Home | History | Annotate | Download | only in html
      1 <html>
      2 <head>
      3 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      4 <title>6.Callgrind: a call-graph generating cache and branch prediction profiler</title>
      5 <link rel="stylesheet" type="text/css" href="vg_basic.css">
      6 <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
      7 <link rel="home" href="index.html" title="Valgrind Documentation">
      8 <link rel="up" href="manual.html" title="Valgrind User Manual">
      9 <link rel="prev" href="cg-manual.html" title="5.Cachegrind: a cache and branch-prediction profiler">
     10 <link rel="next" href="hg-manual.html" title="7.Helgrind: a thread error detector">
     11 </head>
     12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
     13 <div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
     14 <td width="22px" align="center" valign="middle"><a accesskey="p" href="cg-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
     15 <td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
     16 <td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
     17 <th align="center" valign="middle">Valgrind User Manual</th>
     18 <td width="22px" align="center" valign="middle"><a accesskey="n" href="hg-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
     19 </tr></table></div>
     20 <div class="chapter">
     21 <div class="titlepage"><div><div><h1 class="title">
     22 <a name="cl-manual"></a>6.Callgrind: a call-graph generating cache and branch prediction profiler</h1></div></div></div>
     23 <div class="toc">
     24 <p><b>Table of Contents</b></p>
     25 <dl class="toc">
     26 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.use">6.1. Overview</a></span></dt>
     27 <dd><dl>
     28 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.functionality">6.1.1. Functionality</a></span></dt>
     29 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.basics">6.1.2. Basic Usage</a></span></dt>
     30 </dl></dd>
     31 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.usage">6.2. Advanced Usage</a></span></dt>
     32 <dd><dl>
     33 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.dumps">6.2.1. Multiple profiling dumps from one program run</a></span></dt>
     34 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.limits">6.2.2. Limiting the range of collected events</a></span></dt>
     35 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.busevents">6.2.3. Counting global bus events</a></span></dt>
     36 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.cycles">6.2.4. Avoiding cycles</a></span></dt>
     37 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.forkingprograms">6.2.5. Forking Programs</a></span></dt>
     38 </dl></dd>
     39 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.options">6.3. Callgrind Command-line Options</a></span></dt>
     40 <dd><dl>
     41 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.creation">6.3.1. Dump creation options</a></span></dt>
     42 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.activity">6.3.2. Activity options</a></span></dt>
     43 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.collection">6.3.3. Data collection options</a></span></dt>
     44 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.separation">6.3.4. Cost entity separation options</a></span></dt>
     45 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.simulation">6.3.5. Simulation options</a></span></dt>
     46 <dt><span class="sect2"><a href="cl-manual.html#cl-manual.options.cachesimulation">6.3.6. Cache simulation options</a></span></dt>
     47 </dl></dd>
     48 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.monitor-commands">6.4. Callgrind Monitor Commands</a></span></dt>
     49 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.clientrequests">6.5. Callgrind specific client requests</a></span></dt>
     50 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.callgrind_annotate-options">6.6. callgrind_annotate Command-line Options</a></span></dt>
     51 <dt><span class="sect1"><a href="cl-manual.html#cl-manual.callgrind_control-options">6.7. callgrind_control Command-line Options</a></span></dt>
     52 </dl>
     53 </div>
     54 <p>To use this tool, you must specify
     55 <code class="option">--tool=callgrind</code> on the
     56 Valgrind command line.</p>
     57 <div class="sect1">
     58 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     59 <a name="cl-manual.use"></a>6.1.Overview</h2></div></div></div>
     60 <p>Callgrind is a profiling tool that records the call history among
     61 functions in a program's run as a call-graph.
     62 By default, the collected data consists of
     63 the number of instructions executed, their relationship
     64 to source lines, the caller/callee relationship between functions,
     65 and the numbers of such calls.
     66 Optionally, cache simulation and/or branch prediction (similar to Cachegrind)
     67 can produce further information about the runtime behavior of an application.
     68 </p>
     69 <p>The profile data is written out to a file at program
     70 termination. For presentation of the data, and interactive control
     71 of the profiling, two command line tools are provided:</p>
     72 <div class="variablelist"><dl class="variablelist">
     73 <dt><span class="term"><span class="command"><strong>callgrind_annotate</strong></span></span></dt>
     74 <dd>
     75 <p>This command reads in the profile data, and prints a
     76     sorted lists of functions, optionally with source annotation.</p>
     77 <p>For graphical visualization of the data, try
     78     <a class="ulink" href="http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex" target="_top">KCachegrind</a>, which is a KDE/Qt based
     79     GUI that makes it easy to navigate the large amount of data that
     80     Callgrind produces.</p>
     81 </dd>
     82 <dt><span class="term"><span class="command"><strong>callgrind_control</strong></span></span></dt>
     83 <dd><p>This command enables you to interactively observe and control 
     84     the status of a program currently running under Callgrind's control,
     85     without stopping the program.  You can get statistics information as
     86     well as the current stack trace, and you can request zeroing of counters
     87     or dumping of profile data.</p></dd>
     88 </dl></div>
     89 <div class="sect2">
     90 <div class="titlepage"><div><div><h3 class="title">
     91 <a name="cl-manual.functionality"></a>6.1.1.Functionality</h3></div></div></div>
     92 <p>Cachegrind collects flat profile data: event counts (data reads,
     93 cache misses, etc.) are attributed directly to the function they
     94 occurred in.  This cost attribution mechanism is
     95 called <span class="emphasis"><em>self</em></span> or <span class="emphasis"><em>exclusive</em></span>
     96 attribution.</p>
     97 <p>Callgrind extends this functionality by propagating costs
     98 across function call boundaries.  If function <code class="function">foo</code> calls
     99 <code class="function">bar</code>, the costs from <code class="function">bar</code> are added into
    100 <code class="function">foo</code>'s costs.  When applied to the program as a whole,
    101 this builds up a picture of so called <span class="emphasis"><em>inclusive</em></span>
    102 costs, that is, where the cost of each function includes the costs of
    103 all functions it called, directly or indirectly.</p>
    104 <p>As an example, the inclusive cost of
    105 <code class="function">main</code> should be almost 100 percent
    106 of the total program cost.  Because of costs arising before 
    107 <code class="function">main</code> is run, such as
    108 initialization of the run time linker and construction of global C++
    109 objects, the inclusive cost of <code class="function">main</code>
    110 is not exactly 100 percent of the total program cost.</p>
    111 <p>Together with the call graph, this allows you to find the
    112 specific call chains starting from
    113 <code class="function">main</code> in which the majority of the
    114 program's costs occur.  Caller/callee cost attribution is also useful
    115 for profiling functions called from multiple call sites, and where
    116 optimization opportunities depend on changing code in the callers, in
    117 particular by reducing the call count.</p>
    118 <p>Callgrind's cache simulation is based on that of Cachegrind.
    119 Read the documentation for <a class="xref" href="cg-manual.html" title="5.Cachegrind: a cache and branch-prediction profiler">Cachegrind: a cache and branch-prediction profiler</a> first.  The material
    120 below describes the features supported in addition to Cachegrind's
    121 features.</p>
    122 <p>Callgrind's ability to detect function calls and returns depends
    123 on the instruction set of the platform it is run on.  It works best on
    124 x86 and amd64, and unfortunately currently does not work so well on
    125 PowerPC, ARM, Thumb or MIPS code.  This is because there are no explicit
    126 call or return instructions in these instruction sets, so Callgrind
    127 has to rely on heuristics to detect calls and returns.</p>
    128 </div>
    129 <div class="sect2">
    130 <div class="titlepage"><div><div><h3 class="title">
    131 <a name="cl-manual.basics"></a>6.1.2.Basic Usage</h3></div></div></div>
    132 <p>As with Cachegrind, you probably want to compile with debugging info
    133   (the <code class="option">-g</code> option) and with optimization turned on.</p>
    134 <p>To start a profile run for a program, execute:
    135   </p>
    136 <pre class="screen">valgrind --tool=callgrind [callgrind options] your-program [program options]</pre>
    137 <p>
    138   </p>
    139 <p>While the simulation is running, you can observe execution with:
    140   </p>
    141 <pre class="screen">callgrind_control -b</pre>
    142 <p>
    143   This will print out the current backtrace. To annotate the backtrace with
    144   event counts, run
    145   </p>
    146 <pre class="screen">callgrind_control -e -b</pre>
    147 <p>
    148   </p>
    149 <p>After program termination, a profile data file named 
    150   <code class="computeroutput">callgrind.out.&lt;pid&gt;</code>
    151   is generated, where <span class="emphasis"><em>pid</em></span> is the process ID 
    152   of the program being profiled.
    153   The data file contains information about the calls made in the
    154   program among the functions executed, together with 
    155   <span class="command"><strong>Instruction Read</strong></span> (Ir) event counts.</p>
    156 <p>To generate a function-by-function summary from the profile
    157   data file, use
    158   </p>
    159 <pre class="screen">callgrind_annotate [options] callgrind.out.&lt;pid&gt;</pre>
    160 <p>
    161   This summary is similar to the output you get from a Cachegrind
    162   run with cg_annotate: the list
    163   of functions is ordered by exclusive cost of functions, which also
    164   are the ones that are shown.
    165   Important for the additional features of Callgrind are
    166   the following two options:</p>
    167 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    168 <li class="listitem"><p><code class="option">--inclusive=yes</code>: Instead of using
    169       exclusive cost of functions as sorting order, use and show
    170       inclusive cost.</p></li>
    171 <li class="listitem"><p><code class="option">--tree=both</code>: Interleave into the
    172       top level list of functions, information on the callers and the callees
    173       of each function. In these lines, which represents executed
    174       calls, the cost gives the number of events spent in the call.
    175       Indented, above each function, there is the list of callers,
    176       and below, the list of callees. The sum of events in calls to
    177       a given function (caller lines), as well as the sum of events in
    178       calls from the function (callee lines) together with the self
    179       cost, gives the total inclusive cost of the function.</p></li>
    180 </ul></div>
    181 <p>Use <code class="option">--auto=yes</code> to get annotated source code
    182   for all relevant functions for which the source can be found. In
    183   addition to source annotation as produced by
    184   <code class="computeroutput">cg_annotate</code>, you will see the
    185   annotated call sites with call counts. For all other options, 
    186   consult the (Cachegrind) documentation for
    187   <code class="computeroutput">cg_annotate</code>.
    188   </p>
    189 <p>For better call graph browsing experience, it is highly recommended
    190   to use <a class="ulink" href="http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex" target="_top">KCachegrind</a>.
    191   If your code
    192   has a significant fraction of its cost in <span class="emphasis"><em>cycles</em></span> (sets
    193   of functions calling each other in a recursive manner), you have to
    194   use KCachegrind, as <code class="computeroutput">callgrind_annotate</code>
    195   currently does not do any cycle detection, which is important to get correct
    196   results in this case.</p>
    197 <p>If you are additionally interested in measuring the 
    198   cache behavior of your program, use Callgrind with the option
    199   <code class="option"><a class="xref" href="cl-manual.html#clopt.cache-sim">--cache-sim</a>=yes</code>. For
    200   branch prediction simulation, use <code class="option"><a class="xref" href="cl-manual.html#clopt.branch-sim">--branch-sim</a>=yes</code>.
    201   Expect a further slow down approximately by a factor of 2.</p>
    202 <p>If the program section you want to profile is somewhere in the
    203   middle of the run, it is beneficial to 
    204   <span class="emphasis"><em>fast forward</em></span> to this section without any 
    205   profiling, and then enable profiling.  This is achieved by using
    206   the command line option
    207   <code class="option"><a class="xref" href="cl-manual.html#opt.instr-atstart">--instr-atstart</a>=no</code> 
    208   and running, in a shell:
    209   <code class="computeroutput">callgrind_control -i on</code> just before the 
    210   interesting code section is executed. To exactly specify
    211   the code position where profiling should start, use the client request
    212   <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.start-instr">CALLGRIND_START_INSTRUMENTATION</a></code>.</p>
    213 <p>If you want to be able to see assembly code level annotation, specify
    214   <code class="option"><a class="xref" href="cl-manual.html#opt.dump-instr">--dump-instr</a>=yes</code>. This will produce
    215   profile data at instruction granularity. Note that the resulting profile
    216   data
    217   can only be viewed with KCachegrind. For assembly annotation, it also is
    218   interesting to see more details of the control flow inside of functions,
    219   i.e. (conditional) jumps. This will be collected by further specifying
    220   <code class="option"><a class="xref" href="cl-manual.html#opt.collect-jumps">--collect-jumps</a>=yes</code>.</p>
    221 </div>
    222 </div>
    223 <div class="sect1">
    224 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    225 <a name="cl-manual.usage"></a>6.2.Advanced Usage</h2></div></div></div>
    226 <div class="sect2">
    227 <div class="titlepage"><div><div><h3 class="title">
    228 <a name="cl-manual.dumps"></a>6.2.1.Multiple profiling dumps from one program run</h3></div></div></div>
    229 <p>Sometimes you are not interested in characteristics of a full 
    230   program run, but only of a small part of it, for example execution of one
    231   algorithm.  If there are multiple algorithms, or one algorithm 
    232   running with different input data, it may even be useful to get different
    233   profile information for different parts of a single program run.</p>
    234 <p>Profile data files have names of the form
    235 </p>
    236 <pre class="screen">
    237 callgrind.out.<span class="emphasis"><em>pid</em></span>.<span class="emphasis"><em>part</em></span>-<span class="emphasis"><em>threadID</em></span>
    238 </pre>
    239 <p>
    240   </p>
    241 <p>where <span class="emphasis"><em>pid</em></span> is the PID of the running 
    242   program, <span class="emphasis"><em>part</em></span> is a number incremented on each
    243   dump (".part" is skipped for the dump at program termination), and 
    244   <span class="emphasis"><em>threadID</em></span> is a thread identification 
    245   ("-threadID" is only used if you request dumps of individual 
    246   threads with <code class="option"><a class="xref" href="cl-manual.html#opt.separate-threads">--separate-threads</a>=yes</code>).</p>
    247 <p>There are different ways to generate multiple profile dumps 
    248   while a program is running under Callgrind's supervision.  Nevertheless,
    249   all methods trigger the same action, which is "dump all profile 
    250   information since the last dump or program start, and zero cost 
    251   counters afterwards".  To allow for zeroing cost counters without
    252   dumping, there is a second action "zero all cost counters now". 
    253   The different methods are:</p>
    254 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    255 <li class="listitem"><p><span class="command"><strong>Dump on program termination.</strong></span>
    256       This method is the standard way and doesn't need any special
    257       action on your part.</p></li>
    258 <li class="listitem">
    259 <p><span class="command"><strong>Spontaneous, interactive dumping.</strong></span> Use
    260       </p>
    261 <pre class="screen">callgrind_control -d [hint [PID/Name]]</pre>
    262 <p> to 
    263       request the dumping of profile information of the supervised
    264       application with PID or Name.  <span class="emphasis"><em>hint</em></span> is an
    265       arbitrary string you can optionally specify to later be able to
    266       distinguish profile dumps.  The control program will not terminate
    267       before the dump is completely written.  Note that the application
    268       must be actively running for detection of the dump command. So,
    269       for a GUI application, resize the window, or for a server, send a
    270       request.</p>
    271 <p>If you are using <a class="ulink" href="http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex" target="_top">KCachegrind</a>
    272       for browsing of profile information, you can use the toolbar
    273       button <span class="command"><strong>Force dump</strong></span>. This will request a dump
    274       and trigger a reload after the dump is written.</p>
    275 </li>
    276 <li class="listitem"><p><span class="command"><strong>Periodic dumping after execution of a specified
    277       number of basic blocks</strong></span>. For this, use the command line
    278       option <code class="option"><a class="xref" href="cl-manual.html#opt.dump-every-bb">--dump-every-bb</a>=count</code>.
    279       </p></li>
    280 <li class="listitem">
    281 <p><span class="command"><strong>Dumping at enter/leave of specified functions.</strong></span>
    282       Use the
    283       option <code class="option"><a class="xref" href="cl-manual.html#opt.dump-before">--dump-before</a>=function</code>
    284       and <code class="option"><a class="xref" href="cl-manual.html#opt.dump-after">--dump-after</a>=function</code>.
    285       To zero cost counters before entering a function, use
    286       <code class="option"><a class="xref" href="cl-manual.html#opt.zero-before">--zero-before</a>=function</code>.</p>
    287 <p>You can specify these options multiple times for different
    288       functions. Function specifications support wildcards: e.g. use
    289       <code class="option"><a class="xref" href="cl-manual.html#opt.dump-before">--dump-before</a>='foo*'</code> to
    290       generate dumps before entering any function starting with 
    291       <span class="emphasis"><em>foo</em></span>.</p>
    292 </li>
    293 <li class="listitem"><p><span class="command"><strong>Program controlled dumping.</strong></span>
    294       Insert
    295       <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.dump-stats">CALLGRIND_DUMP_STATS</a>;</code>
    296       at the position in your code where you want a profile dump to happen. Use 
    297       <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.zero-stats">CALLGRIND_ZERO_STATS</a>;</code> to only 
    298       zero profile counters.
    299       See <a class="xref" href="cl-manual.html#cl-manual.clientrequests" title="6.5.Callgrind specific client requests">Client request reference</a> for more information on
    300       Callgrind specific client requests.</p></li>
    301 </ul></div>
    302 <p>If you are running a multi-threaded application and specify the
    303   command line option <code class="option"><a class="xref" href="cl-manual.html#opt.separate-threads">--separate-threads</a>=yes</code>, 
    304   every thread will be profiled on its own and will create its own
    305   profile dump. Thus, the last two methods will only generate one dump
    306   of the currently running thread. With the other methods, you will get
    307   multiple dumps (one for each thread) on a dump request.</p>
    308 </div>
    309 <div class="sect2">
    310 <div class="titlepage"><div><div><h3 class="title">
    311 <a name="cl-manual.limits"></a>6.2.2.Limiting the range of collected events</h3></div></div></div>
    312 <p>By default, whenever events are happening (such as an
    313     instruction execution or cache hit/miss), Callgrind is aggregating
    314     them into event counters. However, you may be interested only in
    315     what is happening within a given function or starting from a given
    316     program phase. To this end, you can disable event aggregation for
    317     uninteresting program parts. While attribution of events to
    318     functions as well as producing separate output per program phase
    319     can be done by other means (see previous section), there are two
    320     benefits by disabling aggregation. First, this is very
    321     fine-granular (e.g. just for a loop within a function).  Second,
    322     disabling event aggregation for complete program phases allows to
    323     switch off time-consuming cache simulation and allows Callgrind to
    324     progress at much higher speed with an slowdown of around factor 2
    325     (identical to <code class="computeroutput">valgrind
    326     --tool=none</code>).
    327   </p>
    328 <p>There are two aspects which influence whether Callgrind is
    329     aggregating events at some point in time of program execution.
    330     First, there is the <span class="emphasis"><em>collection state</em></span>. If this
    331     is off, no aggregation will be done.  By changing the collection
    332     state, you can control event aggregation at a very fine
    333     granularity.  However, there is not much difference in regard to
    334     execution speed of Callgrind.  By default, collection is switched
    335     on, but can be disabled by different means (see below).  Second,
    336     there is the <span class="emphasis"><em>instrumentation mode</em></span> in which
    337     Callgrind is running. This mode either can be on or off. If
    338     instrumentation is off, no observation of actions in the program
    339     will be done and thus, no actions will be forwarded to the
    340     simulator which could trigger events. In the end, no events will
    341     be aggregated.  The huge benefit is the much higher speed with
    342     instrumentation switched off.  However, this only should be used
    343     with care and in a coarse fashion: every mode change resets the
    344     simulator state (ie. whether a memory block is cached or not) and
    345     flushes Valgrinds internal cache of instrumented code blocks,
    346     resulting in latency penalty at switching time. Also, cache
    347     simulator results directly after switching on instrumentation will
    348     be skewed due to identified cache misses which would not happen in
    349     reality (if you care about this warm-up effect, you should make
    350     sure to temporarly have collection state switched off directly
    351     after turning instrumentation mode on). However, switching
    352     instrumentation state is very useful to skip larger program phases
    353     such as an initialization phase. By default, instrumentation is
    354     switched on, but as with the collection state, can be changed by
    355     various means.
    356   </p>
    357 <p>Callgrind can start with instrumentation mode switched off by
    358     specifying
    359     option <code class="option"><a class="xref" href="cl-manual.html#opt.instr-atstart">--instr-atstart</a>=no</code>.
    360     Afterwards, instrumentation can be controlled in two ways: first,
    361     interactively with: </p>
    362 <pre class="screen">callgrind_control -i on</pre>
    363 <p> (and
    364     switching off again by specifying "off" instead of "on").  Second,
    365     instrumentation state can be programatically changed with the
    366     macros <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.start-instr">CALLGRIND_START_INSTRUMENTATION</a>;</code>
    367     and <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.stop-instr">CALLGRIND_STOP_INSTRUMENTATION</a>;</code>.
    368   </p>
    369 <p>Similarly, the collection state at program start can be
    370     switched off
    371     by <code class="option"><a class="xref" href="cl-manual.html#opt.instr-atstart">--instr-atstart</a>=no</code>. During
    372     execution, it can be controlled programatically with the
    373     macro <code class="computeroutput">CALLGRIND_TOGGLE_COLLECT;</code>.
    374     Further, you can limit event collection to a specific function by
    375     using <code class="option"><a class="xref" href="cl-manual.html#opt.toggle-collect">--toggle-collect</a>=function</code>.
    376     This will toggle the collection state on entering and leaving the
    377     specified function.  When this option is in effect, the default
    378     collection state at program start is "off".  Only events happening
    379     while running inside of the given function will be
    380     collected. Recursive calls of the given function do not trigger
    381     any action. This option can be given multiple times to specify
    382     different functions of interest.</p>
    383 </div>
    384 <div class="sect2">
    385 <div class="titlepage"><div><div><h3 class="title">
    386 <a name="cl-manual.busevents"></a>6.2.3.Counting global bus events</h3></div></div></div>
    387 <p>For access to shared data among threads in a multithreaded
    388   code, synchronization is required to avoid raced conditions.
    389   Synchronization primitives are usually implemented via atomic instructions.
    390   However, excessive use of such instructions can lead to performance
    391   issues.</p>
    392 <p>To enable analysis of this problem, Callgrind optionally can count
    393   the number of atomic instructions executed. More precisely, for x86/x86_64,
    394   these are instructions using a lock prefix. For architectures supporting
    395   LL/SC, these are the number of SC instructions executed. For both, the term
    396   "global bus events" is used.</p>
    397 <p>The short name of the event type used for global bus events is "Ge".
    398   To count global bus events, use <code class="option"><a class="xref" href="cl-manual.html#clopt.collect-bus">--collect-bus</a>=yes</code>.
    399   </p>
    400 </div>
    401 <div class="sect2">
    402 <div class="titlepage"><div><div><h3 class="title">
    403 <a name="cl-manual.cycles"></a>6.2.4.Avoiding cycles</h3></div></div></div>
    404 <p>Informally speaking, a cycle is a group of functions which
    405   call each other in a recursive way.</p>
    406 <p>Formally speaking, a cycle is a nonempty set S of functions,
    407   such that for every pair of functions F and G in S, it is possible
    408   to call from F to G (possibly via intermediate functions) and also
    409   from G to F.  Furthermore, S must be maximal -- that is, be the
    410   largest set of functions satisfying this property.  For example, if
    411   a third function H is called from inside S and calls back into S,
    412   then H is also part of the cycle and should be included in S.</p>
    413 <p>Recursion is quite usual in programs, and therefore, cycles
    414   sometimes appear in the call graph output of Callgrind. However,
    415   the title of this chapter should raise two questions: What is bad
    416   about cycles which makes you want to avoid them? And: How can
    417   cycles be avoided without changing program code?</p>
    418 <p>Cycles are not bad in itself, but tend to make performance
    419   analysis of your code harder. This is because inclusive costs
    420   for calls inside of a cycle are meaningless. The definition of
    421   inclusive cost, i.e. self cost of a function plus inclusive cost
    422   of its callees, needs a topological order among functions. For
    423   cycles, this does not hold true: callees of a function in a cycle include
    424   the function itself. Therefore, KCachegrind does cycle detection
    425   and skips visualization of any inclusive cost for calls inside
    426   of cycles. Further, all functions in a cycle are collapsed into artificial
    427   functions called like <code class="computeroutput">Cycle 1</code>.</p>
    428 <p>Now, when a program exposes really big cycles (as is
    429   true for some GUI code, or in general code using event or callback based
    430   programming style), you lose the nice property to let you pinpoint
    431   the bottlenecks by following call chains from
    432   <code class="function">main</code>, guided via
    433   inclusive cost. In addition, KCachegrind loses its ability to show
    434   interesting parts of the call graph, as it uses inclusive costs to
    435   cut off uninteresting areas.</p>
    436 <p>Despite the meaningless of inclusive costs in cycles, the big
    437   drawback for visualization motivates the possibility to temporarily
    438   switch off cycle detection in KCachegrind, which can lead to
    439   misguiding visualization. However, often cycles appear because of
    440   unlucky superposition of independent call chains in a way that
    441   the profile result will see a cycle. Neglecting uninteresting
    442   calls with very small measured inclusive cost would break these
    443   cycles. In such cases, incorrect handling of cycles by not detecting
    444   them still gives meaningful profiling visualization.</p>
    445 <p>It has to be noted that currently, <span class="command"><strong>callgrind_annotate</strong></span>
    446   does not do any cycle detection at all. For program executions with function
    447   recursion, it e.g. can print nonsense inclusive costs way above 100%.</p>
    448 <p>After describing why cycles are bad for profiling, it is worth
    449   talking about cycle avoidance. The key insight here is that symbols in
    450   the profile data do not have to exactly match the symbols found in the
    451   program. Instead, the symbol name could encode additional information
    452   from the current execution context such as recursion level of the
    453   current function, or even some part of the call chain leading to the
    454   function. While encoding of additional information into symbols is
    455   quite capable of avoiding cycles, it has to be used carefully to not cause
    456   symbol explosion. The latter imposes large memory requirement for Callgrind
    457   with possible out-of-memory conditions, and big profile data files.</p>
    458 <p>A further possibility to avoid cycles in Callgrind's profile data
    459   output is to simply leave out given functions in the call graph. Of course, this
    460   also skips any call information from and to an ignored function, and thus can
    461   break a cycle. Candidates for this typically are dispatcher functions in event
    462   driven code. The option to ignore calls to a function is
    463   <code class="option"><a class="xref" href="cl-manual.html#opt.fn-skip">--fn-skip</a>=function</code>. Aside from
    464   possibly breaking cycles, this is used in Callgrind to skip
    465   trampoline functions in the PLT sections
    466   for calls to functions in shared libraries. You can see the difference
    467   if you profile with <code class="option"><a class="xref" href="cl-manual.html#opt.skip-plt">--skip-plt</a>=no</code>.
    468   If a call is ignored, its cost events will be propagated to the
    469   enclosing function.</p>
    470 <p>If you have a recursive function, you can distinguish the first
    471   10 recursion levels by specifying
    472   <code class="option"><a class="xref" href="cl-manual.html#opt.separate-recs-num">--separate-recs10</a>=function</code>.  
    473   Or for all functions with 
    474   <code class="option"><a class="xref" href="cl-manual.html#opt.separate-recs">--separate-recs</a>=10</code>, but this will 
    475   give you much bigger profile data files.  In the profile data, you will see
    476   the recursion levels of "func" as the different functions with names
    477   "func", "func'2", "func'3" and so on.</p>
    478 <p>If you have call chains "A &gt; B &gt; C" and "A &gt; C &gt; B"
    479   in your program, you usually get a "false" cycle "B &lt;&gt; C". Use 
    480   <code class="option"><a class="xref" href="cl-manual.html#opt.separate-callers-num">--separate-callers2</a>=B</code> 
    481   <code class="option"><a class="xref" href="cl-manual.html#opt.separate-callers-num">--separate-callers2</a>=C</code>,
    482   and functions "B" and "C" will be treated as different functions 
    483   depending on the direct caller. Using the apostrophe for appending 
    484   this "context" to the function name, you get "A &gt; B'A &gt; C'B" 
    485   and "A &gt; C'A &gt; B'C", and there will be no cycle. Use 
    486   <code class="option"><a class="xref" href="cl-manual.html#opt.separate-callers">--separate-callers</a>=2</code> to get a 2-caller 
    487   dependency for all functions.  Note that doing this will increase
    488   the size of profile data files.</p>
    489 </div>
    490 <div class="sect2">
    491 <div class="titlepage"><div><div><h3 class="title">
    492 <a name="cl-manual.forkingprograms"></a>6.2.5.Forking Programs</h3></div></div></div>
    493 <p>If your program forks, the child will inherit all the profiling
    494   data that has been gathered for the parent. To start with empty profile
    495   counter values in the child, the client request
    496   <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.zero-stats">CALLGRIND_ZERO_STATS</a>;</code>
    497   can be inserted into code to be executed by the child, directly after
    498   <code class="computeroutput">fork</code>.</p>
    499 <p>However, you will have to make sure that the output file format string
    500   (controlled by <code class="option">--callgrind-out-file</code>) does contain
    501   <code class="option">%p</code> (which is true by default). Otherwise, the
    502   outputs from the parent and child will overwrite each other or will be
    503   intermingled, which almost certainly is not what you want.</p>
    504 <p>You will be able to control the new child independently from
    505   the parent via callgrind_control.</p>
    506 </div>
    507 </div>
    508 <div class="sect1">
    509 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    510 <a name="cl-manual.options"></a>6.3.Callgrind Command-line Options</h2></div></div></div>
    511 <p>
    512 In the following, options are grouped into classes.
    513 </p>
    514 <p>
    515 Some options allow the specification of a function/symbol name, such as
    516 <code class="option"><a class="xref" href="cl-manual.html#opt.dump-before">--dump-before</a>=function</code>, or
    517 <code class="option"><a class="xref" href="cl-manual.html#opt.fn-skip">--fn-skip</a>=function</code>. All these options
    518 can be specified multiple times for different functions.
    519 In addition, the function specifications actually are patterns by supporting
    520 the use of wildcards '*' (zero or more arbitrary characters) and '?'
    521 (exactly one arbitrary character), similar to file name globbing in the
    522 shell. This feature is important especially for C++, as without wildcard
    523 usage, the function would have to be specified in full extent, including
    524 parameter signature. </p>
    525 <div class="sect2">
    526 <div class="titlepage"><div><div><h3 class="title">
    527 <a name="cl-manual.options.creation"></a>6.3.1.Dump creation options</h3></div></div></div>
    528 <p>
    529 These options influence the name and format of the profile data files.
    530 </p>
    531 <div class="variablelist">
    532 <a name="cl.opts.list.creation"></a><dl class="variablelist">
    533 <dt>
    534 <a name="opt.callgrind-out-file"></a><span class="term">
    535       <code class="option">--callgrind-out-file=&lt;file&gt; </code>
    536     </span>
    537 </dt>
    538 <dd><p>Write the profile data to
    539             <code class="computeroutput">file</code> rather than to the default
    540             output file,
    541             <code class="computeroutput">callgrind.out.&lt;pid&gt;</code>.  The
    542             <code class="option">%p</code> and <code class="option">%q</code> format specifiers
    543             can be used to embed the process ID and/or the contents of an
    544             environment variable in the name, as is the case for the core
    545             option <code class="option"><a class="xref" href="manual-core.html#opt.log-file">--log-file</a></code>.
    546             When multiple dumps are made, the file name
    547             is modified further; see below.</p></dd>
    548 <dt>
    549 <a name="opt.dump-line"></a><span class="term">
    550       <code class="option">--dump-line=&lt;no|yes&gt; [default: yes] </code>
    551     </span>
    552 </dt>
    553 <dd><p>This specifies that event counting should be performed at
    554       source line granularity. This allows source annotation for sources
    555       which are compiled with debug information
    556       (<code class="option">-g</code>).</p></dd>
    557 <dt>
    558 <a name="opt.dump-instr"></a><span class="term">
    559       <code class="option">--dump-instr=&lt;no|yes&gt; [default: no] </code>
    560     </span>
    561 </dt>
    562 <dd><p>This specifies that event counting should be performed at
    563       per-instruction granularity.
    564       This allows for assembly code
    565       annotation.  Currently the results can only be 
    566       displayed by KCachegrind.</p></dd>
    567 <dt>
    568 <a name="opt.compress-strings"></a><span class="term">
    569       <code class="option">--compress-strings=&lt;no|yes&gt; [default: yes] </code>
    570     </span>
    571 </dt>
    572 <dd><p>This option influences the output format of the profile data.
    573       It specifies whether strings (file and function names) should be
    574       identified by numbers. This shrinks the file, 
    575       but makes it more difficult
    576       for humans to read (which is not recommended in any case).</p></dd>
    577 <dt>
    578 <a name="opt.compress-pos"></a><span class="term">
    579       <code class="option">--compress-pos=&lt;no|yes&gt; [default: yes] </code>
    580     </span>
    581 </dt>
    582 <dd><p>This option influences the output format of the profile data.
    583       It specifies whether numerical positions are always specified as absolute
    584       values or are allowed to be relative to previous numbers.
    585       This shrinks the file size.</p></dd>
    586 <dt>
    587 <a name="opt.combine-dumps"></a><span class="term">
    588       <code class="option">--combine-dumps=&lt;no|yes&gt; [default: no] </code>
    589     </span>
    590 </dt>
    591 <dd><p>When enabled, when multiple profile data parts are to be
    592       generated these parts are appended to the same output file.
    593       Not recommended.</p></dd>
    594 </dl>
    595 </div>
    596 </div>
    597 <div class="sect2">
    598 <div class="titlepage"><div><div><h3 class="title">
    599 <a name="cl-manual.options.activity"></a>6.3.2.Activity options</h3></div></div></div>
    600 <p>
    601 These options specify when actions relating to event counts are to
    602 be executed. For interactive control use callgrind_control.
    603 </p>
    604 <div class="variablelist">
    605 <a name="cl.opts.list.activity"></a><dl class="variablelist">
    606 <dt>
    607 <a name="opt.dump-every-bb"></a><span class="term">
    608       <code class="option">--dump-every-bb=&lt;count&gt; [default: 0, never] </code>
    609     </span>
    610 </dt>
    611 <dd><p>Dump profile data every <code class="option">count</code> basic blocks.
    612       Whether a dump is needed is only checked when Valgrind's internal
    613       scheduler is run. Therefore, the minimum setting useful is about 100000.
    614       The count is a 64-bit value to make long dump periods possible.
    615       </p></dd>
    616 <dt>
    617 <a name="opt.dump-before"></a><span class="term">
    618       <code class="option">--dump-before=&lt;function&gt; </code>
    619     </span>
    620 </dt>
    621 <dd><p>Dump when entering <code class="option">function</code>.</p></dd>
    622 <dt>
    623 <a name="opt.zero-before"></a><span class="term">
    624       <code class="option">--zero-before=&lt;function&gt; </code>
    625     </span>
    626 </dt>
    627 <dd><p>Zero all costs when entering <code class="option">function</code>.</p></dd>
    628 <dt>
    629 <a name="opt.dump-after"></a><span class="term">
    630       <code class="option">--dump-after=&lt;function&gt; </code>
    631     </span>
    632 </dt>
    633 <dd><p>Dump when leaving <code class="option">function</code>.</p></dd>
    634 </dl>
    635 </div>
    636 </div>
    637 <div class="sect2">
    638 <div class="titlepage"><div><div><h3 class="title">
    639 <a name="cl-manual.options.collection"></a>6.3.3.Data collection options</h3></div></div></div>
    640 <p>
    641 These options specify when events are to be aggregated into event counts.
    642 Also see <a class="xref" href="cl-manual.html#cl-manual.limits" title="6.2.2.Limiting the range of collected events">Limiting range of event collection</a>.</p>
    643 <div class="variablelist">
    644 <a name="cl.opts.list.collection"></a><dl class="variablelist">
    645 <dt>
    646 <a name="opt.instr-atstart"></a><span class="term">
    647       <code class="option">--instr-atstart=&lt;yes|no&gt; [default: yes] </code>
    648     </span>
    649 </dt>
    650 <dd>
    651 <p>Specify if you want Callgrind to start simulation and
    652       profiling from the beginning of the program.  
    653       When set to <code class="computeroutput">no</code>, 
    654       Callgrind will not be able
    655       to collect any information, including calls, but it will have at
    656       most a slowdown of around 4, which is the minimum Valgrind
    657       overhead.  Instrumentation can be interactively enabled via
    658       <code class="computeroutput">callgrind_control -i on</code>.</p>
    659 <p>Note that the resulting call graph will most probably not
    660       contain <code class="function">main</code>, but will contain all the
    661       functions executed after instrumentation was enabled.
    662       Instrumentation can also programatically enabled/disabled. See the
    663       Callgrind include file
    664       <code class="computeroutput">callgrind.h</code> for the macro
    665       you have to use in your source code.</p>
    666 <p>For cache
    667       simulation, results will be less accurate when switching on
    668       instrumentation later in the program run, as the simulator starts
    669       with an empty cache at that moment.  Switch on event collection
    670       later to cope with this error.</p>
    671 </dd>
    672 <dt>
    673 <a name="opt.collect-atstart"></a><span class="term">
    674       <code class="option">--collect-atstart=&lt;yes|no&gt; [default: yes] </code>
    675     </span>
    676 </dt>
    677 <dd>
    678 <p>Specify whether event collection is enabled at beginning
    679       of the profile run.</p>
    680 <p>To only look at parts of your program, you have two
    681       possibilities:</p>
    682 <div class="orderedlist"><ol class="orderedlist" type="1">
    683 <li class="listitem"><p>Zero event counters before entering the program part you
    684         want to profile, and dump the event counters to a file after
    685         leaving that program part.</p></li>
    686 <li class="listitem"><p>Switch on/off collection state as needed to only see
    687           event counters happening while inside of the program part you
    688           want to profile.</p></li>
    689 </ol></div>
    690 <p>The second option can be used if the program part you want to
    691       profile is called many times. Option 1, i.e. creating a lot of
    692       dumps is not practical here.</p>
    693 <p>Collection state can be
    694       toggled at entry and exit of a given function with the
    695       option <code class="option"><a class="xref" href="cl-manual.html#opt.toggle-collect">--toggle-collect</a></code>.  If you
    696       use this option, collection
    697       state should be disabled at the beginning.  Note that the
    698       specification of <code class="option">--toggle-collect</code>
    699       implicitly sets
    700       <code class="option">--collect-state=no</code>.</p>
    701 <p>Collection state can be toggled also by inserting the client request
    702       <code class="computeroutput">
    703       
    704       CALLGRIND_TOGGLE_COLLECT
    705       ;</code>
    706       at the needed code positions.</p>
    707 </dd>
    708 <dt>
    709 <a name="opt.toggle-collect"></a><span class="term">
    710       <code class="option">--toggle-collect=&lt;function&gt; </code>
    711     </span>
    712 </dt>
    713 <dd><p>Toggle collection on entry/exit of <code class="option">function</code>.</p></dd>
    714 <dt>
    715 <a name="opt.collect-jumps"></a><span class="term">
    716       <code class="option">--collect-jumps=&lt;no|yes&gt; [default: no] </code>
    717     </span>
    718 </dt>
    719 <dd><p>This specifies whether information for (conditional) jumps
    720       should be collected.  As above, callgrind_annotate currently is not
    721       able to show you the data.  You have to use KCachegrind to get jump
    722       arrows in the annotated code.</p></dd>
    723 <dt>
    724 <a name="opt.collect-systime"></a><span class="term">
    725       <code class="option">--collect-systime=&lt;no|yes&gt; [default: no] </code>
    726     </span>
    727 </dt>
    728 <dd><p>This specifies whether information for system call times
    729       should be collected.</p></dd>
    730 <dt>
    731 <a name="clopt.collect-bus"></a><span class="term">
    732       <code class="option">--collect-bus=&lt;no|yes&gt; [default: no] </code>
    733     </span>
    734 </dt>
    735 <dd><p>This specifies whether the number of global bus events executed
    736       should be collected. The event type "Ge" is used for these events.</p></dd>
    737 </dl>
    738 </div>
    739 </div>
    740 <div class="sect2">
    741 <div class="titlepage"><div><div><h3 class="title">
    742 <a name="cl-manual.options.separation"></a>6.3.4.Cost entity separation options</h3></div></div></div>
    743 <p>
    744 These options specify how event counts should be attributed to execution
    745 contexts.
    746 For example, they specify whether the recursion level or the
    747 call chain leading to a function should be taken into account, 
    748 and whether the thread ID should be considered.
    749 Also see <a class="xref" href="cl-manual.html#cl-manual.cycles" title="6.2.4.Avoiding cycles">Avoiding cycles</a>.</p>
    750 <div class="variablelist">
    751 <a name="cmd-options.separation"></a><dl class="variablelist">
    752 <dt>
    753 <a name="opt.separate-threads"></a><span class="term">
    754       <code class="option">--separate-threads=&lt;no|yes&gt; [default: no] </code>
    755     </span>
    756 </dt>
    757 <dd><p>This option specifies whether profile data should be generated
    758       separately for every thread. If yes, the file names get "-threadID"
    759       appended.</p></dd>
    760 <dt>
    761 <a name="opt.separate-callers"></a><span class="term">
    762       <code class="option">--separate-callers=&lt;callers&gt; [default: 0] </code>
    763     </span>
    764 </dt>
    765 <dd><p>Separate contexts by at most &lt;callers&gt; functions in the
    766       call chain. See <a class="xref" href="cl-manual.html#cl-manual.cycles" title="6.2.4.Avoiding cycles">Avoiding cycles</a>.</p></dd>
    767 <dt>
    768 <a name="opt.separate-callers-num"></a><span class="term">
    769       <code class="option">--separate-callers&lt;number&gt;=&lt;function&gt; </code>
    770     </span>
    771 </dt>
    772 <dd><p>Separate <code class="option">number</code> callers for <code class="option">function</code>.
    773       See <a class="xref" href="cl-manual.html#cl-manual.cycles" title="6.2.4.Avoiding cycles">Avoiding cycles</a>.</p></dd>
    774 <dt>
    775 <a name="opt.separate-recs"></a><span class="term">
    776       <code class="option">--separate-recs=&lt;level&gt; [default: 2] </code>
    777     </span>
    778 </dt>
    779 <dd><p>Separate function recursions by at most <code class="option">level</code> levels.
    780       See <a class="xref" href="cl-manual.html#cl-manual.cycles" title="6.2.4.Avoiding cycles">Avoiding cycles</a>.</p></dd>
    781 <dt>
    782 <a name="opt.separate-recs-num"></a><span class="term">
    783       <code class="option">--separate-recs&lt;number&gt;=&lt;function&gt; </code>
    784     </span>
    785 </dt>
    786 <dd><p>Separate <code class="option">number</code> recursions for <code class="option">function</code>.
    787       See <a class="xref" href="cl-manual.html#cl-manual.cycles" title="6.2.4.Avoiding cycles">Avoiding cycles</a>.</p></dd>
    788 <dt>
    789 <a name="opt.skip-plt"></a><span class="term">
    790       <code class="option">--skip-plt=&lt;no|yes&gt; [default: yes] </code>
    791     </span>
    792 </dt>
    793 <dd><p>Ignore calls to/from PLT sections.</p></dd>
    794 <dt>
    795 <a name="opt.skip-direct-rec"></a><span class="term">
    796       <code class="option">--skip-direct-rec=&lt;no|yes&gt; [default: yes] </code>
    797     </span>
    798 </dt>
    799 <dd><p>Ignore direct recursions.</p></dd>
    800 <dt>
    801 <a name="opt.fn-skip"></a><span class="term">
    802       <code class="option">--fn-skip=&lt;function&gt; </code>
    803     </span>
    804 </dt>
    805 <dd>
    806 <p>Ignore calls to/from a given function.  E.g. if you have a
    807       call chain A &gt; B &gt; C, and you specify function B to be
    808       ignored, you will only see A &gt; C.</p>
    809 <p>This is very convenient to skip functions handling callback
    810       behaviour.  For example, with the signal/slot mechanism in the
    811       Qt graphics library, you only want
    812       to see the function emitting a signal to call the slots connected
    813       to that signal. First, determine the real call chain to see the
    814       functions needed to be skipped, then use this option.</p>
    815 </dd>
    816 </dl>
    817 </div>
    818 </div>
    819 <div class="sect2">
    820 <div class="titlepage"><div><div><h3 class="title">
    821 <a name="cl-manual.options.simulation"></a>6.3.5.Simulation options</h3></div></div></div>
    822 <div class="variablelist">
    823 <a name="cl.opts.list.simulation"></a><dl class="variablelist">
    824 <dt>
    825 <a name="clopt.cache-sim"></a><span class="term">
    826       <code class="option">--cache-sim=&lt;yes|no&gt; [default: no] </code>
    827     </span>
    828 </dt>
    829 <dd><p>Specify if you want to do full cache simulation.  By default,
    830       only instruction read accesses will be counted ("Ir").
    831       With cache simulation, further event counters are enabled:
    832       Cache misses on instruction reads ("I1mr"/"ILmr"),
    833       data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"),
    834       data write accesses ("Dw") and related cache misses ("D1mw"/"DLmw").
    835       For more information, see <a class="xref" href="cg-manual.html" title="5.Cachegrind: a cache and branch-prediction profiler">Cachegrind: a cache and branch-prediction profiler</a>.
    836       </p></dd>
    837 <dt>
    838 <a name="clopt.branch-sim"></a><span class="term">
    839       <code class="option">--branch-sim=&lt;yes|no&gt; [default: no] </code>
    840     </span>
    841 </dt>
    842 <dd><p>Specify if you want to do branch prediction simulation.
    843       Further event counters are enabled: Number of executed conditional
    844       branches and related predictor misses ("Bc"/"Bcm"), executed indirect
    845       jumps and related misses of the jump address predictor ("Bi"/"Bim").
    846       </p></dd>
    847 </dl>
    848 </div>
    849 </div>
    850 <div class="sect2">
    851 <div class="titlepage"><div><div><h3 class="title">
    852 <a name="cl-manual.options.cachesimulation"></a>6.3.6.Cache simulation options</h3></div></div></div>
    853 <div class="variablelist">
    854 <a name="cl.opts.list.cachesimulation"></a><dl class="variablelist">
    855 <dt>
    856 <a name="opt.simulate-wb"></a><span class="term">
    857       <code class="option">--simulate-wb=&lt;yes|no&gt; [default: no] </code>
    858     </span>
    859 </dt>
    860 <dd><p>Specify whether write-back behavior should be simulated, allowing
    861       to distinguish LL caches misses with and without write backs.
    862       The cache model of Cachegrind/Callgrind does not specify write-through
    863       vs. write-back behavior, and this also is not relevant for the number
    864       of generated miss counts. However, with explicit write-back simulation
    865       it can be decided whether a miss triggers not only the loading of a new
    866       cache line, but also if a write back of a dirty cache line had to take
    867       place before. The new dirty miss events are ILdmr, DLdmr, and DLdmw,
    868       for misses because of instruction read, data read, and data write,
    869       respectively. As they produce two memory transactions, they should
    870       account for a doubled time estimation in relation to a normal miss.
    871       </p></dd>
    872 <dt>
    873 <a name="opt.simulate-hwpref"></a><span class="term">
    874       <code class="option">--simulate-hwpref=&lt;yes|no&gt; [default: no] </code>
    875     </span>
    876 </dt>
    877 <dd><p>Specify whether simulation of a hardware prefetcher should be
    878       added which is able to detect stream access in the second level cache
    879       by comparing accesses to separate to each page.
    880       As the simulation can not decide about any timing issues of prefetching,
    881       it is assumed that any hardware prefetch triggered succeeds before a
    882       real access is done. Thus, this gives a best-case scenario by covering
    883       all possible stream accesses.</p></dd>
    884 <dt>
    885 <a name="opt.cacheuse"></a><span class="term">
    886       <code class="option">--cacheuse=&lt;yes|no&gt; [default: no] </code>
    887     </span>
    888 </dt>
    889 <dd><p>Specify whether cache line use should be collected. For every
    890       cache line, from loading to it being evicted, the number of accesses
    891       as well as the number of actually used bytes is determined. This
    892       behavior is related to the code which triggered loading of the cache
    893       line. In contrast to miss counters, which shows the position where
    894       the symptoms of bad cache behavior (i.e. latencies) happens, the
    895       use counters try to pinpoint at the reason (i.e. the code with the
    896       bad access behavior). The new counters are defined in a way such
    897       that worse behavior results in higher cost.
    898       AcCost1 and AcCost2 are counters showing bad temporal locality
    899       for L1 and LL caches, respectively. This is done by summing up
    900       reciprocal values of the numbers of accesses of each cache line,
    901       multiplied by 1000 (as only integer costs are allowed). E.g. for
    902       a given source line with 5 read accesses, a value of 5000 AcCost
    903       means that for every access, a new cache line was loaded and directly
    904       evicted afterwards without further accesses. Similarly, SpLoss1/2
    905       shows bad spatial locality for L1 and LL caches, respectively. It
    906       gives the <span class="emphasis"><em>spatial loss</em></span> count of bytes which
    907       were loaded into cache but never accessed. It pinpoints at code
    908       accessing data in a way such that cache space is wasted. This hints
    909       at bad layout of data structures in memory. Assuming a cache line
    910       size of 64 bytes and 100 L1 misses for a given source line, the
    911       loading of 6400 bytes into L1 was triggered. If SpLoss1 shows a
    912       value of 3200 for this line, this means that half of the loaded data was
    913       never used, or using a better data layout, only half of the cache
    914       space would have been needed.
    915       Please note that for cache line use counters, it currently is
    916       not possible to provide meaningful inclusive costs. Therefore,
    917       inclusive cost of these counters should be ignored.
    918       </p></dd>
    919 <dt>
    920 <a name="opt.I1"></a><span class="term">
    921       <code class="option">--I1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    922     </span>
    923 </dt>
    924 <dd><p>Specify the size, associativity and line size of the level 1
    925       instruction cache.  </p></dd>
    926 <dt>
    927 <a name="opt.D1"></a><span class="term">
    928       <code class="option">--D1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    929     </span>
    930 </dt>
    931 <dd><p>Specify the size, associativity and line size of the level 1
    932       data cache.</p></dd>
    933 <dt>
    934 <a name="opt.LL"></a><span class="term">
    935       <code class="option">--LL=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    936     </span>
    937 </dt>
    938 <dd><p>Specify the size, associativity and line size of the last-level
    939       cache.</p></dd>
    940 </dl>
    941 </div>
    942 </div>
    943 </div>
    944 <div class="sect1">
    945 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    946 <a name="cl-manual.monitor-commands"></a>6.4.Callgrind Monitor Commands</h2></div></div></div>
    947 <p>The Callgrind tool provides monitor commands handled by the Valgrind
    948 gdbserver (see <a class="xref" href="manual-core-adv.html#manual-core-adv.gdbserver-commandhandling" title="3.2.5.Monitor command handling by the Valgrind gdbserver">Monitor command handling by the Valgrind gdbserver</a>).
    949 </p>
    950 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    951 <li class="listitem"><p><code class="varname">dump [&lt;dump_hint&gt;]</code> requests to dump the
    952     profile data. </p></li>
    953 <li class="listitem"><p><code class="varname">zero</code> requests to zero the profile data
    954     counters. </p></li>
    955 <li class="listitem"><p><code class="varname">instrumentation [on|off]</code> requests to set 
    956     (if parameter on/off is given) or get the current instrumentation state.
    957     </p></li>
    958 <li class="listitem"><p><code class="varname">status</code> requests to print out some status
    959     information.</p></li>
    960 </ul></div>
    961 </div>
    962 <div class="sect1">
    963 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    964 <a name="cl-manual.clientrequests"></a>6.5.Callgrind specific client requests</h2></div></div></div>
    965 <p>Callgrind provides the following specific client requests in
    966 <code class="filename">callgrind.h</code>.  See that file for the exact details of
    967 their arguments.</p>
    968 <div class="variablelist">
    969 <a name="cl.clientrequests.list"></a><dl class="variablelist">
    970 <dt>
    971 <a name="cr.dump-stats"></a><span class="term">
    972       <code class="computeroutput">CALLGRIND_DUMP_STATS</code>
    973     </span>
    974 </dt>
    975 <dd><p>Force generation of a profile dump at specified position
    976       in code, for the current thread only. Written counters will be reset
    977       to zero.</p></dd>
    978 <dt>
    979 <a name="cr.dump-stats-at"></a><span class="term">
    980       <code class="computeroutput">CALLGRIND_DUMP_STATS_AT(string)</code>
    981     </span>
    982 </dt>
    983 <dd><p>Same as <code class="computeroutput">CALLGRIND_DUMP_STATS</code>,
    984       but allows to specify a string to be able to distinguish profile
    985       dumps.</p></dd>
    986 <dt>
    987 <a name="cr.zero-stats"></a><span class="term">
    988       <code class="computeroutput">CALLGRIND_ZERO_STATS</code>
    989     </span>
    990 </dt>
    991 <dd><p>Reset the profile counters for the current thread to zero.</p></dd>
    992 <dt>
    993 <a name="cr.toggle-collect"></a><span class="term">
    994       <code class="computeroutput">CALLGRIND_TOGGLE_COLLECT</code>
    995     </span>
    996 </dt>
    997 <dd><p>Toggle the collection state. This allows to ignore events
    998       with regard to profile counters. See also options
    999       <code class="option"><a class="xref" href="cl-manual.html#opt.collect-atstart">--collect-atstart</a></code> and
   1000       <code class="option"><a class="xref" href="cl-manual.html#opt.toggle-collect">--toggle-collect</a></code>.</p></dd>
   1001 <dt>
   1002 <a name="cr.start-instr"></a><span class="term">
   1003       <code class="computeroutput">CALLGRIND_START_INSTRUMENTATION</code>
   1004     </span>
   1005 </dt>
   1006 <dd><p>Start full Callgrind instrumentation if not already enabled.
   1007       When cache simulation is done, this will flush the simulated cache
   1008       and lead to an artificial cache warmup phase afterwards with
   1009       cache misses which would not have happened in reality.  See also
   1010       option <code class="option"><a class="xref" href="cl-manual.html#opt.instr-atstart">--instr-atstart</a></code>.</p></dd>
   1011 <dt>
   1012 <a name="cr.stop-instr"></a><span class="term">
   1013       <code class="computeroutput">CALLGRIND_STOP_INSTRUMENTATION</code>
   1014     </span>
   1015 </dt>
   1016 <dd><p>Stop full Callgrind instrumentation if not already disabled.
   1017       This flushes Valgrinds translation cache, and does no additional
   1018       instrumentation afterwards: it effectivly will run at the same
   1019       speed as Nulgrind, i.e. at minimal slowdown. Use this to
   1020       speed up the Callgrind run for uninteresting code parts. Use
   1021       <code class="computeroutput"><a class="xref" href="cl-manual.html#cr.start-instr">CALLGRIND_START_INSTRUMENTATION</a></code> to
   1022       enable instrumentation again.  See also option
   1023       <code class="option"><a class="xref" href="cl-manual.html#opt.instr-atstart">--instr-atstart</a></code>.</p></dd>
   1024 </dl>
   1025 </div>
   1026 </div>
   1027 <div class="sect1">
   1028 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1029 <a name="cl-manual.callgrind_annotate-options"></a>6.6.callgrind_annotate Command-line Options</h2></div></div></div>
   1030 <div class="variablelist">
   1031 <a name="callgrind_annotate.opts.list"></a><dl class="variablelist">
   1032 <dt><span class="term"><code class="option">-h --help</code></span></dt>
   1033 <dd><p>Show summary of options.</p></dd>
   1034 <dt><span class="term"><code class="option">--version</code></span></dt>
   1035 <dd><p>Show version of callgrind_annotate.</p></dd>
   1036 <dt><span class="term">
   1037       <code class="option">--show=A,B,C [default: all]</code>
   1038     </span></dt>
   1039 <dd><p>Only show figures for events A,B,C.</p></dd>
   1040 <dt><span class="term">
   1041       <code class="option">--sort=A,B,C</code>
   1042     </span></dt>
   1043 <dd>
   1044 <p>Sort columns by events A,B,C [event column order].</p>
   1045 <p>Optionally, each event is followed by a : and a threshold,
   1046         to specify different thresholds depending on the event.</p>
   1047 </dd>
   1048 <dt><span class="term">
   1049       <code class="option">--threshold=&lt;0--100&gt; [default: 99%] </code>
   1050     </span></dt>
   1051 <dd><p>Percentage of counts (of primary sort event) we are 
   1052       interested in.</p></dd>
   1053 <dt><span class="term">
   1054       <code class="option">--auto=&lt;yes|no&gt; [default: no] </code>
   1055     </span></dt>
   1056 <dd><p>Annotate all source files containing functions that helped 
   1057       reach the event count threshold.</p></dd>
   1058 <dt><span class="term">
   1059       <code class="option">--context=N [default: 8] </code>
   1060     </span></dt>
   1061 <dd><p>Print N lines of context before and after annotated 
   1062       lines.</p></dd>
   1063 <dt><span class="term">
   1064       <code class="option">--inclusive=&lt;yes|no&gt; [default: no] </code>
   1065     </span></dt>
   1066 <dd><p>Add subroutine costs to functions calls.</p></dd>
   1067 <dt><span class="term">
   1068       <code class="option">--tree=&lt;none|caller|calling|both&gt; [default: none] </code>
   1069     </span></dt>
   1070 <dd><p>Print for each function their callers, the called functions 
   1071       or both.</p></dd>
   1072 <dt><span class="term">
   1073       <code class="option">-I, --include=&lt;dir&gt; </code>
   1074     </span></dt>
   1075 <dd><p>Add <code class="option">dir</code> to the list of directories to search
   1076       for source files.</p></dd>
   1077 </dl>
   1078 </div>
   1079 </div>
   1080 <div class="sect1">
   1081 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1082 <a name="cl-manual.callgrind_control-options"></a>6.7.callgrind_control Command-line Options</h2></div></div></div>
   1083 <p>By default, callgrind_control acts on all programs run by the
   1084   current user under Callgrind.  It is possible to limit the actions to
   1085   specified Callgrind runs by providing a list of pids or program names as
   1086   argument.  The default action is to give some brief information about the
   1087   applications being run under Callgrind.</p>
   1088 <div class="variablelist">
   1089 <a name="callgrind_control.opts.list"></a><dl class="variablelist">
   1090 <dt><span class="term"><code class="option">-h --help</code></span></dt>
   1091 <dd><p>Show a short description, usage, and summary of options.</p></dd>
   1092 <dt><span class="term"><code class="option">--version</code></span></dt>
   1093 <dd><p>Show version of callgrind_control.</p></dd>
   1094 <dt><span class="term"><code class="option">-l --long</code></span></dt>
   1095 <dd><p>Show also the working directory, in addition to the brief
   1096       information given by default.
   1097       </p></dd>
   1098 <dt><span class="term"><code class="option">-s --stat</code></span></dt>
   1099 <dd><p>Show statistics information about active Callgrind runs.</p></dd>
   1100 <dt><span class="term"><code class="option">-b --back</code></span></dt>
   1101 <dd><p>Show stack/back traces of each thread in active Callgrind runs. For
   1102       each active function in the stack trace, also the number of invocations
   1103       since program start (or last dump) is shown. This option can be
   1104       combined with -e to show inclusive cost of active functions.</p></dd>
   1105 <dt><span class="term"><code class="option">-e [A,B,...] </code> (default: all)</span></dt>
   1106 <dd><p>Show the current per-thread, exclusive cost values of event
   1107       counters. If no explicit event names are given, figures for all event
   1108       types which are collected in the given Callgrind run are
   1109       shown. Otherwise, only figures for event types A, B, ... are shown. If
   1110       this option is combined with -b, inclusive cost for the functions of
   1111       each active stack frame is provided, too.
   1112       </p></dd>
   1113 <dt><span class="term"><code class="option">--dump[=&lt;desc&gt;] </code> (default: no description)</span></dt>
   1114 <dd><p>Request the dumping of profile information. Optionally, a 
   1115       description can be specified which is written into the dump as part of
   1116       the information giving the reason which triggered the dump action. This
   1117       can be used to distinguish multiple dumps.</p></dd>
   1118 <dt><span class="term"><code class="option">-z --zero</code></span></dt>
   1119 <dd><p>Zero all event counters.</p></dd>
   1120 <dt><span class="term"><code class="option">-k --kill</code></span></dt>
   1121 <dd><p>Force a Callgrind run to be terminated.</p></dd>
   1122 <dt><span class="term"><code class="option">--instr=&lt;on|off&gt;</code></span></dt>
   1123 <dd><p>Switch instrumentation mode on or off. If a Callgrind run has
   1124       instrumentation disabled, no simulation is done and no events are
   1125       counted. This is useful to skip uninteresting program parts, as there
   1126       is much less slowdown (same as with the Valgrind tool "none"). See also
   1127       the Callgrind option <code class="option">--instr-atstart</code>.</p></dd>
   1128 <dt><span class="term"><code class="option">--vgdb-prefix=&lt;prefix&gt;</code></span></dt>
   1129 <dd><p>Specify the vgdb prefix to use by callgrind_control.
   1130       callgrind_control internally uses vgdb to find and control the active
   1131       Callgrind runs. If the <code class="option">--vgdb-prefix</code> option was used
   1132       for launching valgrind, then the same option must be given to
   1133       callgrind_control.</p></dd>
   1134 </dl>
   1135 </div>
   1136 </div>
   1137 </div>
   1138 <div>
   1139 <br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
   1140 <tr>
   1141 <td rowspan="2" width="40%" align="left">
   1142 <a accesskey="p" href="cg-manual.html">&lt;&lt;5.Cachegrind: a cache and branch-prediction profiler</a></td>
   1143 <td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
   1144 <td rowspan="2" width="40%" align="right"><a accesskey="n" href="hg-manual.html">7.Helgrind: a thread error detector&gt;&gt;</a>
   1145 </td>
   1146 </tr>
   1147 <tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
   1148 </table>
   1149 </div>
   1150 </body>
   1151 </html>
   1152