Home | History | Annotate | Download | only in s390
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been modified
     34 // significantly by Google Inc.
     35 // Copyright 2014 the V8 project authors. All rights reserved.
     36 
     37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
     38 #define V8_S390_ASSEMBLER_S390_INL_H_
     39 
     40 #include "src/s390/assembler-s390.h"
     41 
     42 #include "src/assembler.h"
     43 #include "src/debug/debug.h"
     44 #include "src/objects-inl.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 bool CpuFeatures::SupportsCrankshaft() { return true; }
     50 
     51 bool CpuFeatures::SupportsSimd128() { return false; }
     52 
     53 void RelocInfo::apply(intptr_t delta) {
     54   // Absolute code pointer inside code object moves with the code object.
     55   if (IsInternalReference(rmode_)) {
     56     // Jump table entry
     57     Address target = Memory::Address_at(pc_);
     58     Memory::Address_at(pc_) = target + delta;
     59   } else if (IsCodeTarget(rmode_)) {
     60     SixByteInstr instr =
     61         Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
     62     int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
     63                   - static_cast<int32_t>(delta);
     64     instr >>= 32;  // Clear the 4-byte displacement field.
     65     instr <<= 32;
     66     instr |= static_cast<uint32_t>(dis / 2);
     67     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
     68                                                   instr);
     69   } else {
     70     // mov sequence
     71     DCHECK(IsInternalReferenceEncoded(rmode_));
     72     Address target = Assembler::target_address_at(pc_, host_);
     73     Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
     74                                      SKIP_ICACHE_FLUSH);
     75   }
     76 }
     77 
     78 Address RelocInfo::target_internal_reference() {
     79   if (IsInternalReference(rmode_)) {
     80     // Jump table entry
     81     return Memory::Address_at(pc_);
     82   } else {
     83     // mov sequence
     84     DCHECK(IsInternalReferenceEncoded(rmode_));
     85     return Assembler::target_address_at(pc_, host_);
     86   }
     87 }
     88 
     89 Address RelocInfo::target_internal_reference_address() {
     90   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
     91   return reinterpret_cast<Address>(pc_);
     92 }
     93 
     94 Address RelocInfo::target_address() {
     95   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
     96   return Assembler::target_address_at(pc_, host_);
     97 }
     98 
     99 Address RelocInfo::target_address_address() {
    100   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
    101          rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
    102 
    103   // Read the address of the word containing the target_address in an
    104   // instruction stream.
    105   // The only architecture-independent user of this function is the serializer.
    106   // The serializer uses it to find out how many raw bytes of instruction to
    107   // output before the next target.
    108   // For an instruction like LIS/ORI where the target bits are mixed into the
    109   // instruction bits, the size of the target will be zero, indicating that the
    110   // serializer should not step forward in memory after a target is resolved
    111   // and written.
    112   return reinterpret_cast<Address>(pc_);
    113 }
    114 
    115 Address RelocInfo::constant_pool_entry_address() {
    116   UNREACHABLE();
    117   return NULL;
    118 }
    119 
    120 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
    121 
    122 Address Assembler::target_address_at(Address pc, Code* code) {
    123   Address constant_pool = code ? code->constant_pool() : NULL;
    124   return target_address_at(pc, constant_pool);
    125 }
    126 
    127 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    128                                       Address target,
    129                                       ICacheFlushMode icache_flush_mode) {
    130   Address constant_pool = code ? code->constant_pool() : NULL;
    131   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    132 }
    133 
    134 Address Assembler::target_address_from_return_address(Address pc) {
    135   // Returns the address of the call target from the return address that will
    136   // be returned to after a call.
    137   // Sequence is:
    138   //    BRASL r14, RI
    139   return pc - kCallTargetAddressOffset;
    140 }
    141 
    142 Address Assembler::return_address_from_call_start(Address pc) {
    143   // Sequence is:
    144   //    BRASL r14, RI
    145   return pc + kCallTargetAddressOffset;
    146 }
    147 
    148 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
    149   SixByteInstr instr =
    150       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
    151   int index = instr & 0xFFFFFFFF;
    152   return code_targets_[index];
    153 }
    154 
    155 Object* RelocInfo::target_object() {
    156   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    157   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    158 }
    159 
    160 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    161   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    162   if (rmode_ == EMBEDDED_OBJECT) {
    163     return Handle<Object>(
    164         reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
    165   } else {
    166     return origin->code_target_object_handle_at(pc_);
    167   }
    168 }
    169 
    170 void RelocInfo::set_target_object(Object* target,
    171                                   WriteBarrierMode write_barrier_mode,
    172                                   ICacheFlushMode icache_flush_mode) {
    173   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    174   Assembler::set_target_address_at(isolate_, pc_, host_,
    175                                    reinterpret_cast<Address>(target),
    176                                    icache_flush_mode);
    177   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
    178       target->IsHeapObject()) {
    179     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    180         host(), this, HeapObject::cast(target));
    181     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
    182   }
    183 }
    184 
    185 Address RelocInfo::target_external_reference() {
    186   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    187   return Assembler::target_address_at(pc_, host_);
    188 }
    189 
    190 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    191   DCHECK(IsRuntimeEntry(rmode_));
    192   return target_address();
    193 }
    194 
    195 void RelocInfo::set_target_runtime_entry(Address target,
    196                                          WriteBarrierMode write_barrier_mode,
    197                                          ICacheFlushMode icache_flush_mode) {
    198   DCHECK(IsRuntimeEntry(rmode_));
    199   if (target_address() != target)
    200     set_target_address(target, write_barrier_mode, icache_flush_mode);
    201 }
    202 
    203 Handle<Cell> RelocInfo::target_cell_handle() {
    204   DCHECK(rmode_ == RelocInfo::CELL);
    205   Address address = Memory::Address_at(pc_);
    206   return Handle<Cell>(reinterpret_cast<Cell**>(address));
    207 }
    208 
    209 Cell* RelocInfo::target_cell() {
    210   DCHECK(rmode_ == RelocInfo::CELL);
    211   return Cell::FromValueAddress(Memory::Address_at(pc_));
    212 }
    213 
    214 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
    215                                 ICacheFlushMode icache_flush_mode) {
    216   DCHECK(rmode_ == RelocInfo::CELL);
    217   Address address = cell->address() + Cell::kValueOffset;
    218   Memory::Address_at(pc_) = address;
    219   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    220     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
    221                                                                   cell);
    222   }
    223 }
    224 
    225 #if V8_TARGET_ARCH_S390X
    226 // NOP(2byte) + PUSH + MOV + BASR =
    227 // NOP + LAY + STG + IIHF + IILF + BASR
    228 static const int kCodeAgingSequenceLength = 28;
    229 static const int kCodeAgingTargetDelta = 14;  // Jump past NOP + PUSH to IIHF
    230                                               // LAY + 4 * STG + LA
    231 static const int kNoCodeAgeSequenceLength = 34;
    232 #else
    233 #if (V8_HOST_ARCH_S390)
    234 // NOP + NILH + LAY + ST + IILF + BASR
    235 static const int kCodeAgingSequenceLength = 24;
    236 static const int kCodeAgingTargetDelta = 16;  // Jump past NOP to IILF
    237 // NILH + LAY + 4 * ST + LA
    238 static const int kNoCodeAgeSequenceLength = 30;
    239 #else
    240 // NOP + LAY + ST + IILF + BASR
    241 static const int kCodeAgingSequenceLength = 20;
    242 static const int kCodeAgingTargetDelta = 12;  // Jump past NOP to IILF
    243 // LAY + 4 * ST + LA
    244 static const int kNoCodeAgeSequenceLength = 26;
    245 #endif
    246 #endif
    247 
    248 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    249   UNREACHABLE();  // This should never be reached on S390.
    250   return Handle<Object>();
    251 }
    252 
    253 Code* RelocInfo::code_age_stub() {
    254   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    255   return Code::GetCodeFromTargetAddress(
    256       Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
    257 }
    258 
    259 void RelocInfo::set_code_age_stub(Code* stub,
    260                                   ICacheFlushMode icache_flush_mode) {
    261   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    262   Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
    263                                    stub->instruction_start(),
    264                                    icache_flush_mode);
    265 }
    266 
    267 Address RelocInfo::debug_call_address() {
    268   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    269   return Assembler::target_address_at(pc_, host_);
    270 }
    271 
    272 void RelocInfo::set_debug_call_address(Address target) {
    273   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    274   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    275   if (host() != NULL) {
    276     Object* target_code = Code::GetCodeFromTargetAddress(target);
    277     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    278         host(), this, HeapObject::cast(target_code));
    279   }
    280 }
    281 
    282 void RelocInfo::WipeOut() {
    283   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    284          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    285          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
    286   if (IsInternalReference(rmode_)) {
    287     // Jump table entry
    288     Memory::Address_at(pc_) = NULL;
    289   } else if (IsInternalReferenceEncoded(rmode_)) {
    290     // mov sequence
    291     // Currently used only by deserializer, no need to flush.
    292     Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
    293                                      SKIP_ICACHE_FLUSH);
    294   } else {
    295     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    296   }
    297 }
    298 
    299 template <typename ObjectVisitor>
    300 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    301   RelocInfo::Mode mode = rmode();
    302   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    303     visitor->VisitEmbeddedPointer(this);
    304   } else if (RelocInfo::IsCodeTarget(mode)) {
    305     visitor->VisitCodeTarget(this);
    306   } else if (mode == RelocInfo::CELL) {
    307     visitor->VisitCell(this);
    308   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    309     visitor->VisitExternalReference(this);
    310   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    311     visitor->VisitInternalReference(this);
    312   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    313     visitor->VisitCodeAgeSequence(this);
    314   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    315              IsPatchedDebugBreakSlotSequence()) {
    316     visitor->VisitDebugTarget(this);
    317   } else if (IsRuntimeEntry(mode)) {
    318     visitor->VisitRuntimeEntry(this);
    319   }
    320 }
    321 
    322 template <typename StaticVisitor>
    323 void RelocInfo::Visit(Heap* heap) {
    324   RelocInfo::Mode mode = rmode();
    325   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    326     StaticVisitor::VisitEmbeddedPointer(heap, this);
    327   } else if (RelocInfo::IsCodeTarget(mode)) {
    328     StaticVisitor::VisitCodeTarget(heap, this);
    329   } else if (mode == RelocInfo::CELL) {
    330     StaticVisitor::VisitCell(heap, this);
    331   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    332     StaticVisitor::VisitExternalReference(this);
    333   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    334     StaticVisitor::VisitInternalReference(this);
    335   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    336     StaticVisitor::VisitCodeAgeSequence(heap, this);
    337   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    338              IsPatchedDebugBreakSlotSequence()) {
    339     StaticVisitor::VisitDebugTarget(heap, this);
    340   } else if (IsRuntimeEntry(mode)) {
    341     StaticVisitor::VisitRuntimeEntry(this);
    342   }
    343 }
    344 
    345 // Operand constructors
    346 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
    347   rm_ = no_reg;
    348   imm_ = immediate;
    349   rmode_ = rmode;
    350 }
    351 
    352 Operand::Operand(const ExternalReference& f) {
    353   rm_ = no_reg;
    354   imm_ = reinterpret_cast<intptr_t>(f.address());
    355   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
    356 }
    357 
    358 Operand::Operand(Smi* value) {
    359   rm_ = no_reg;
    360   imm_ = reinterpret_cast<intptr_t>(value);
    361   rmode_ = kRelocInfo_NONEPTR;
    362 }
    363 
    364 Operand::Operand(Register rm) {
    365   rm_ = rm;
    366   rmode_ = kRelocInfo_NONEPTR;  // S390 -why doesn't ARM do this?
    367 }
    368 
    369 void Assembler::CheckBuffer() {
    370   if (buffer_space() <= kGap) {
    371     GrowBuffer();
    372   }
    373 }
    374 
    375 int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
    376                                     TypeFeedbackId ast_id) {
    377   DCHECK(RelocInfo::IsCodeTarget(rmode));
    378   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
    379     SetRecordedAstId(ast_id);
    380     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
    381   } else {
    382     RecordRelocInfo(rmode);
    383   }
    384 
    385   int current = code_targets_.length();
    386   if (current > 0 && code_targets_.last().is_identical_to(target)) {
    387     // Optimization if we keep jumping to the same code target.
    388     current--;
    389   } else {
    390     code_targets_.Add(target);
    391   }
    392   return current;
    393 }
    394 
    395 // Helper to emit the binary encoding of a 2 byte instruction
    396 void Assembler::emit2bytes(uint16_t x) {
    397   CheckBuffer();
    398 #if V8_TARGET_LITTLE_ENDIAN
    399   // We need to emit instructions in big endian format as disassembler /
    400   // simulator require the first byte of the instruction in order to decode
    401   // the instruction length.  Swap the bytes.
    402   x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
    403 #endif
    404   *reinterpret_cast<uint16_t*>(pc_) = x;
    405   pc_ += 2;
    406 }
    407 
    408 // Helper to emit the binary encoding of a 4 byte instruction
    409 void Assembler::emit4bytes(uint32_t x) {
    410   CheckBuffer();
    411 #if V8_TARGET_LITTLE_ENDIAN
    412   // We need to emit instructions in big endian format as disassembler /
    413   // simulator require the first byte of the instruction in order to decode
    414   // the instruction length.  Swap the bytes.
    415   x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
    416       ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
    417 #endif
    418   *reinterpret_cast<uint32_t*>(pc_) = x;
    419   pc_ += 4;
    420 }
    421 
    422 // Helper to emit the binary encoding of a 6 byte instruction
    423 void Assembler::emit6bytes(uint64_t x) {
    424   CheckBuffer();
    425 #if V8_TARGET_LITTLE_ENDIAN
    426   // We need to emit instructions in big endian format as disassembler /
    427   // simulator require the first byte of the instruction in order to decode
    428   // the instruction length.  Swap the bytes.
    429   x = (static_cast<uint64_t>(x & 0xFF) << 40) |
    430       (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
    431       (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
    432       (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
    433       (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
    434       (static_cast<uint64_t>((x >> 40) & 0xFF));
    435   x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
    436 #else
    437   // We need to pad two bytes of zeros in order to get the 6-bytes
    438   // stored from low address.
    439   x = x << 16;
    440   x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
    441 #endif
    442   // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
    443   // space left over.
    444   *reinterpret_cast<uint64_t*>(pc_) = x;
    445   pc_ += 6;
    446 }
    447 
    448 bool Operand::is_reg() const { return rm_.is_valid(); }
    449 
    450 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
    451 Address Assembler::target_address_at(Address pc, Address constant_pool) {
    452   // S390 Instruction!
    453   // We want to check for instructions generated by Asm::mov()
    454   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
    455   SixByteInstr instr_1 =
    456       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
    457 
    458   if (BRASL == op1 || BRCL == op1) {
    459     int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
    460     return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
    461   }
    462 
    463 #if V8_TARGET_ARCH_S390X
    464   int instr1_length =
    465       Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
    466   Opcode op2 = Instruction::S390OpcodeValue(
    467       reinterpret_cast<const byte*>(pc + instr1_length));
    468   SixByteInstr instr_2 = Instruction::InstructionBits(
    469       reinterpret_cast<const byte*>(pc + instr1_length));
    470   // IIHF for hi_32, IILF for lo_32
    471   if (IIHF == op1 && IILF == op2) {
    472     return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
    473                                      ((instr_2 & 0xFFFFFFFF)));
    474   }
    475 #else
    476   // IILF loads 32-bits
    477   if (IILF == op1 || CFI == op1) {
    478     return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
    479   }
    480 #endif
    481 
    482   UNIMPLEMENTED();
    483   return (Address)0;
    484 }
    485 
    486 // This sets the branch destination (which gets loaded at the call address).
    487 // This is for calls and branches within generated code.  The serializer
    488 // has already deserialized the mov instructions etc.
    489 // There is a FIXED_SEQUENCE assumption here
    490 void Assembler::deserialization_set_special_target_at(
    491     Isolate* isolate, Address instruction_payload, Code* code, Address target) {
    492   set_target_address_at(isolate, instruction_payload, code, target);
    493 }
    494 
    495 void Assembler::deserialization_set_target_internal_reference_at(
    496     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    497   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
    498     Code* code = NULL;
    499     set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
    500   } else {
    501     Memory::Address_at(pc) = target;
    502   }
    503 }
    504 
    505 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
    506 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
    507                                       Address constant_pool, Address target,
    508                                       ICacheFlushMode icache_flush_mode) {
    509   // Check for instructions generated by Asm::mov()
    510   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
    511   SixByteInstr instr_1 =
    512       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
    513   bool patched = false;
    514 
    515   if (BRASL == op1 || BRCL == op1) {
    516     instr_1 >>= 32;  // Zero out the lower 32-bits
    517     instr_1 <<= 32;
    518     int32_t halfwords = (target - pc) / 2;  // number of halfwords
    519     instr_1 |= static_cast<uint32_t>(halfwords);
    520     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
    521                                                   instr_1);
    522     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
    523       Assembler::FlushICache(isolate, pc, 6);
    524     }
    525     patched = true;
    526   } else {
    527 #if V8_TARGET_ARCH_S390X
    528     int instr1_length =
    529         Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
    530     Opcode op2 = Instruction::S390OpcodeValue(
    531         reinterpret_cast<const byte*>(pc + instr1_length));
    532     SixByteInstr instr_2 = Instruction::InstructionBits(
    533         reinterpret_cast<const byte*>(pc + instr1_length));
    534     // IIHF for hi_32, IILF for lo_32
    535     if (IIHF == op1 && IILF == op2) {
    536       // IIHF
    537       instr_1 >>= 32;  // Zero out the lower 32-bits
    538       instr_1 <<= 32;
    539       instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
    540 
    541       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
    542                                                     instr_1);
    543 
    544       // IILF
    545       instr_2 >>= 32;
    546       instr_2 <<= 32;
    547       instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
    548 
    549       Instruction::SetInstructionBits<SixByteInstr>(
    550           reinterpret_cast<byte*>(pc + instr1_length), instr_2);
    551       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
    552         Assembler::FlushICache(isolate, pc, 12);
    553       }
    554       patched = true;
    555     }
    556 #else
    557     // IILF loads 32-bits
    558     if (IILF == op1 || CFI == op1) {
    559       instr_1 >>= 32;  // Zero out the lower 32-bits
    560       instr_1 <<= 32;
    561       instr_1 |= reinterpret_cast<uint32_t>(target);
    562 
    563       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
    564                                                     instr_1);
    565       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
    566         Assembler::FlushICache(isolate, pc, 6);
    567       }
    568       patched = true;
    569     }
    570 #endif
    571   }
    572   if (!patched) UNREACHABLE();
    573 }
    574 
    575 }  // namespace internal
    576 }  // namespace v8
    577 
    578 #endif  // V8_S390_ASSEMBLER_S390_INL_H_
    579