   1533     if (!getBoolValue())
   1534       return UINT32_MAX;
   1535 
   1536     // The non-zero case is handled by computing:
   1537     //
   1538     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
   1539     //
   1540     // where x[i] is referring to the value of the ith bit of x.
   1541     unsigned lg = logBase2();
   1542     return lg + unsigned((*this)[lg - 1]);
   1543   }
   1544 
   1545   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1546   /// otherwise
   1547   int32_t exactLogBase2() const {
   1548     if (!isPowerOf2())
   1549       return -1;
   1550     return logBase2();
   1551   }
   1552 
   1553   /// \brief Compute the square root
   1554   APInt sqrt() const;
   1555 
   1556   /// \brief Get the absolute value;
   1557   ///
   1558   /// If *this is < 0 then return -(*this), otherwise *this;
   1559   APInt abs() const {
   1560     if (isNegative())
   1561       return -(*this);
   1562     return *this;
   1563   }
   1564 
   1565   /// \returns the multiplicative inverse for a given modulo.
   1566   APInt multiplicativeInverse(const APInt &modulo) const;
   1567 
   1568   /// @}
   1569   /// \name Support for division by constant
   1570   /// @{
   1571 
   1572   /// Calculate the magic number for signed division by a constant.
   1573   struct ms;
   1574   ms magic() const;
   1575 
   1576   /// Calculate the magic number for unsigned division by a constant.
   1577   struct mu;
   1578   mu magicu(unsigned LeadingZeros = 0) const;
   1579 
   1580   /// @}
   1581   /// \name Building-block Operations for APInt and APFloat
   1582   /// @{
   1583 
   1584   // These building block operations operate on a representation of arbitrary
   1585   // precision, two's-complement, bignum integer values. They should be
   1586   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1587   // generally a pointer to the base of an array of integer parts, representing
   1588   // an unsigned bignum, and a count of how many parts there are.
   1589 
   1590   /// Sets the least significant part of a bignum to the input value, and zeroes
   1591   /// out higher parts.
   1592   static void tcSet(integerPart *, integerPart, unsigned int);
   1593 
   1594   /// Assign one bignum to another.
   1595   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1596 
   1597   /// Returns true if a bignum is zero, false otherwise.
   1598   static bool tcIsZero(const integerPart *, unsigned int);
   1599 
   1600   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1601   static int tcExtractBit(const integerPart *, unsigned int bit);
   1602 
   1603   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1604   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1605   /// significant bit of DST.  All high bits above srcBITS in DST are
   1606   /// zero-filled.
   1607   static void tcExtract(integerPart *, unsigned int dstCount,
   1608                         const integerPart *, unsigned int srcBits,
   1609                         unsigned int srcLSB);
   1610 
   1611   /// Set the given bit of a bignum.  Zero-based.
   1612   static void tcSetBit(integerPart *, unsigned int bit);
   1613 
   1614   /// Clear the given bit of a bignum.  Zero-based.
   1615   static void tcClearBit(integerPart *, unsigned int bit);
   1616 
   1617   /// Returns the bit number of the least or most significant set bit of a
   1618   /// number.  If the input number has no bits set -1U is returned.
   1619   static unsigned int tcLSB(const integerPart *, unsigned int);
   1620   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1621 
   1622   /// Negate a bignum in-place.
   1623   static void tcNegate(integerPart *, unsigned int);
   1624 
   1625   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1626   static integerPart tcAdd(integerPart *, const integerPart *,
   1627                            integerPart carry, unsigned);
   1628 
   1629   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1630   static integerPart tcSubtract(integerPart *, const integerPart *,
   1631                                 integerPart carry, unsigned);
   1632 
   1633   /// DST += SRC * MULTIPLIER + PART   if add is true
   1634   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1635   ///
   1636   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1637   /// start at the same point, i.e. DST == SRC.
   1638   ///
   1639   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1640   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1641   /// result, and if all of the omitted higher parts were zero return zero,
   1642   /// otherwise overflow occurred and return one.
   1643   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1644                             integerPart multiplier, integerPart carry,
   1645                             unsigned int srcParts, unsigned int dstParts,
   1646                             bool add);
   1647 
   1648   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1649   /// filled with the least significant parts of the result.  Returns one if
   1650   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1651   /// operands.
   1652   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
   1653                         unsigned);
   1654 
   1655   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1656   /// operands.  No overflow occurs.  DST must be disjoint from both
   1657   /// operands. Returns the number of parts required to hold the result.
   1658   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1659                                      const integerPart *, unsigned, unsigned);
   1660 
   1661   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1662   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1663   /// REMAINDER to the remainder, return zero.  i.e.
   1664   ///
   1665   ///  OLD_LHS = RHS * LHS + REMAINDER
   1666   ///
   1667   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1668   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1669   /// REMAINDER and SCRATCH must be distinct.
   1670   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1671                       integerPart *remainder, integerPart *scratch,
   1672                       unsigned int parts);
   1673 
   1674   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
   1675   /// restrictions on COUNT.
   1676   static void tcShiftLeft(integerPart *, unsigned int parts,
   1677                           unsigned int count);
   1678 
   1679   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
   1680   /// restrictions on COUNT.
   1681   static void tcShiftRight(integerPart *, unsigned int parts,
   1682                            unsigned int count);
   1683 
   1684   /// The obvious AND, OR and XOR and complement operations.
   1685   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1686   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1687   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1688   static void tcComplement(integerPart *, unsigned int);
   1689 
   1690   /// Comparison (unsigned) of two bignums.
   1691   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
   1692 
   1693   /// Increment a bignum in-place.  Return the carry flag.
   1694   static integerPart tcIncrement(integerPart *, unsigned int);
   1695 
   1696   /// Decrement a bignum in-place.  Return the borrow flag.
   1697   static integerPart tcDecrement(integerPart *, unsigned int);
   1698 
   1699   /// Set the least significant BITS and clear the rest.
   1700   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1701                                         unsigned int bits);
   1702 
   1703   /// \brief debug method
   1704   void dump() const;
   1705 
   1706   /// @}
   1707 };
   1708 
   1709 /// Magic data for optimising signed division by a constant.
   1710 struct APInt::ms {
   1711   APInt m;    ///< magic number
   1712   unsigned s; ///< shift amount
   1713 };
   1714 
   1715 /// Magic data for optimising unsigned division by a constant.
   1716 struct APInt::mu {
   1717   APInt m;    ///< magic number
   1718   bool a;     ///< add indicator
   1719   unsigned s; ///< shift amount
   1720 };
   1721 
   1722 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1723 
   1724 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1725 
   1726 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1727   I.print(OS, true);
   1728   return OS;
   1729 }
   1730 
   1731 inline APInt operator-(APInt v) {
   1732   v.flipAllBits();
   1733   ++v;
   1734   return v;
   1735 }
   1736 
   1737 inline APInt operator+(APInt a, const APInt &b) {
   1738   a += b;
   1739   return a;
   1740 }
   1741 
   1742 inline APInt operator+(const APInt &a, APInt &&b) {
   1743   b += a;
   1744   return std::move(b);
   1745 }
   1746 
   1747 inline APInt operator+(APInt a, uint64_t RHS) {
   1748   a += RHS;
   1749   return a;
   1750 }
   1751 
   1752 inline APInt operator+(uint64_t LHS, APInt b) {
   1753   b += LHS;
   1754   return b;
   1755 }
   1756 
   1757 inline APInt operator-(APInt a, const APInt &b) {
   1758   a -= b;
   1759   return a;
   1760 }
   1761 
   1762 inline APInt operator-(const APInt &a, APInt &&b) {
   1763   b = -std::move(b);
   1764   b += a;
   1765   return std::move(b);
   1766 }
   1767 
   1768 inline APInt operator-(APInt a, uint64_t RHS) {
   1769   a -= RHS;
   1770   return a;
   1771 }
   1772 
   1773 inline APInt operator-(uint64_t LHS, APInt b) {
   1774   b = -std::move(b);
   1775   b += LHS;
   1776   return b;
   1777 }
   1778 
   1779 
   1780 namespace APIntOps {
   1781 
   1782 /// \brief Determine the smaller of two APInts considered to be signed.
   1783 inline const APInt &smin(const APInt &A, const APInt &B) {
   1784   return A.slt(B) ? A : B;
   1785 }
   1786 
   1787 /// \brief Determine the larger of two APInts considered to be signed.
   1788 inline const APInt &smax(const APInt &A, const APInt &B) {
   1789   return A.sgt(B) ? A : B;
   1790 }
   1791 
   1792 /// \brief Determine the smaller of two APInts considered to be signed.
   1793 inline const APInt &umin(const APInt &A, const APInt &B) {
   1794   return A.ult(B) ? A : B;
   1795 }
   1796 
   1797 /// \brief Determine the larger of two APInts considered to be unsigned.
   1798 inline const APInt &umax(const APInt &A, const APInt &B) {
   1799   return A.ugt(B) ? A : B;
   1800 }
   1801 
   1802 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
   1803 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
   1804 
   1805 /// \brief Check if the specified APInt has a N-bits signed integer value.
   1806 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
   1807   return APIVal.isSignedIntN(N);
   1808 }
   1809 
   1810 /// \returns true if the argument APInt value is a sequence of ones starting at
   1811 /// the least significant bit with the remainder zero.
   1812 inline bool isMask(unsigned numBits, const APInt &APIVal) {
   1813   return numBits <= APIVal.getBitWidth() &&
   1814          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1815 }
   1816 
   1817 /// \returns true if the argument is a non-empty sequence of ones starting at
   1818 /// the least significant bit with the remainder zero (32 bit version).
   1819 /// Ex. isMask(0x0000FFFFU) == true.
   1820 inline bool isMask(const APInt &Value) {
   1821   return (Value != 0) && ((Value + 1) & Value) == 0;
   1822 }
   1823 
   1824 /// \brief Return true if the argument APInt value contains a sequence of ones
   1825 /// with the remainder zero.
   1826 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
   1827   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
   1828 }
   1829 
   1830 /// \brief Returns a byte-swapped representation of the specified APInt Value.
   1831 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
   1832 
   1833 /// \brief Returns the floor log base 2 of the specified APInt value.
   1834 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
   1835 
   1836 /// \brief Compute GCD of two APInt values.
   1837 ///
   1838 /// This function returns the greatest common divisor of the two APInt values
   1839 /// using Euclid's algorithm.
   1840 ///
   1841 /// \returns the greatest common divisor of Val1 and Val2
   1842 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
   1843 
   1844 /// \brief Converts the given APInt to a double value.
   1845 ///
   1846 /// Treats the APInt as an unsigned value for conversion purposes.
   1847 inline double RoundAPIntToDouble(const APInt &APIVal) {
   1848   return APIVal.roundToDouble();
   1849 }
   1850 
   1851 /// \brief Converts the given APInt to a double value.
   1852 ///
   1853 /// Treats the APInt as a signed value for conversion purposes.
   1854 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   1855   return APIVal.signedRoundToDouble();
   1856 }
   1857 
   1858 /// \brief Converts the given APInt to a float vlalue.
   1859 inline float RoundAPIntToFloat(const APInt &APIVal) {
   1860   return float(RoundAPIntToDouble(APIVal));
   1861 }
   1862 
   1863 /// \brief Converts the given APInt to a float value.
   1864 ///
   1865 /// Treast the APInt as a signed value for conversion purposes.
   1866 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   1867   return float(APIVal.signedRoundToDouble());
   1868 }
   1869 
   1870 /// \brief Converts the given double value into a APInt.
   1871 ///
   1872 /// This function convert a double value to an APInt value.
   1873 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1874 
   1875 /// \brief Converts a float value into a APInt.
   1876 ///
   1877 /// Converts a float value into an APInt value.
   1878 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1879   return RoundDoubleToAPInt(double(Float), width);
   1880 }
   1881 
   1882 /// \brief Arithmetic right-shift function.
   1883 ///
   1884 /// Arithmetic right-shift the APInt by shiftAmt.
   1885 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
   1886   return LHS.ashr(shiftAmt);
   1887 }
   1888 
   1889 /// \brief Logical right-shift function.
   1890 ///
   1891 /// Logical right-shift the APInt by shiftAmt.
   1892 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
   1893   return LHS.lshr(shiftAmt);
   1894 }
   1895 
   1896 /// \brief Left-shift function.
   1897 ///
   1898 /// Left-shift the APInt by shiftAmt.
   1899 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
   1900   return LHS.shl(shiftAmt);
   1901 }
   1902 
   1903 /// \brief Signed division function for APInt.
   1904 ///
   1905 /// Signed divide APInt LHS by APInt RHS.
   1906 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
   1907 
   1908 /// \brief Unsigned division function for APInt.
   1909 ///
   1910 /// Unsigned divide APInt LHS by APInt RHS.
   1911 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
   1912 
   1913 /// \brief Function for signed remainder operation.
   1914 ///
   1915 /// Signed remainder operation on APInt.
   1916 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
   1917 
   1918 /// \brief Function for unsigned remainder operation.
   1919 ///
   1920 /// Unsigned remainder operation on APInt.
   1921 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
   1922 
   1923 /// \brief Function for multiplication operation.
   1924 ///
   1925 /// Performs multiplication on APInt values.
   1926 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
   1927 
   1928 /// \brief Function for addition operation.
   1929 ///
   1930 /// Performs addition on APInt values.
   1931 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
   1932 
   1933 /// \brief Function for subtraction operation.
   1934 ///
   1935 /// Performs subtraction on APInt values.
   1936 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
   1937 
   1938 /// \brief Bitwise AND function for APInt.
   1939 ///
   1940 /// Performs bitwise AND operation on APInt LHS and
   1941 /// APInt RHS.
   1942 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
   1943 
   1944 /// \brief Bitwise OR function for APInt.
   1945 ///
   1946 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1947 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
   1948 
   1949 /// \brief Bitwise XOR function for APInt.
   1950 ///
   1951 /// Performs bitwise XOR operation on APInt.
   1952 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
   1953 
   1954 /// \brief Bitwise complement function.
   1955 ///
   1956 /// Performs a bitwise complement operation on APInt.
   1957 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
   1958 
   1959 } // End of APIntOps namespace
   1960 
   1961 // See friend declaration above. This additional declaration is required in
   1962 // order to compile LLVM with IBM xlC compiler.
   1963 hash_code hash_value(const APInt &Arg);
   1964 } // End of llvm namespace
   1965 
   1966 #endif
   1967