Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_IA32
      6 
      7 #include "src/codegen.h"
      8 #include "src/deoptimizer.h"
      9 #include "src/full-codegen/full-codegen.h"
     10 #include "src/ia32/frames-ia32.h"
     11 #include "src/register-configuration.h"
     12 #include "src/safepoint-table.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 const int Deoptimizer::table_entry_size_ = 10;
     18 
     19 
     20 int Deoptimizer::patch_size() {
     21   return Assembler::kCallInstructionLength;
     22 }
     23 
     24 
     25 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
     26   Isolate* isolate = code->GetIsolate();
     27   HandleScope scope(isolate);
     28 
     29   // Compute the size of relocation information needed for the code
     30   // patching in Deoptimizer::PatchCodeForDeoptimization below.
     31   int min_reloc_size = 0;
     32   int prev_pc_offset = 0;
     33   DeoptimizationInputData* deopt_data =
     34       DeoptimizationInputData::cast(code->deoptimization_data());
     35   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
     36     int pc_offset = deopt_data->Pc(i)->value();
     37     if (pc_offset == -1) continue;
     38     pc_offset = pc_offset + 1;  // We will encode the pc offset after the call.
     39     DCHECK_GE(pc_offset, prev_pc_offset);
     40     int pc_delta = pc_offset - prev_pc_offset;
     41     // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
     42     // if encodable with small pc delta encoding and up to 6 bytes
     43     // otherwise.
     44     if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
     45       min_reloc_size += 2;
     46     } else {
     47       min_reloc_size += 6;
     48     }
     49     prev_pc_offset = pc_offset;
     50   }
     51 
     52   // If the relocation information is not big enough we create a new
     53   // relocation info object that is padded with comments to make it
     54   // big enough for lazy doptimization.
     55   int reloc_length = code->relocation_info()->length();
     56   if (min_reloc_size > reloc_length) {
     57     int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
     58     // Padding needed.
     59     int min_padding = min_reloc_size - reloc_length;
     60     // Number of comments needed to take up at least that much space.
     61     int additional_comments =
     62         (min_padding + comment_reloc_size - 1) / comment_reloc_size;
     63     // Actual padding size.
     64     int padding = additional_comments * comment_reloc_size;
     65     // Allocate new relocation info and copy old relocation to the end
     66     // of the new relocation info array because relocation info is
     67     // written and read backwards.
     68     Factory* factory = isolate->factory();
     69     Handle<ByteArray> new_reloc =
     70         factory->NewByteArray(reloc_length + padding, TENURED);
     71     MemCopy(new_reloc->GetDataStartAddress() + padding,
     72             code->relocation_info()->GetDataStartAddress(), reloc_length);
     73     // Create a relocation writer to write the comments in the padding
     74     // space. Use position 0 for everything to ensure short encoding.
     75     RelocInfoWriter reloc_info_writer(
     76         new_reloc->GetDataStartAddress() + padding, 0);
     77     intptr_t comment_string
     78         = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
     79     RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
     80     for (int i = 0; i < additional_comments; ++i) {
     81 #ifdef DEBUG
     82       byte* pos_before = reloc_info_writer.pos();
     83 #endif
     84       reloc_info_writer.Write(&rinfo);
     85       DCHECK(RelocInfo::kMinRelocCommentSize ==
     86              pos_before - reloc_info_writer.pos());
     87     }
     88     // Replace relocation information on the code object.
     89     code->set_relocation_info(*new_reloc);
     90   }
     91 }
     92 
     93 
     94 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
     95   Address code_start_address = code->instruction_start();
     96 
     97   if (FLAG_zap_code_space) {
     98     // Fail hard and early if we enter this code object again.
     99     byte* pointer = code->FindCodeAgeSequence();
    100     if (pointer != NULL) {
    101       pointer += kNoCodeAgeSequenceLength;
    102     } else {
    103       pointer = code->instruction_start();
    104     }
    105     CodePatcher patcher(isolate, pointer, 1);
    106     patcher.masm()->int3();
    107 
    108     DeoptimizationInputData* data =
    109         DeoptimizationInputData::cast(code->deoptimization_data());
    110     int osr_offset = data->OsrPcOffset()->value();
    111     if (osr_offset > 0) {
    112       CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
    113                               1);
    114       osr_patcher.masm()->int3();
    115     }
    116   }
    117 
    118   // We will overwrite the code's relocation info in-place. Relocation info
    119   // is written backward. The relocation info is the payload of a byte
    120   // array.  Later on we will slide this to the start of the byte array and
    121   // create a filler object in the remaining space.
    122   ByteArray* reloc_info = code->relocation_info();
    123   Address reloc_end_address = reloc_info->address() + reloc_info->Size();
    124   RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
    125 
    126   // Since the call is a relative encoding, write new
    127   // reloc info.  We do not need any of the existing reloc info because the
    128   // existing code will not be used again (we zap it in debug builds).
    129   //
    130   // Emit call to lazy deoptimization at all lazy deopt points.
    131   DeoptimizationInputData* deopt_data =
    132       DeoptimizationInputData::cast(code->deoptimization_data());
    133 #ifdef DEBUG
    134   Address prev_call_address = NULL;
    135 #endif
    136   // For each LLazyBailout instruction insert a call to the corresponding
    137   // deoptimization entry.
    138   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    139     if (deopt_data->Pc(i)->value() == -1) continue;
    140     // Patch lazy deoptimization entry.
    141     Address call_address = code_start_address + deopt_data->Pc(i)->value();
    142     CodePatcher patcher(isolate, call_address, patch_size());
    143     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
    144     patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
    145     // We use RUNTIME_ENTRY for deoptimization bailouts.
    146     RelocInfo rinfo(isolate, call_address + 1,  // 1 after the call opcode.
    147                     RelocInfo::RUNTIME_ENTRY,
    148                     reinterpret_cast<intptr_t>(deopt_entry), NULL);
    149     reloc_info_writer.Write(&rinfo);
    150     DCHECK_GE(reloc_info_writer.pos(),
    151               reloc_info->address() + ByteArray::kHeaderSize);
    152     DCHECK(prev_call_address == NULL ||
    153            call_address >= prev_call_address + patch_size());
    154     DCHECK(call_address + patch_size() <= code->instruction_end());
    155 #ifdef DEBUG
    156     prev_call_address = call_address;
    157 #endif
    158   }
    159 
    160   // Move the relocation info to the beginning of the byte array.
    161   const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
    162   MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);
    163 
    164   // Right trim the relocation info to free up remaining space.
    165   const int delta = reloc_info->length() - new_reloc_length;
    166   if (delta > 0) {
    167     isolate->heap()->RightTrimFixedArray(reloc_info, delta);
    168   }
    169 }
    170 
    171 
    172 void Deoptimizer::SetPlatformCompiledStubRegisters(
    173     FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
    174   intptr_t handler =
    175       reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
    176   int params = descriptor->GetHandlerParameterCount();
    177   output_frame->SetRegister(eax.code(), params);
    178   output_frame->SetRegister(ebx.code(), handler);
    179 }
    180 
    181 
    182 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
    183   for (int i = 0; i < XMMRegister::kMaxNumRegisters; ++i) {
    184     Float64 double_value = input_->GetDoubleRegister(i);
    185     output_frame->SetDoubleRegister(i, double_value);
    186   }
    187 }
    188 
    189 #define __ masm()->
    190 
    191 void Deoptimizer::TableEntryGenerator::Generate() {
    192   GeneratePrologue();
    193 
    194   // Save all general purpose registers before messing with them.
    195   const int kNumberOfRegisters = Register::kNumRegisters;
    196 
    197   const int kDoubleRegsSize = kDoubleSize * XMMRegister::kMaxNumRegisters;
    198   __ sub(esp, Immediate(kDoubleRegsSize));
    199   const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
    200   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    201     int code = config->GetAllocatableDoubleCode(i);
    202     XMMRegister xmm_reg = XMMRegister::from_code(code);
    203     int offset = code * kDoubleSize;
    204     __ movsd(Operand(esp, offset), xmm_reg);
    205   }
    206 
    207   __ pushad();
    208 
    209   ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
    210   __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
    211 
    212   const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
    213                                       kDoubleRegsSize;
    214 
    215   // Get the bailout id from the stack.
    216   __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
    217 
    218   // Get the address of the location in the code object
    219   // and compute the fp-to-sp delta in register edx.
    220   __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
    221   __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
    222 
    223   __ sub(edx, ebp);
    224   __ neg(edx);
    225 
    226   // Allocate a new deoptimizer object.
    227   __ PrepareCallCFunction(6, eax);
    228   __ mov(eax, Immediate(0));
    229   Label context_check;
    230   __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
    231   __ JumpIfSmi(edi, &context_check);
    232   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
    233   __ bind(&context_check);
    234   __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
    235   __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
    236   __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
    237   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
    238   __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
    239   __ mov(Operand(esp, 5 * kPointerSize),
    240          Immediate(ExternalReference::isolate_address(isolate())));
    241   {
    242     AllowExternalCallThatCantCauseGC scope(masm());
    243     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
    244   }
    245 
    246   // Preserve deoptimizer object in register eax and get the input
    247   // frame descriptor pointer.
    248   __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
    249 
    250   // Fill in the input registers.
    251   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    252     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    253     __ pop(Operand(ebx, offset));
    254   }
    255 
    256   int double_regs_offset = FrameDescription::double_registers_offset();
    257   // Fill in the double input registers.
    258   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    259     int code = config->GetAllocatableDoubleCode(i);
    260     int dst_offset = code * kDoubleSize + double_regs_offset;
    261     int src_offset = code * kDoubleSize;
    262     __ movsd(xmm0, Operand(esp, src_offset));
    263     __ movsd(Operand(ebx, dst_offset), xmm0);
    264   }
    265 
    266   // Clear FPU all exceptions.
    267   // TODO(ulan): Find out why the TOP register is not zero here in some cases,
    268   // and check that the generated code never deoptimizes with unbalanced stack.
    269   __ fnclex();
    270 
    271   // Remove the bailout id, return address and the double registers.
    272   __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
    273 
    274   // Compute a pointer to the unwinding limit in register ecx; that is
    275   // the first stack slot not part of the input frame.
    276   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    277   __ add(ecx, esp);
    278 
    279   // Unwind the stack down to - but not including - the unwinding
    280   // limit and copy the contents of the activation frame to the input
    281   // frame description.
    282   __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
    283   Label pop_loop_header;
    284   __ jmp(&pop_loop_header);
    285   Label pop_loop;
    286   __ bind(&pop_loop);
    287   __ pop(Operand(edx, 0));
    288   __ add(edx, Immediate(sizeof(uint32_t)));
    289   __ bind(&pop_loop_header);
    290   __ cmp(ecx, esp);
    291   __ j(not_equal, &pop_loop);
    292 
    293   // Compute the output frame in the deoptimizer.
    294   __ push(eax);
    295   __ PrepareCallCFunction(1, ebx);
    296   __ mov(Operand(esp, 0 * kPointerSize), eax);
    297   {
    298     AllowExternalCallThatCantCauseGC scope(masm());
    299     __ CallCFunction(
    300         ExternalReference::compute_output_frames_function(isolate()), 1);
    301   }
    302   __ pop(eax);
    303 
    304   __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
    305 
    306   // Replace the current (input) frame with the output frames.
    307   Label outer_push_loop, inner_push_loop,
    308       outer_loop_header, inner_loop_header;
    309   // Outer loop state: eax = current FrameDescription**, edx = one past the
    310   // last FrameDescription**.
    311   __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
    312   __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
    313   __ lea(edx, Operand(eax, edx, times_4, 0));
    314   __ jmp(&outer_loop_header);
    315   __ bind(&outer_push_loop);
    316   // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
    317   __ mov(ebx, Operand(eax, 0));
    318   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    319   __ jmp(&inner_loop_header);
    320   __ bind(&inner_push_loop);
    321   __ sub(ecx, Immediate(sizeof(uint32_t)));
    322   __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
    323   __ bind(&inner_loop_header);
    324   __ test(ecx, ecx);
    325   __ j(not_zero, &inner_push_loop);
    326   __ add(eax, Immediate(kPointerSize));
    327   __ bind(&outer_loop_header);
    328   __ cmp(eax, edx);
    329   __ j(below, &outer_push_loop);
    330 
    331   // In case of a failed STUB, we have to restore the XMM registers.
    332   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    333     int code = config->GetAllocatableDoubleCode(i);
    334     XMMRegister xmm_reg = XMMRegister::from_code(code);
    335     int src_offset = code * kDoubleSize + double_regs_offset;
    336     __ movsd(xmm_reg, Operand(ebx, src_offset));
    337   }
    338 
    339   // Push state, pc, and continuation from the last output frame.
    340   __ push(Operand(ebx, FrameDescription::state_offset()));
    341   __ push(Operand(ebx, FrameDescription::pc_offset()));
    342   __ push(Operand(ebx, FrameDescription::continuation_offset()));
    343 
    344 
    345   // Push the registers from the last output frame.
    346   for (int i = 0; i < kNumberOfRegisters; i++) {
    347     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    348     __ push(Operand(ebx, offset));
    349   }
    350 
    351   // Restore the registers from the stack.
    352   __ popad();
    353 
    354   // Return to the continuation point.
    355   __ ret(0);
    356 }
    357 
    358 
    359 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
    360   // Create a sequence of deoptimization entries.
    361   Label done;
    362   for (int i = 0; i < count(); i++) {
    363     int start = masm()->pc_offset();
    364     USE(start);
    365     __ push_imm32(i);
    366     __ jmp(&done);
    367     DCHECK(masm()->pc_offset() - start == table_entry_size_);
    368   }
    369   __ bind(&done);
    370 }
    371 
    372 
    373 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
    374   SetFrameSlot(offset, value);
    375 }
    376 
    377 
    378 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
    379   SetFrameSlot(offset, value);
    380 }
    381 
    382 
    383 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
    384   // No embedded constant pool support.
    385   UNREACHABLE();
    386 }
    387 
    388 
    389 #undef __
    390 
    391 
    392 }  // namespace internal
    393 }  // namespace v8
    394 
    395 #endif  // V8_TARGET_ARCH_IA32
    396