Home | History | Annotate | Download | only in html
      1 <html>
      2 <head>
      3 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      4 <title>8.DRD: a thread error detector</title>
      5 <link rel="stylesheet" type="text/css" href="vg_basic.css">
      6 <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
      7 <link rel="home" href="index.html" title="Valgrind Documentation">
      8 <link rel="up" href="manual.html" title="Valgrind User Manual">
      9 <link rel="prev" href="hg-manual.html" title="7.Helgrind: a thread error detector">
     10 <link rel="next" href="ms-manual.html" title="9.Massif: a heap profiler">
     11 </head>
     12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
     13 <div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
     14 <td width="22px" align="center" valign="middle"><a accesskey="p" href="hg-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
     15 <td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
     16 <td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
     17 <th align="center" valign="middle">Valgrind User Manual</th>
     18 <td width="22px" align="center" valign="middle"><a accesskey="n" href="ms-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
     19 </tr></table></div>
     20 <div class="chapter">
     21 <div class="titlepage"><div><div><h1 class="title">
     22 <a name="drd-manual"></a>8.DRD: a thread error detector</h1></div></div></div>
     23 <div class="toc">
     24 <p><b>Table of Contents</b></p>
     25 <dl class="toc">
     26 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.overview">8.1. Overview</a></span></dt>
     27 <dd><dl>
     28 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-progr-models">8.1.1. Multithreaded Programming Paradigms</a></span></dt>
     29 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.pthreads-model">8.1.2. POSIX Threads Programming Model</a></span></dt>
     30 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-problems">8.1.3. Multithreaded Programming Problems</a></span></dt>
     31 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-race-detection">8.1.4. Data Race Detection</a></span></dt>
     32 </dl></dd>
     33 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.using-drd">8.2. Using DRD</a></span></dt>
     34 <dd><dl>
     35 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.options">8.2.1. DRD Command-line Options</a></span></dt>
     36 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-races">8.2.2. Detected Errors: Data Races</a></span></dt>
     37 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.lock-contention">8.2.3. Detected Errors: Lock Contention</a></span></dt>
     38 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.api-checks">8.2.4. Detected Errors: Misuse of the POSIX threads API</a></span></dt>
     39 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.clientreqs">8.2.5. Client Requests</a></span></dt>
     40 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.C++11">8.2.6. Debugging C++11 Programs</a></span></dt>
     41 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.gnome">8.2.7. Debugging GNOME Programs</a></span></dt>
     42 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.boost.thread">8.2.8. Debugging Boost.Thread Programs</a></span></dt>
     43 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.openmp">8.2.9. Debugging OpenMP Programs</a></span></dt>
     44 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.cust-mem-alloc">8.2.10. DRD and Custom Memory Allocators</a></span></dt>
     45 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.drd-versus-memcheck">8.2.11. DRD Versus Memcheck</a></span></dt>
     46 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.resource-requirements">8.2.12. Resource Requirements</a></span></dt>
     47 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.effective-use">8.2.13. Hints and Tips for Effective Use of DRD</a></span></dt>
     48 </dl></dd>
     49 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.Pthreads">8.3. Using the POSIX Threads API Effectively</a></span></dt>
     50 <dd><dl>
     51 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mutex-types">8.3.1. Mutex types</a></span></dt>
     52 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.condvar">8.3.2. Condition variables</a></span></dt>
     53 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.pctw">8.3.3. pthread_cond_timedwait and timeouts</a></span></dt>
     54 </dl></dd>
     55 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.limitations">8.4. Limitations</a></span></dt>
     56 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.feedback">8.5. Feedback</a></span></dt>
     57 </dl>
     58 </div>
     59 <p>To use this tool, you must specify
     60 <code class="option">--tool=drd</code>
     61 on the Valgrind command line.</p>
     62 <div class="sect1">
     63 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     64 <a name="drd-manual.overview"></a>8.1.Overview</h2></div></div></div>
     65 <p>
     66 DRD is a Valgrind tool for detecting errors in multithreaded C and C++
     67 programs. The tool works for any program that uses the POSIX threading
     68 primitives or that uses threading concepts built on top of the POSIX threading
     69 primitives.
     70 </p>
     71 <div class="sect2">
     72 <div class="titlepage"><div><div><h3 class="title">
     73 <a name="drd-manual.mt-progr-models"></a>8.1.1.Multithreaded Programming Paradigms</h3></div></div></div>
     74 <p>
     75 There are two possible reasons for using multithreading in a program:
     76 </p>
     77 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
     78 <li class="listitem"><p>
     79       To model concurrent activities. Assigning one thread to each activity
     80       can be a great simplification compared to multiplexing the states of
     81       multiple activities in a single thread. This is why most server software
     82       and embedded software is multithreaded.
     83     </p></li>
     84 <li class="listitem"><p>
     85       To use multiple CPU cores simultaneously for speeding up
     86       computations. This is why many High Performance Computing (HPC)
     87       applications are multithreaded.
     88     </p></li>
     89 </ul></div>
     90 <p>
     91 </p>
     92 <p>
     93 Multithreaded programs can use one or more of the following programming
     94 paradigms. Which paradigm is appropriate depends e.g. on the application type.
     95 Some examples of multithreaded programming paradigms are:
     96 </p>
     97 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
     98 <li class="listitem"><p>
     99       Locking. Data that is shared over threads is protected from concurrent
    100       accesses via locking. E.g. the POSIX threads library, the Qt library
    101       and the Boost.Thread library support this paradigm directly.
    102     </p></li>
    103 <li class="listitem"><p>
    104       Message passing. No data is shared between threads, but threads exchange
    105       data by passing messages to each other. Examples of implementations of
    106       the message passing paradigm are MPI and CORBA.
    107     </p></li>
    108 <li class="listitem"><p>
    109       Automatic parallelization. A compiler converts a sequential program into
    110       a multithreaded program. The original program may or may not contain
    111       parallelization hints. One example of such parallelization hints is the
    112       OpenMP standard. In this standard a set of directives are defined which
    113       tell a compiler how to parallelize a C, C++ or Fortran program. OpenMP
    114       is well suited for computational intensive applications. As an example,
    115       an open source image processing software package is using OpenMP to
    116       maximize performance on systems with multiple CPU
    117       cores. GCC supports the
    118       OpenMP standard from version 4.2.0 on.
    119     </p></li>
    120 <li class="listitem"><p>
    121       Software Transactional Memory (STM). Any data that is shared between
    122       threads is updated via transactions. After each transaction it is
    123       verified whether there were any conflicting transactions. If there were
    124       conflicts, the transaction is aborted, otherwise it is committed. This
    125       is a so-called optimistic approach. There is a prototype of the Intel C++
    126       Compiler available that supports STM. Research about the addition of
    127       STM support to GCC is ongoing.
    128     </p></li>
    129 </ul></div>
    130 <p>
    131 </p>
    132 <p>
    133 DRD supports any combination of multithreaded programming paradigms as
    134 long as the implementation of these paradigms is based on the POSIX
    135 threads primitives. DRD however does not support programs that use
    136 e.g. Linux' futexes directly. Attempts to analyze such programs with
    137 DRD will cause DRD to report many false positives.
    138 </p>
    139 </div>
    140 <div class="sect2">
    141 <div class="titlepage"><div><div><h3 class="title">
    142 <a name="drd-manual.pthreads-model"></a>8.1.2.POSIX Threads Programming Model</h3></div></div></div>
    143 <p>
    144 POSIX threads, also known as Pthreads, is the most widely available
    145 threading library on Unix systems.
    146 </p>
    147 <p>
    148 The POSIX threads programming model is based on the following abstractions:
    149 </p>
    150 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    151 <li class="listitem"><p>
    152       A shared address space. All threads running within the same
    153       process share the same address space. All data, whether shared or
    154       not, is identified by its address.
    155     </p></li>
    156 <li class="listitem"><p>
    157       Regular load and store operations, which allow to read values
    158       from or to write values to the memory shared by all threads
    159       running in the same process.
    160     </p></li>
    161 <li class="listitem"><p>
    162       Atomic store and load-modify-store operations. While these are
    163       not mentioned in the POSIX threads standard, most
    164       microprocessors support atomic memory operations.
    165     </p></li>
    166 <li class="listitem"><p>
    167       Threads. Each thread represents a concurrent activity.
    168     </p></li>
    169 <li class="listitem"><p>
    170       Synchronization objects and operations on these synchronization
    171       objects. The following types of synchronization objects have been
    172       defined in the POSIX threads standard: mutexes, condition variables,
    173       semaphores, reader-writer synchronization objects, barriers and
    174       spinlocks.
    175     </p></li>
    176 </ul></div>
    177 <p>
    178 </p>
    179 <p>
    180 Which source code statements generate which memory accesses depends on
    181 the <span class="emphasis"><em>memory model</em></span> of the programming language being
    182 used. There is not yet a definitive memory model for the C and C++
    183 languages. For a draft memory model, see also the document
    184 <a class="ulink" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html" target="_top">
    185 WG21/N2338: Concurrency memory model compiler consequences</a>.
    186 </p>
    187 <p>
    188 For more information about POSIX threads, see also the Single UNIX
    189 Specification version 3, also known as
    190 <a class="ulink" href="http://www.opengroup.org/onlinepubs/000095399/idx/threads.html" target="_top">
    191 IEEE Std 1003.1</a>.
    192 </p>
    193 </div>
    194 <div class="sect2">
    195 <div class="titlepage"><div><div><h3 class="title">
    196 <a name="drd-manual.mt-problems"></a>8.1.3.Multithreaded Programming Problems</h3></div></div></div>
    197 <p>
    198 Depending on which multithreading paradigm is being used in a program,
    199 one or more of the following problems can occur:
    200 </p>
    201 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    202 <li class="listitem"><p>
    203       Data races. One or more threads access the same memory location without
    204       sufficient locking. Most but not all data races are programming errors
    205       and are the cause of subtle and hard-to-find bugs.
    206     </p></li>
    207 <li class="listitem"><p>
    208       Lock contention. One thread blocks the progress of one or more other
    209       threads by holding a lock too long.
    210     </p></li>
    211 <li class="listitem"><p>
    212       Improper use of the POSIX threads API. Most implementations of the POSIX
    213       threads API have been optimized for runtime speed. Such implementations
    214       will not complain on certain errors, e.g. when a mutex is being unlocked
    215       by another thread than the thread that obtained a lock on the mutex.
    216     </p></li>
    217 <li class="listitem"><p>
    218       Deadlock. A deadlock occurs when two or more threads wait for
    219       each other indefinitely.
    220     </p></li>
    221 <li class="listitem"><p>
    222       False sharing. If threads that run on different processor cores
    223       access different variables located in the same cache line
    224       frequently, this will slow down the involved threads a lot due
    225       to frequent exchange of cache lines.
    226     </p></li>
    227 </ul></div>
    228 <p>
    229 </p>
    230 <p>
    231 Although the likelihood of the occurrence of data races can be reduced
    232 through a disciplined programming style, a tool for automatic
    233 detection of data races is a necessity when developing multithreaded
    234 software. DRD can detect these, as well as lock contention and
    235 improper use of the POSIX threads API.
    236 </p>
    237 </div>
    238 <div class="sect2">
    239 <div class="titlepage"><div><div><h3 class="title">
    240 <a name="drd-manual.data-race-detection"></a>8.1.4.Data Race Detection</h3></div></div></div>
    241 <p>
    242 The result of load and store operations performed by a multithreaded program
    243 depends on the order in which memory operations are performed. This order is
    244 determined by:
    245 </p>
    246 <div class="orderedlist"><ol class="orderedlist" type="1">
    247 <li class="listitem"><p>
    248       All memory operations performed by the same thread are performed in
    249       <span class="emphasis"><em>program order</em></span>, that is, the order determined by the
    250       program source code and the results of previous load operations.
    251     </p></li>
    252 <li class="listitem"><p>
    253       Synchronization operations determine certain ordering constraints on
    254       memory operations performed by different threads. These ordering
    255       constraints are called the <span class="emphasis"><em>synchronization order</em></span>.
    256     </p></li>
    257 </ol></div>
    258 <p>
    259 The combination of program order and synchronization order is called the
    260 <span class="emphasis"><em>happens-before relationship</em></span>. This concept was first
    261 defined by S. Adve et al in the paper <span class="emphasis"><em>Detecting data races on weak
    262 memory systems</em></span>, ACM SIGARCH Computer Architecture News, v.19 n.3,
    263 p.234-243, May 1991.
    264 </p>
    265 <p>
    266 Two memory operations <span class="emphasis"><em>conflict</em></span> if both operations are
    267 performed by different threads, refer to the same memory location and at least
    268 one of them is a store operation.
    269 </p>
    270 <p>
    271 A multithreaded program is <span class="emphasis"><em>data-race free</em></span> if all
    272 conflicting memory accesses are ordered by synchronization
    273 operations.
    274 </p>
    275 <p>
    276 A well known way to ensure that a multithreaded program is data-race
    277 free is to ensure that a locking discipline is followed. It is e.g.
    278 possible to associate a mutex with each shared data item, and to hold
    279 a lock on the associated mutex while the shared data is accessed.
    280 </p>
    281 <p>
    282 All programs that follow a locking discipline are data-race free, but not all
    283 data-race free programs follow a locking discipline. There exist multithreaded
    284 programs where access to shared data is arbitrated via condition variables,
    285 semaphores or barriers. As an example, a certain class of HPC applications
    286 consists of a sequence of computation steps separated in time by barriers, and
    287 where these barriers are the only means of synchronization. Although there are
    288 many conflicting memory accesses in such applications and although such
    289 applications do not make use mutexes, most of these applications do not
    290 contain data races.
    291 </p>
    292 <p>
    293 There exist two different approaches for verifying the correctness of
    294 multithreaded programs at runtime. The approach of the so-called Eraser
    295 algorithm is to verify whether all shared memory accesses follow a consistent
    296 locking strategy. And the happens-before data race detectors verify directly
    297 whether all interthread memory accesses are ordered by synchronization
    298 operations. While the last approach is more complex to implement, and while it
    299 is more sensitive to OS scheduling, it is a general approach that works for
    300 all classes of multithreaded programs. An important advantage of
    301 happens-before data race detectors is that these do not report any false
    302 positives.
    303 </p>
    304 <p>
    305 DRD is based on the happens-before algorithm.
    306 </p>
    307 </div>
    308 </div>
    309 <div class="sect1">
    310 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    311 <a name="drd-manual.using-drd"></a>8.2.Using DRD</h2></div></div></div>
    312 <div class="sect2">
    313 <div class="titlepage"><div><div><h3 class="title">
    314 <a name="drd-manual.options"></a>8.2.1.DRD Command-line Options</h3></div></div></div>
    315 <p>The following command-line options are available for controlling the
    316 behavior of the DRD tool itself:</p>
    317 <div class="variablelist">
    318 <a name="drd.opts.list"></a><dl class="variablelist">
    319 <dt><span class="term">
    320       <code class="option">--check-stack-var=&lt;yes|no&gt; [default: no]</code>
    321     </span></dt>
    322 <dd><p>
    323         Controls whether DRD detects data races on stack
    324         variables. Verifying stack variables is disabled by default because
    325         most programs do not share stack variables over threads.
    326       </p></dd>
    327 <dt><span class="term">
    328       <code class="option">--exclusive-threshold=&lt;n&gt; [default: off]</code>
    329     </span></dt>
    330 <dd><p>
    331         Print an error message if any mutex or writer lock has been
    332         held longer than the time specified in milliseconds. This
    333         option enables the detection of lock contention.
    334       </p></dd>
    335 <dt><span class="term">
    336       <code class="option">--join-list-vol=&lt;n&gt; [default: 10]</code>
    337     </span></dt>
    338 <dd><p>
    339         Data races that occur between a statement at the end of one thread
    340 	and another thread can be missed if memory access information is
    341 	discarded immediately after a thread has been joined. This option
    342 	allows to specify for how many joined threads memory access information
    343 	should be retained.
    344       </p></dd>
    345 <dt><span class="term">
    346       <code class="option">
    347         --first-race-only=&lt;yes|no&gt; [default: no]
    348       </code>
    349     </span></dt>
    350 <dd><p>
    351         Whether to report only the first data race that has been detected on a
    352         memory location or all data races that have been detected on a memory
    353         location.
    354       </p></dd>
    355 <dt><span class="term">
    356       <code class="option">
    357         --free-is-write=&lt;yes|no&gt; [default: no]
    358       </code>
    359     </span></dt>
    360 <dd>
    361 <p>
    362         Whether to report races between accessing memory and freeing
    363         memory. Enabling this option may cause DRD to run slightly
    364         slower. Notes:</p>
    365 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    366 <li class="listitem"><p>
    367 	    Don't enable this option when using custom memory allocators
    368 	    that use
    369 	    the <code class="computeroutput">VG_USERREQ__MALLOCLIKE_BLOCK</code>
    370 	    and <code class="computeroutput">VG_USERREQ__FREELIKE_BLOCK</code>
    371 	    because that would result in false positives.
    372 	  </p></li>
    373 <li class="listitem"><p>Don't enable this option when using reference-counted
    374 	    objects because that will result in false positives, even when
    375 	    that code has been annotated properly with
    376 	    <code class="computeroutput">ANNOTATE_HAPPENS_BEFORE</code>
    377 	    and <code class="computeroutput">ANNOTATE_HAPPENS_AFTER</code>. See
    378 	    e.g.  the output of the following command for an example:
    379 	    <code class="computeroutput">valgrind --tool=drd --free-is-write=yes
    380 	      drd/tests/annotate_smart_pointer</code>.
    381 	  </p></li>
    382 </ul></div>
    383 </dd>
    384 <dt><span class="term">
    385       <code class="option">
    386         --report-signal-unlocked=&lt;yes|no&gt; [default: yes]
    387       </code>
    388     </span></dt>
    389 <dd><p>
    390         Whether to report calls to
    391         <code class="function">pthread_cond_signal</code> and
    392         <code class="function">pthread_cond_broadcast</code> where the mutex
    393         associated with the signal through
    394         <code class="function">pthread_cond_wait</code> or
    395         <code class="function">pthread_cond_timed_wait</code>is not locked at
    396         the time the signal is sent.  Sending a signal without holding
    397         a lock on the associated mutex is a common programming error
    398         which can cause subtle race conditions and unpredictable
    399         behavior. There exist some uncommon synchronization patterns
    400         however where it is safe to send a signal without holding a
    401         lock on the associated mutex.
    402       </p></dd>
    403 <dt><span class="term">
    404       <code class="option">--segment-merging=&lt;yes|no&gt; [default: yes]</code>
    405     </span></dt>
    406 <dd><p>
    407         Controls segment merging. Segment merging is an algorithm to
    408         limit memory usage of the data race detection
    409         algorithm. Disabling segment merging may improve the accuracy
    410         of the so-called 'other segments' displayed in race reports
    411         but can also trigger an out of memory error.
    412       </p></dd>
    413 <dt><span class="term">
    414       <code class="option">--segment-merging-interval=&lt;n&gt; [default: 10]</code>
    415     </span></dt>
    416 <dd><p>
    417         Perform segment merging only after the specified number of new
    418         segments have been created. This is an advanced configuration option
    419         that allows to choose whether to minimize DRD's memory usage by
    420         choosing a low value or to let DRD run faster by choosing a slightly
    421         higher value. The optimal value for this parameter depends on the
    422         program being analyzed. The default value works well for most programs.
    423       </p></dd>
    424 <dt><span class="term">
    425       <code class="option">--shared-threshold=&lt;n&gt; [default: off]</code>
    426     </span></dt>
    427 <dd><p>
    428         Print an error message if a reader lock has been held longer
    429         than the specified time (in milliseconds). This option enables
    430         the detection of lock contention.
    431       </p></dd>
    432 <dt><span class="term">
    433       <code class="option">--show-confl-seg=&lt;yes|no&gt; [default: yes]</code>
    434     </span></dt>
    435 <dd><p>
    436          Show conflicting segments in race reports. Since this
    437          information can help to find the cause of a data race, this
    438          option is enabled by default. Disabling this option makes the
    439          output of DRD more compact.
    440       </p></dd>
    441 <dt><span class="term">
    442       <code class="option">--show-stack-usage=&lt;yes|no&gt; [default: no]</code>
    443     </span></dt>
    444 <dd><p>
    445         Print stack usage at thread exit time. When a program creates a large
    446         number of threads it becomes important to limit the amount of virtual
    447         memory allocated for thread stacks. This option makes it possible to
    448         observe how much stack memory has been used by each thread of the
    449         client program. Note: the DRD tool itself allocates some temporary
    450         data on the client thread stack. The space necessary for this
    451         temporary data must be allocated by the client program when it
    452         allocates stack memory, but is not included in stack usage reported by
    453         DRD.
    454       </p></dd>
    455 <dt><span class="term">
    456       <code class="option">--ignore-thread-creation=&lt;yes|no&gt; [default: no]</code>
    457     </span></dt>
    458 <dd>
    459 <p>
    460         Controls whether all activities during thread creation should be
    461         ignored. By default enabled only on Solaris.
    462         Solaris provides higher throughput, parallelism and scalability than
    463         other operating systems, at the cost of more fine-grained locking
    464         activity. This means for example that when a thread is created under
    465         glibc, just one big lock is used for all thread setup. Solaris libc
    466         uses several fine-grained locks and the creator thread resumes its
    467         activities as soon as possible, leaving for example stack and TLS setup
    468         sequence to the created thread.
    469         This situation confuses DRD as it assumes there is some false ordering
    470         in place between creator and created thread; and therefore many types
    471         of race conditions in the application would not be reported. To prevent
    472         such false ordering, this command line option is set to
    473         <code class="computeroutput">yes</code> by default on Solaris.
    474         All activity (loads, stores, client requests) is therefore ignored
    475         during:</p>
    476 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    477 <li class="listitem"><p>
    478 	    pthread_create() call in the creator thread
    479 	  </p></li>
    480 <li class="listitem"><p>
    481 	    thread creation phase (stack and TLS setup) in the created thread
    482 	  </p></li>
    483 </ul></div>
    484 </dd>
    485 </dl>
    486 </div>
    487 <p>
    488 The following options are available for monitoring the behavior of the
    489 client program:
    490 </p>
    491 <div class="variablelist">
    492 <a name="drd.debugopts.list"></a><dl class="variablelist">
    493 <dt><span class="term">
    494       <code class="option">--trace-addr=&lt;address&gt; [default: none]</code>
    495     </span></dt>
    496 <dd><p>
    497         Trace all load and store activity for the specified
    498         address. This option may be specified more than once.
    499       </p></dd>
    500 <dt><span class="term">
    501       <code class="option">--ptrace-addr=&lt;address&gt; [default: none]</code>
    502     </span></dt>
    503 <dd><p>
    504         Trace all load and store activity for the specified address and keep
    505         doing that even after the memory at that address has been freed and
    506         reallocated.
    507       </p></dd>
    508 <dt><span class="term">
    509       <code class="option">--trace-alloc=&lt;yes|no&gt; [default: no]</code>
    510     </span></dt>
    511 <dd><p>
    512         Trace all memory allocations and deallocations. May produce a huge
    513         amount of output.
    514       </p></dd>
    515 <dt><span class="term">
    516       <code class="option">--trace-barrier=&lt;yes|no&gt; [default: no]</code>
    517     </span></dt>
    518 <dd><p>
    519         Trace all barrier activity.
    520       </p></dd>
    521 <dt><span class="term">
    522       <code class="option">--trace-cond=&lt;yes|no&gt; [default: no]</code>
    523     </span></dt>
    524 <dd><p>
    525         Trace all condition variable activity.
    526       </p></dd>
    527 <dt><span class="term">
    528       <code class="option">--trace-fork-join=&lt;yes|no&gt; [default: no]</code>
    529     </span></dt>
    530 <dd><p>
    531         Trace all thread creation and all thread termination events.
    532       </p></dd>
    533 <dt><span class="term">
    534       <code class="option">--trace-hb=&lt;yes|no&gt; [default: no]</code>
    535     </span></dt>
    536 <dd><p>
    537         Trace execution of the <code class="literal">ANNOTATE_HAPPENS_BEFORE()</code>,
    538 	<code class="literal">ANNOTATE_HAPPENS_AFTER()</code> and
    539 	<code class="literal">ANNOTATE_HAPPENS_DONE()</code> client requests.
    540       </p></dd>
    541 <dt><span class="term">
    542       <code class="option">--trace-mutex=&lt;yes|no&gt; [default: no]</code>
    543     </span></dt>
    544 <dd><p>
    545         Trace all mutex activity.
    546       </p></dd>
    547 <dt><span class="term">
    548       <code class="option">--trace-rwlock=&lt;yes|no&gt; [default: no]</code>
    549     </span></dt>
    550 <dd><p>
    551          Trace all reader-writer lock activity.
    552       </p></dd>
    553 <dt><span class="term">
    554       <code class="option">--trace-semaphore=&lt;yes|no&gt; [default: no]</code>
    555     </span></dt>
    556 <dd><p>
    557         Trace all semaphore activity.
    558       </p></dd>
    559 </dl>
    560 </div>
    561 </div>
    562 <div class="sect2">
    563 <div class="titlepage"><div><div><h3 class="title">
    564 <a name="drd-manual.data-races"></a>8.2.2.Detected Errors: Data Races</h3></div></div></div>
    565 <p>
    566 DRD prints a message every time it detects a data race. Please keep
    567 the following in mind when interpreting DRD's output:
    568 </p>
    569 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    570 <li class="listitem"><p>
    571       Every thread is assigned a <span class="emphasis"><em>thread ID</em></span> by the DRD
    572       tool. A thread ID is a number. Thread ID's start at one and are never
    573       recycled.
    574     </p></li>
    575 <li class="listitem"><p>
    576       The term <span class="emphasis"><em>segment</em></span> refers to a consecutive
    577       sequence of load, store and synchronization operations, all
    578       issued by the same thread. A segment always starts and ends at a
    579       synchronization operation. Data race analysis is performed
    580       between segments instead of between individual load and store
    581       operations because of performance reasons.
    582     </p></li>
    583 <li class="listitem"><p>
    584       There are always at least two memory accesses involved in a data
    585       race. Memory accesses involved in a data race are called
    586       <span class="emphasis"><em>conflicting memory accesses</em></span>. DRD prints a
    587       report for each memory access that conflicts with a past memory
    588       access.
    589     </p></li>
    590 </ul></div>
    591 <p>
    592 </p>
    593 <p>
    594 Below you can find an example of a message printed by DRD when it
    595 detects a data race:
    596 </p>
    597 <pre class="programlisting">
    598 $ valgrind --tool=drd --read-var-info=yes drd/tests/rwlock_race
    599 ...
    600 ==9466== Thread 3:
    601 ==9466== Conflicting load by thread 3 at 0x006020b8 size 4
    602 ==9466==    at 0x400B6C: thread_func (rwlock_race.c:29)
    603 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    604 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    605 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    606 ==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
    607 ==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
    608 ==9466== Other segment start (thread 2)
    609 ==9466==    at 0x4C2847D: pthread_rwlock_rdlock* (drd_pthread_intercepts.c:813)
    610 ==9466==    by 0x400B6B: thread_func (rwlock_race.c:28)
    611 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    612 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    613 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    614 ==9466== Other segment end (thread 2)
    615 ==9466==    at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
    616 ==9466==    by 0x400B84: thread_func (rwlock_race.c:30)
    617 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    618 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    619 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    620 ...
    621 </pre>
    622 <p>
    623 The above report has the following meaning:
    624 </p>
    625 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    626 <li class="listitem"><p>
    627       The number in the column on the left is the process ID of the
    628       process being analyzed by DRD.
    629     </p></li>
    630 <li class="listitem"><p>
    631       The first line ("Thread 3") tells you the thread ID for
    632       the thread in which context the data race has been detected.
    633     </p></li>
    634 <li class="listitem"><p>
    635       The next line tells which kind of operation was performed (load or
    636       store) and by which thread. On the same line the start address and the
    637       number of bytes involved in the conflicting access are also displayed.
    638     </p></li>
    639 <li class="listitem"><p>
    640       Next, the call stack of the conflicting access is displayed. If
    641       your program has been compiled with debug information
    642       (<code class="option">-g</code>), this call stack will include file names and
    643       line numbers. The two
    644       bottommost frames in this call stack (<code class="function">clone</code>
    645       and <code class="function">start_thread</code>) show how the NPTL starts
    646       a thread. The third frame
    647       (<code class="function">vg_thread_wrapper</code>) is added by DRD. The
    648       fourth frame (<code class="function">thread_func</code>) is the first
    649       interesting line because it shows the thread entry point, that
    650       is the function that has been passed as the third argument to
    651       <code class="function">pthread_create</code>.
    652     </p></li>
    653 <li class="listitem"><p>
    654       Next, the allocation context for the conflicting address is
    655       displayed. For dynamically allocated data the allocation call
    656       stack is shown. For static variables and stack variables the
    657       allocation context is only shown when the option
    658       <code class="option">--read-var-info=yes</code> has been
    659       specified. Otherwise DRD will print <code class="computeroutput">Allocation
    660       context: unknown</code>.
    661     </p></li>
    662 <li class="listitem">
    663 <p>
    664       A conflicting access involves at least two memory accesses. For
    665       one of these accesses an exact call stack is displayed, and for
    666       the other accesses an approximate call stack is displayed,
    667       namely the start and the end of the segments of the other
    668       accesses. This information can be interpreted as follows:
    669       </p>
    670 <div class="orderedlist"><ol class="orderedlist" type="1">
    671 <li class="listitem"><p>
    672             Start at the bottom of both call stacks, and count the
    673             number stack frames with identical function name, file
    674             name and line number. In the above example the three
    675             bottommost frames are identical
    676             (<code class="function">clone</code>,
    677             <code class="function">start_thread</code> and
    678             <code class="function">vg_thread_wrapper</code>).
    679           </p></li>
    680 <li class="listitem"><p>
    681             The next higher stack frame in both call stacks now tells
    682             you between in which source code region the other memory
    683             access happened. The above output tells that the other
    684             memory access involved in the data race happened between
    685             source code lines 28 and 30 in file
    686             <code class="computeroutput">rwlock_race.c</code>.
    687           </p></li>
    688 </ol></div>
    689 <p>
    690     </p>
    691 </li>
    692 </ul></div>
    693 <p>
    694 </p>
    695 </div>
    696 <div class="sect2">
    697 <div class="titlepage"><div><div><h3 class="title">
    698 <a name="drd-manual.lock-contention"></a>8.2.3.Detected Errors: Lock Contention</h3></div></div></div>
    699 <p>
    700 Threads must be able to make progress without being blocked for too long by
    701 other threads. Sometimes a thread has to wait until a mutex or reader-writer
    702 synchronization object is unlocked by another thread. This is called
    703 <span class="emphasis"><em>lock contention</em></span>.
    704 </p>
    705 <p>
    706 Lock contention causes delays. Such delays should be as short as
    707 possible. The two command line options
    708 <code class="literal">--exclusive-threshold=&lt;n&gt;</code> and
    709 <code class="literal">--shared-threshold=&lt;n&gt;</code> make it possible to
    710 detect excessive lock contention by making DRD report any lock that
    711 has been held longer than the specified threshold. An example:
    712 </p>
    713 <pre class="programlisting">
    714 $ valgrind --tool=drd --exclusive-threshold=10 drd/tests/hold_lock -i 500
    715 ...
    716 ==10668== Acquired at:
    717 ==10668==    at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
    718 ==10668==    by 0x400D92: main (hold_lock.c:51)
    719 ==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
    720 ==10668==    at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
    721 ==10668==    by 0x400DB5: main (hold_lock.c:55)
    722 ...
    723 </pre>
    724 <p>
    725 The <code class="literal">hold_lock</code> test program holds a lock as long as
    726 specified by the <code class="literal">-i</code> (interval) argument. The DRD
    727 output reports that the lock acquired at line 51 in source file
    728 <code class="literal">hold_lock.c</code> and released at line 55 was held during
    729 503 ms, while a threshold of 10 ms was specified to DRD.
    730 </p>
    731 </div>
    732 <div class="sect2">
    733 <div class="titlepage"><div><div><h3 class="title">
    734 <a name="drd-manual.api-checks"></a>8.2.4.Detected Errors: Misuse of the POSIX threads API</h3></div></div></div>
    735 <p>
    736   DRD is able to detect and report the following misuses of the POSIX
    737   threads API:
    738   </p>
    739 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    740 <li class="listitem"><p>
    741         Passing the address of one type of synchronization object
    742         (e.g. a mutex) to a POSIX API call that expects a pointer to
    743         another type of synchronization object (e.g. a condition
    744         variable).
    745       </p></li>
    746 <li class="listitem"><p>
    747         Attempts to unlock a mutex that has not been locked.
    748       </p></li>
    749 <li class="listitem"><p>
    750         Attempts to unlock a mutex that was locked by another thread.
    751       </p></li>
    752 <li class="listitem"><p>
    753         Attempts to lock a mutex of type
    754         <code class="literal">PTHREAD_MUTEX_NORMAL</code> or a spinlock
    755         recursively.
    756       </p></li>
    757 <li class="listitem"><p>
    758         Destruction or deallocation of a locked mutex.
    759       </p></li>
    760 <li class="listitem"><p>
    761         Sending a signal to a condition variable while no lock is held
    762         on the mutex associated with the condition variable.
    763       </p></li>
    764 <li class="listitem"><p>
    765         Calling <code class="function">pthread_cond_wait</code> on a mutex
    766         that is not locked, that is locked by another thread or that
    767         has been locked recursively.
    768       </p></li>
    769 <li class="listitem"><p>
    770         Associating two different mutexes with a condition variable
    771         through <code class="function">pthread_cond_wait</code>.
    772       </p></li>
    773 <li class="listitem"><p>
    774         Destruction or deallocation of a condition variable that is
    775         being waited upon.
    776       </p></li>
    777 <li class="listitem"><p>
    778         Destruction or deallocation of a locked reader-writer synchronization
    779         object.
    780       </p></li>
    781 <li class="listitem"><p>
    782         Attempts to unlock a reader-writer synchronization object that was not
    783         locked by the calling thread.
    784       </p></li>
    785 <li class="listitem"><p>
    786         Attempts to recursively lock a reader-writer synchronization object
    787         exclusively.
    788       </p></li>
    789 <li class="listitem"><p>
    790         Attempts to pass the address of a user-defined reader-writer
    791         synchronization object to a POSIX threads function.
    792       </p></li>
    793 <li class="listitem"><p>
    794         Attempts to pass the address of a POSIX reader-writer synchronization
    795         object to one of the annotations for user-defined reader-writer
    796         synchronization objects.
    797       </p></li>
    798 <li class="listitem"><p>
    799         Reinitialization of a mutex, condition variable, reader-writer
    800         lock, semaphore or barrier.
    801       </p></li>
    802 <li class="listitem"><p>
    803         Destruction or deallocation of a semaphore or barrier that is
    804         being waited upon.
    805       </p></li>
    806 <li class="listitem"><p>
    807         Missing synchronization between barrier wait and barrier destruction.
    808       </p></li>
    809 <li class="listitem"><p>
    810         Exiting a thread without first unlocking the spinlocks, mutexes or
    811         reader-writer synchronization objects that were locked by that thread.
    812       </p></li>
    813 <li class="listitem"><p>
    814         Passing an invalid thread ID to <code class="function">pthread_join</code>
    815         or <code class="function">pthread_cancel</code>.
    816       </p></li>
    817 </ul></div>
    818 <p>
    819 </p>
    820 </div>
    821 <div class="sect2">
    822 <div class="titlepage"><div><div><h3 class="title">
    823 <a name="drd-manual.clientreqs"></a>8.2.5.Client Requests</h3></div></div></div>
    824 <p>
    825 Just as for other Valgrind tools it is possible to let a client program
    826 interact with the DRD tool through client requests. In addition to the
    827 client requests several macros have been defined that allow to use the
    828 client requests in a convenient way.
    829 </p>
    830 <p>
    831 The interface between client programs and the DRD tool is defined in
    832 the header file <code class="literal">&lt;valgrind/drd.h&gt;</code>. The
    833 available macros and client requests are:
    834 </p>
    835 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
    836 <li class="listitem"><p>
    837       The macro <code class="literal">DRD_GET_VALGRIND_THREADID</code> and the
    838       corresponding client
    839       request <code class="varname">VG_USERREQ__DRD_GET_VALGRIND_THREAD_ID</code>.
    840       Query the thread ID that has been assigned by the Valgrind core to the
    841       thread executing this client request. Valgrind's thread ID's start at
    842       one and are recycled in case a thread stops.
    843     </p></li>
    844 <li class="listitem"><p>
    845       The macro <code class="literal">DRD_GET_DRD_THREADID</code> and the corresponding
    846       client request <code class="varname">VG_USERREQ__DRD_GET_DRD_THREAD_ID</code>.
    847       Query the thread ID that has been assigned by DRD to the thread
    848       executing this client request. These are the thread ID's reported by DRD
    849       in data race reports and in trace messages. DRD's thread ID's start at
    850       one and are never recycled.
    851     </p></li>
    852 <li class="listitem"><p>
    853       The macros <code class="literal">DRD_IGNORE_VAR(x)</code>,
    854       <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code> and the corresponding
    855       client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>. Some
    856       applications contain intentional races. There exist e.g. applications
    857       where the same value is assigned to a shared variable from two different
    858       threads. It may be more convenient to suppress such races than to solve
    859       these. This client request allows to suppress such races.
    860     </p></li>
    861 <li class="listitem"><p>
    862       The macro <code class="literal">DRD_STOP_IGNORING_VAR(x)</code> and the
    863       corresponding client request
    864       <code class="varname">VG_USERREQ__DRD_FINISH_SUPPRESSION</code>. Tell DRD
    865       to no longer ignore data races for the address range that was suppressed
    866       either via the macro <code class="literal">DRD_IGNORE_VAR(x)</code> or via the
    867       client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>.
    868     </p></li>
    869 <li class="listitem"><p>
    870       The macro <code class="literal">DRD_TRACE_VAR(x)</code>. Trace all load and store
    871       activity for the address range starting at <code class="literal">&amp;x</code> and
    872       occupying <code class="literal">sizeof(x)</code> bytes. When DRD reports a data
    873       race on a specified variable, and it's not immediately clear which
    874       source code statements triggered the conflicting accesses, it can be
    875       very helpful to trace all activity on the offending memory location.
    876     </p></li>
    877 <li class="listitem"><p>
    878       The macro <code class="literal">DRD_STOP_TRACING_VAR(x)</code>. Stop tracing load
    879       and store activity for the address range starting
    880       at <code class="literal">&amp;x</code> and occupying <code class="literal">sizeof(x)</code>
    881       bytes.
    882     </p></li>
    883 <li class="listitem"><p>
    884       The macro <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code>. Trace all
    885       load and store activity that touches at least the single byte at the
    886       address <code class="literal">&amp;x</code>.
    887     </p></li>
    888 <li class="listitem"><p>
    889       The client request <code class="varname">VG_USERREQ__DRD_START_TRACE_ADDR</code>,
    890       which allows to trace all load and store activity for the specified
    891       address range.
    892     </p></li>
    893 <li class="listitem"><p>
    894       The client
    895       request <code class="varname">VG_USERREQ__DRD_STOP_TRACE_ADDR</code>. Do no longer
    896       trace load and store activity for the specified address range.
    897     </p></li>
    898 <li class="listitem"><p>
    899       The macro <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> tells DRD to
    900       insert a mark. Insert this macro just after an access to the variable at
    901       the specified address has been performed.
    902     </p></li>
    903 <li class="listitem"><p>
    904       The macro <code class="literal">ANNOTATE_HAPPENS_AFTER(addr)</code> tells DRD that
    905       the next access to the variable at the specified address should be
    906       considered to have happened after the access just before the latest
    907       <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> annotation that
    908       references the same variable. The purpose of these two macros is to tell
    909       DRD about the order of inter-thread memory accesses implemented via
    910       atomic memory operations. See
    911       also <code class="literal">drd/tests/annotate_smart_pointer.cpp</code> for an
    912       example.
    913     </p></li>
    914 <li class="listitem"><p>
    915       The macro <code class="literal">ANNOTATE_RWLOCK_CREATE(rwlock)</code> tells DRD
    916       that the object at address <code class="literal">rwlock</code> is a
    917       reader-writer synchronization object that is not a
    918       <code class="literal">pthread_rwlock_t</code> synchronization object.  See
    919       also <code class="literal">drd/tests/annotate_rwlock.c</code> for an example.
    920     </p></li>
    921 <li class="listitem"><p>
    922       The macro <code class="literal">ANNOTATE_RWLOCK_DESTROY(rwlock)</code> tells DRD
    923       that the reader-writer synchronization object at
    924       address <code class="literal">rwlock</code> has been destroyed.
    925     </p></li>
    926 <li class="listitem"><p>
    927       The macro <code class="literal">ANNOTATE_WRITERLOCK_ACQUIRED(rwlock)</code> tells
    928       DRD that a writer lock has been acquired on the reader-writer
    929       synchronization object at address <code class="literal">rwlock</code>.
    930     </p></li>
    931 <li class="listitem"><p>
    932       The macro <code class="literal">ANNOTATE_READERLOCK_ACQUIRED(rwlock)</code> tells
    933       DRD that a reader lock has been acquired on the reader-writer
    934       synchronization object at address <code class="literal">rwlock</code>.
    935     </p></li>
    936 <li class="listitem"><p>
    937       The macro <code class="literal">ANNOTATE_RWLOCK_ACQUIRED(rwlock, is_w)</code>
    938       tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
    939       a reader lock (when <code class="literal">is_w == 0</code>) has been acquired on
    940       the reader-writer synchronization object at
    941       address <code class="literal">rwlock</code>.
    942     </p></li>
    943 <li class="listitem"><p>
    944       The macro <code class="literal">ANNOTATE_WRITERLOCK_RELEASED(rwlock)</code> tells
    945       DRD that a writer lock has been released on the reader-writer
    946       synchronization object at address <code class="literal">rwlock</code>.
    947     </p></li>
    948 <li class="listitem"><p>
    949       The macro <code class="literal">ANNOTATE_READERLOCK_RELEASED(rwlock)</code> tells
    950       DRD that a reader lock has been released on the reader-writer
    951       synchronization object at address <code class="literal">rwlock</code>.
    952     </p></li>
    953 <li class="listitem"><p>
    954       The macro <code class="literal">ANNOTATE_RWLOCK_RELEASED(rwlock, is_w)</code>
    955       tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
    956       a reader lock (when <code class="literal">is_w == 0</code>) has been released on
    957       the reader-writer synchronization object at
    958       address <code class="literal">rwlock</code>.
    959     </p></li>
    960 <li class="listitem"><p>
    961       The macro <code class="literal">ANNOTATE_BARRIER_INIT(barrier, count,
    962       reinitialization_allowed)</code> tells DRD that a new barrier object
    963       at the address <code class="literal">barrier</code> has been initialized,
    964       that <code class="literal">count</code> threads participate in each barrier and
    965       also whether or not barrier reinitialization without intervening
    966       destruction should be reported as an error. See
    967       also <code class="literal">drd/tests/annotate_barrier.c</code> for an example.
    968     </p></li>
    969 <li class="listitem"><p>
    970       The macro <code class="literal">ANNOTATE_BARRIER_DESTROY(barrier)</code>
    971       tells DRD that a barrier object is about to be destroyed.
    972     </p></li>
    973 <li class="listitem"><p>
    974       The macro <code class="literal">ANNOTATE_BARRIER_WAIT_BEFORE(barrier)</code>
    975       tells DRD that waiting for a barrier will start.
    976     </p></li>
    977 <li class="listitem"><p>
    978       The macro <code class="literal">ANNOTATE_BARRIER_WAIT_AFTER(barrier)</code>
    979       tells DRD that waiting for a barrier has finished.
    980     </p></li>
    981 <li class="listitem"><p>
    982       The macro <code class="literal">ANNOTATE_BENIGN_RACE_SIZED(addr, size,
    983       descr)</code> tells DRD that any races detected on the specified
    984       address are benign and hence should not be
    985       reported. The <code class="literal">descr</code> argument is ignored but can be
    986       used to document why data races on <code class="literal">addr</code> are benign.
    987     </p></li>
    988 <li class="listitem"><p>
    989       The macro <code class="literal">ANNOTATE_BENIGN_RACE_STATIC(var, descr)</code>
    990       tells DRD that any races detected on the specified static variable are
    991       benign and hence should not be reported. The <code class="literal">descr</code>
    992       argument is ignored but can be used to document why data races
    993       on <code class="literal">var</code> are benign. Note: this macro can only be
    994       used in C++ programs and not in C programs.
    995     </p></li>
    996 <li class="listitem"><p>
    997       The macro <code class="literal">ANNOTATE_IGNORE_READS_BEGIN</code> tells
    998       DRD to ignore all memory loads performed by the current thread.
    999     </p></li>
   1000 <li class="listitem"><p>
   1001       The macro <code class="literal">ANNOTATE_IGNORE_READS_END</code> tells
   1002       DRD to stop ignoring the memory loads performed by the current thread.
   1003     </p></li>
   1004 <li class="listitem"><p>
   1005       The macro <code class="literal">ANNOTATE_IGNORE_WRITES_BEGIN</code> tells
   1006       DRD to ignore all memory stores performed by the current thread.
   1007     </p></li>
   1008 <li class="listitem"><p>
   1009       The macro <code class="literal">ANNOTATE_IGNORE_WRITES_END</code> tells
   1010       DRD to stop ignoring the memory stores performed by the current thread.
   1011     </p></li>
   1012 <li class="listitem"><p>
   1013       The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN</code> tells
   1014       DRD to ignore all memory accesses performed by the current thread.
   1015     </p></li>
   1016 <li class="listitem"><p>
   1017       The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_END</code> tells
   1018       DRD to stop ignoring the memory accesses performed by the current thread.
   1019     </p></li>
   1020 <li class="listitem"><p>
   1021       The macro <code class="literal">ANNOTATE_NEW_MEMORY(addr, size)</code> tells
   1022       DRD that the specified memory range has been allocated by a custom
   1023       memory allocator in the client program and that the client program
   1024       will start using this memory range.
   1025     </p></li>
   1026 <li class="listitem"><p>
   1027       The macro <code class="literal">ANNOTATE_THREAD_NAME(name)</code> tells DRD to
   1028       associate the specified name with the current thread and to include this
   1029       name in the error messages printed by DRD.
   1030     </p></li>
   1031 <li class="listitem"><p>
   1032       The macros <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code> and
   1033       <code class="literal">VALGRIND_FREELIKE_BLOCK</code> from the Valgrind core are
   1034       implemented;  they are described in 
   1035       <a class="xref" href="manual-core-adv.html#manual-core-adv.clientreq" title="3.1.The Client Request mechanism">The Client Request mechanism</a>.
   1036     </p></li>
   1037 </ul></div>
   1038 <p>
   1039 </p>
   1040 <p>
   1041 Note: if you compiled Valgrind yourself, the header file
   1042 <code class="literal">&lt;valgrind/drd.h&gt;</code> will have been installed in
   1043 the directory <code class="literal">/usr/include</code> by the command
   1044 <code class="literal">make install</code>. If you obtained Valgrind by
   1045 installing it as a package however, you will probably have to install
   1046 another package with a name like <code class="literal">valgrind-devel</code>
   1047 before Valgrind's header files are available.
   1048 </p>
   1049 </div>
   1050 <div class="sect2">
   1051 <div class="titlepage"><div><div><h3 class="title">
   1052 <a name="drd-manual.C++11"></a>8.2.6.Debugging C++11 Programs</h3></div></div></div>
   1053 <p>If you want to use the C++11 class std::thread you will need to do the
   1054   following to annotate the std::shared_ptr&lt;&gt; objects used in the
   1055   implementation of that class:
   1056 </p>
   1057 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1058 <li class="listitem">
   1059 <p>Add the following code at the start of a common header or at the
   1060     start of each source file, before any C++ header files are included:</p>
   1061 <pre class="programlisting">
   1062 #include &lt;valgrind/drd.h&gt;
   1063 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr) ANNOTATE_HAPPENS_BEFORE(addr)
   1064 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr)  ANNOTATE_HAPPENS_AFTER(addr)
   1065 </pre>
   1066 </li>
   1067 <li class="listitem"><p>Download the gcc source code and from source file
   1068     libstdc++-v3/src/c++11/thread.cc copy the implementation of the
   1069     <code class="computeroutput">execute_native_thread_routine()</code>
   1070     and <code class="computeroutput">std::thread::_M_start_thread()</code>
   1071     functions into a source file that is linked with your application. Make
   1072     sure that also in this source file the
   1073     _GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.</p></li>
   1074 </ul></div>
   1075 <p>
   1076 </p>
   1077 <p>For more information, see also <span class="emphasis"><em>The
   1078 GNU C++ Library Manual, Debugging Support</em></span>
   1079 (<a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html" target="_top">http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html</a>).</p>
   1080 </div>
   1081 <div class="sect2">
   1082 <div class="titlepage"><div><div><h3 class="title">
   1083 <a name="drd-manual.gnome"></a>8.2.7.Debugging GNOME Programs</h3></div></div></div>
   1084 <p>
   1085 GNOME applications use the threading primitives provided by the
   1086 <code class="computeroutput">glib</code> and
   1087 <code class="computeroutput">gthread</code> libraries. These libraries
   1088 are built on top of POSIX threads, and hence are directly supported by
   1089 DRD. Please keep in mind that you have to call
   1090 <code class="function">g_thread_init</code> before creating any threads, or
   1091 DRD will report several data races on glib functions. See also the
   1092 <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Threads.html" target="_top">GLib
   1093 Reference Manual</a> for more information about
   1094 <code class="function">g_thread_init</code>.
   1095 </p>
   1096 <p>
   1097 One of the many facilities provided by the <code class="literal">glib</code>
   1098 library is a block allocator, called <code class="literal">g_slice</code>. You
   1099 have to disable this block allocator when using DRD by adding the
   1100 following to the shell environment variables:
   1101 <code class="literal">G_SLICE=always-malloc</code>. See also the <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html" target="_top">GLib
   1102 Reference Manual</a> for more information.
   1103 </p>
   1104 </div>
   1105 <div class="sect2">
   1106 <div class="titlepage"><div><div><h3 class="title">
   1107 <a name="drd-manual.boost.thread"></a>8.2.8.Debugging Boost.Thread Programs</h3></div></div></div>
   1108 <p>
   1109 The Boost.Thread library is the threading library included with the
   1110 cross-platform Boost Libraries. This threading library is an early
   1111 implementation of the upcoming C++0x threading library.
   1112 </p>
   1113 <p>
   1114 Applications that use the Boost.Thread library should run fine under DRD.
   1115 </p>
   1116 <p>
   1117 More information about Boost.Thread can be found here:
   1118 </p>
   1119 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1120 <li class="listitem"><p>
   1121       Anthony Williams, <a class="ulink" href="http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html" target="_top">Boost.Thread</a>
   1122       Library Documentation, Boost website, 2007.
   1123     </p></li>
   1124 <li class="listitem"><p>
   1125       Anthony Williams, <a class="ulink" href="http://www.ddj.com/cpp/211600441" target="_top">What's New in Boost
   1126       Threads?</a>, Recent changes to the Boost Thread library,
   1127       Dr. Dobbs Magazine, October 2008.
   1128     </p></li>
   1129 </ul></div>
   1130 <p>
   1131 </p>
   1132 </div>
   1133 <div class="sect2">
   1134 <div class="titlepage"><div><div><h3 class="title">
   1135 <a name="drd-manual.openmp"></a>8.2.9.Debugging OpenMP Programs</h3></div></div></div>
   1136 <p>
   1137 OpenMP stands for <span class="emphasis"><em>Open Multi-Processing</em></span>. The OpenMP
   1138 standard consists of a set of compiler directives for C, C++ and Fortran
   1139 programs that allows a compiler to transform a sequential program into a
   1140 parallel program. OpenMP is well suited for HPC applications and allows to
   1141 work at a higher level compared to direct use of the POSIX threads API. While
   1142 OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still
   1143 contain data races. So it definitely makes sense to verify OpenMP programs
   1144 with a thread checking tool.
   1145 </p>
   1146 <p>
   1147 DRD supports OpenMP shared-memory programs generated by GCC. GCC
   1148 supports OpenMP since version 4.2.0.  GCC's runtime support
   1149 for OpenMP programs is provided by a library called
   1150 <code class="literal">libgomp</code>. The synchronization primitives implemented
   1151 in this library use Linux' futex system call directly, unless the
   1152 library has been configured with the
   1153 <code class="literal">--disable-linux-futex</code> option. DRD only supports
   1154 libgomp libraries that have been configured with this option and in
   1155 which symbol information is present. For most Linux distributions this
   1156 means that you will have to recompile GCC. See also the script
   1157 <code class="literal">drd/scripts/download-and-build-gcc</code> in the
   1158 Valgrind source tree for an example of how to compile GCC. You will
   1159 also have to make sure that the newly compiled
   1160 <code class="literal">libgomp.so</code> library is loaded when OpenMP programs
   1161 are started. This is possible by adding a line similar to the
   1162 following to your shell startup script:
   1163 </p>
   1164 <pre class="programlisting">
   1165 export LD_LIBRARY_PATH=~/gcc-4.4.0/lib64:~/gcc-4.4.0/lib:
   1166 </pre>
   1167 <p>
   1168 As an example, the test OpenMP test program
   1169 <code class="literal">drd/tests/omp_matinv</code> triggers a data race
   1170 when the option -r has been specified on the command line. The data
   1171 race is triggered by the following code:
   1172 </p>
   1173 <pre class="programlisting">
   1174 #pragma omp parallel for private(j)
   1175 for (j = 0; j &lt; rows; j++)
   1176 {
   1177   if (i != j)
   1178   {
   1179     const elem_t factor = a[j * cols + i];
   1180     for (k = 0; k &lt; cols; k++)
   1181     {
   1182       a[j * cols + k] -= a[i * cols + k] * factor;
   1183     }
   1184   }
   1185 }
   1186 </pre>
   1187 <p>
   1188 The above code is racy because the variable <code class="literal">k</code> has
   1189 not been declared private. DRD will print the following error message
   1190 for the above code:
   1191 </p>
   1192 <pre class="programlisting">
   1193 $ valgrind --tool=drd --check-stack-var=yes --read-var-info=yes drd/tests/omp_matinv 3 -t 2 -r
   1194 ...
   1195 Conflicting store by thread 1/1 at 0x7fefffbc4 size 4
   1196    at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
   1197    by 0x401211: gj (omp_matinv.c:159)
   1198    by 0x40166A: invert_matrix (omp_matinv.c:238)
   1199    by 0x4019B4: main (omp_matinv.c:316)
   1200 Location 0x7fefffbc4 is 0 bytes inside local var "k"
   1201 declared at omp_matinv.c:160, in frame #0 of thread 1
   1202 ...
   1203 </pre>
   1204 <p>
   1205 In the above output the function name <code class="function">gj.omp_fn.0</code>
   1206 has been generated by GCC from the function name
   1207 <code class="function">gj</code>. The allocation context information shows that the
   1208 data race has been caused by modifying the variable <code class="literal">k</code>.
   1209 </p>
   1210 <p>
   1211 Note: for GCC versions before 4.4.0, no allocation context information is
   1212 shown. With these GCC versions the most usable information in the above output
   1213 is the source file name and the line number where the data race has been
   1214 detected (<code class="literal">omp_matinv.c:203</code>).
   1215 </p>
   1216 <p>
   1217 For more information about OpenMP, see also 
   1218 <a class="ulink" href="http://openmp.org/" target="_top">openmp.org</a>.
   1219 </p>
   1220 </div>
   1221 <div class="sect2">
   1222 <div class="titlepage"><div><div><h3 class="title">
   1223 <a name="drd-manual.cust-mem-alloc"></a>8.2.10.DRD and Custom Memory Allocators</h3></div></div></div>
   1224 <p>
   1225 DRD tracks all memory allocation events that happen via the
   1226 standard memory allocation and deallocation functions
   1227 (<code class="function">malloc</code>, <code class="function">free</code>,
   1228 <code class="function">new</code> and <code class="function">delete</code>), via entry
   1229 and exit of stack frames or that have been annotated with Valgrind's
   1230 memory pool client requests. DRD uses memory allocation and deallocation
   1231 information for two purposes:
   1232 </p>
   1233 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1234 <li class="listitem"><p>
   1235       To know where the scope ends of POSIX objects that have not been
   1236       destroyed explicitly. It is e.g. not required by the POSIX
   1237       threads standard to call
   1238       <code class="function">pthread_mutex_destroy</code> before freeing the
   1239       memory in which a mutex object resides.
   1240     </p></li>
   1241 <li class="listitem"><p>
   1242       To know where the scope of variables ends. If e.g. heap memory
   1243       has been used by one thread, that thread frees that memory, and
   1244       another thread allocates and starts using that memory, no data
   1245       races must be reported for that memory.
   1246     </p></li>
   1247 </ul></div>
   1248 <p>
   1249 </p>
   1250 <p>
   1251 It is essential for correct operation of DRD that the tool knows about
   1252 memory allocation and deallocation events. When analyzing a client program
   1253 with DRD that uses a custom memory allocator, either instrument the custom
   1254 memory allocator with the <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code>
   1255 and <code class="literal">VALGRIND_FREELIKE_BLOCK</code> macros or disable the
   1256 custom memory allocator.
   1257 </p>
   1258 <p>
   1259 As an example, the GNU libstdc++ library can be configured
   1260 to use standard memory allocation functions instead of memory pools by
   1261 setting the environment variable
   1262 <code class="literal">GLIBCXX_FORCE_NEW</code>. For more information, see also
   1263 the <a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html" target="_top">libstdc++
   1264 manual</a>.
   1265 </p>
   1266 </div>
   1267 <div class="sect2">
   1268 <div class="titlepage"><div><div><h3 class="title">
   1269 <a name="drd-manual.drd-versus-memcheck"></a>8.2.11.DRD Versus Memcheck</h3></div></div></div>
   1270 <p>
   1271 It is essential for correct operation of DRD that there are no memory
   1272 errors such as dangling pointers in the client program. Which means that
   1273 it is a good idea to make sure that your program is Memcheck-clean
   1274 before you analyze it with DRD. It is possible however that some of
   1275 the Memcheck reports are caused by data races. In this case it makes
   1276 sense to run DRD before Memcheck.
   1277 </p>
   1278 <p>
   1279 So which tool should be run first? In case both DRD and Memcheck
   1280 complain about a program, a possible approach is to run both tools
   1281 alternatingly and to fix as many errors as possible after each run of
   1282 each tool until none of the two tools prints any more error messages.
   1283 </p>
   1284 </div>
   1285 <div class="sect2">
   1286 <div class="titlepage"><div><div><h3 class="title">
   1287 <a name="drd-manual.resource-requirements"></a>8.2.12.Resource Requirements</h3></div></div></div>
   1288 <p>
   1289 The requirements of DRD with regard to heap and stack memory and the
   1290 effect on the execution time of client programs are as follows:
   1291 </p>
   1292 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1293 <li class="listitem"><p>
   1294       When running a program under DRD with default DRD options,
   1295       between 1.1 and 3.6 times more memory will be needed compared to
   1296       a native run of the client program. More memory will be needed
   1297       if loading debug information has been enabled
   1298       (<code class="literal">--read-var-info=yes</code>).
   1299     </p></li>
   1300 <li class="listitem"><p>
   1301       DRD allocates some of its temporary data structures on the stack
   1302       of the client program threads. This amount of data is limited to
   1303       1 - 2 KB. Make sure that thread stacks are sufficiently large.
   1304     </p></li>
   1305 <li class="listitem"><p>
   1306       Most applications will run between 20 and 50 times slower under
   1307       DRD than a native single-threaded run. The slowdown will be most
   1308       noticeable for applications which perform frequent mutex lock /
   1309       unlock operations.
   1310     </p></li>
   1311 </ul></div>
   1312 <p>
   1313 </p>
   1314 </div>
   1315 <div class="sect2">
   1316 <div class="titlepage"><div><div><h3 class="title">
   1317 <a name="drd-manual.effective-use"></a>8.2.13.Hints and Tips for Effective Use of DRD</h3></div></div></div>
   1318 <p>
   1319 The following information may be helpful when using DRD:
   1320 </p>
   1321 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1322 <li class="listitem"><p>
   1323       Make sure that debug information is present in the executable
   1324       being analyzed, such that DRD can print function name and line
   1325       number information in stack traces. Most compilers can be told
   1326       to include debug information via compiler option
   1327       <code class="option">-g</code>.
   1328     </p></li>
   1329 <li class="listitem"><p>
   1330       Compile with option <code class="option">-O1</code> instead of
   1331       <code class="option">-O0</code>. This will reduce the amount of generated
   1332       code, may reduce the amount of debug info and will speed up
   1333       DRD's processing of the client program. For more information,
   1334       see also <a class="xref" href="manual-core.html#manual-core.started" title="2.2.Getting started">Getting started</a>.
   1335     </p></li>
   1336 <li class="listitem"><p>
   1337       If DRD reports any errors on libraries that are part of your
   1338       Linux distribution like e.g. <code class="literal">libc.so</code> or
   1339       <code class="literal">libstdc++.so</code>, installing the debug packages
   1340       for these libraries will make the output of DRD a lot more
   1341       detailed.
   1342     </p></li>
   1343 <li class="listitem">
   1344 <p>
   1345       When using C++, do not send output from more than one thread to
   1346       <code class="literal">std::cout</code>. Doing so would not only
   1347       generate multiple data race reports, it could also result in
   1348       output from several threads getting mixed up.  Either use
   1349       <code class="function">printf</code> or do the following:
   1350       </p>
   1351 <div class="orderedlist"><ol class="orderedlist" type="1">
   1352 <li class="listitem"><p>Derive a class from <code class="literal">std::ostreambuf</code>
   1353           and let that class send output line by line to
   1354           <code class="literal">stdout</code>. This will avoid that individual
   1355           lines of text produced by different threads get mixed
   1356           up.</p></li>
   1357 <li class="listitem"><p>Create one instance of <code class="literal">std::ostream</code>
   1358           for each thread. This makes stream formatting settings
   1359           thread-local. Pass a per-thread instance of the class
   1360           derived from <code class="literal">std::ostreambuf</code> to the
   1361           constructor of each instance. </p></li>
   1362 <li class="listitem"><p>Let each thread send its output to its own instance of
   1363           <code class="literal">std::ostream</code> instead of
   1364           <code class="literal">std::cout</code>.</p></li>
   1365 </ol></div>
   1366 <p>
   1367     </p>
   1368 </li>
   1369 </ul></div>
   1370 <p>
   1371 </p>
   1372 </div>
   1373 </div>
   1374 <div class="sect1">
   1375 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1376 <a name="drd-manual.Pthreads"></a>8.3.Using the POSIX Threads API Effectively</h2></div></div></div>
   1377 <div class="sect2">
   1378 <div class="titlepage"><div><div><h3 class="title">
   1379 <a name="drd-manual.mutex-types"></a>8.3.1.Mutex types</h3></div></div></div>
   1380 <p>
   1381 The Single UNIX Specification version two defines the following four
   1382 mutex types (see also the documentation of <a class="ulink" href="http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html" target="_top"><code class="function">pthread_mutexattr_settype</code></a>):
   1383 </p>
   1384 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1385 <li class="listitem"><p>
   1386       <span class="emphasis"><em>normal</em></span>, which means that no error checking
   1387       is performed, and that the mutex is non-recursive.
   1388     </p></li>
   1389 <li class="listitem"><p>
   1390       <span class="emphasis"><em>error checking</em></span>, which means that the mutex
   1391       is non-recursive and that error checking is performed.
   1392     </p></li>
   1393 <li class="listitem"><p>
   1394       <span class="emphasis"><em>recursive</em></span>, which means that a mutex may be
   1395       locked recursively.
   1396     </p></li>
   1397 <li class="listitem"><p>
   1398       <span class="emphasis"><em>default</em></span>, which means that error checking
   1399       behavior is undefined, and that the behavior for recursive
   1400       locking is also undefined. Or: portable code must neither
   1401       trigger error conditions through the Pthreads API nor attempt to
   1402       lock a mutex of default type recursively.
   1403     </p></li>
   1404 </ul></div>
   1405 <p>
   1406 </p>
   1407 <p>
   1408 In complex applications it is not always clear from beforehand which
   1409 mutex will be locked recursively and which mutex will not be locked
   1410 recursively. Attempts lock a non-recursive mutex recursively will
   1411 result in race conditions that are very hard to find without a thread
   1412 checking tool. So either use the error checking mutex type and
   1413 consistently check the return value of Pthread API mutex calls, or use
   1414 the recursive mutex type.
   1415 </p>
   1416 </div>
   1417 <div class="sect2">
   1418 <div class="titlepage"><div><div><h3 class="title">
   1419 <a name="drd-manual.condvar"></a>8.3.2.Condition variables</h3></div></div></div>
   1420 <p>
   1421 A condition variable allows one thread to wake up one or more other
   1422 threads. Condition variables are often used to notify one or more
   1423 threads about state changes of shared data. Unfortunately it is very
   1424 easy to introduce race conditions by using condition variables as the
   1425 only means of state information propagation. A better approach is to
   1426 let threads poll for changes of a state variable that is protected by
   1427 a mutex, and to use condition variables only as a thread wakeup
   1428 mechanism. See also the source file
   1429 <code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
   1430 example of how to implement this concept in C++. The monitor concept
   1431 used in this example is a well known and very useful concept -- see
   1432 also Wikipedia for more information about the <a class="ulink" href="http://en.wikipedia.org/wiki/Monitor_(synchronization)" target="_top">monitor</a>
   1433 concept.
   1434 </p>
   1435 </div>
   1436 <div class="sect2">
   1437 <div class="titlepage"><div><div><h3 class="title">
   1438 <a name="drd-manual.pctw"></a>8.3.3.pthread_cond_timedwait and timeouts</h3></div></div></div>
   1439 <p>
   1440 Historically the function
   1441 <code class="function">pthread_cond_timedwait</code> only allowed the
   1442 specification of an absolute timeout, that is a timeout independent of
   1443 the time when this function was called. However, almost every call to
   1444 this function expresses a relative timeout. This typically happens by
   1445 passing the sum of
   1446 <code class="computeroutput">clock_gettime(CLOCK_REALTIME)</code> and a
   1447 relative timeout as the third argument. This approach is incorrect
   1448 since forward or backward clock adjustments by e.g. ntpd will affect
   1449 the timeout. A more reliable approach is as follows:
   1450 </p>
   1451 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1452 <li class="listitem"><p>
   1453       When initializing a condition variable through
   1454       <code class="function">pthread_cond_init</code>, specify that the timeout of
   1455       <code class="function">pthread_cond_timedwait</code> will use the clock
   1456       <code class="literal">CLOCK_MONOTONIC</code> instead of
   1457       <code class="literal">CLOCK_REALTIME</code>. You can do this via
   1458       <code class="computeroutput">pthread_condattr_setclock(...,
   1459       CLOCK_MONOTONIC)</code>.
   1460     </p></li>
   1461 <li class="listitem"><p>
   1462       When calling <code class="function">pthread_cond_timedwait</code>, pass
   1463       the sum of
   1464       <code class="computeroutput">clock_gettime(CLOCK_MONOTONIC)</code>
   1465       and a relative timeout as the third argument.
   1466     </p></li>
   1467 </ul></div>
   1468 <p>
   1469 See also
   1470 <code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
   1471 example.
   1472 </p>
   1473 </div>
   1474 </div>
   1475 <div class="sect1">
   1476 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1477 <a name="drd-manual.limitations"></a>8.4.Limitations</h2></div></div></div>
   1478 <p>DRD currently has the following limitations:</p>
   1479 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
   1480 <li class="listitem"><p>
   1481       DRD, just like Memcheck, will refuse to start on Linux
   1482       distributions where all symbol information has been removed from
   1483       <code class="filename">ld.so</code>. This is e.g. the case for the PPC editions
   1484       of openSUSE and Gentoo. You will have to install the glibc debuginfo
   1485       package on these platforms before you can use DRD. See also openSUSE
   1486       bug <a class="ulink" href="http://bugzilla.novell.com/show_bug.cgi?id=396197" target="_top">
   1487       396197</a> and Gentoo bug <a class="ulink" href="http://bugs.gentoo.org/214065" target="_top">214065</a>.
   1488     </p></li>
   1489 <li class="listitem"><p>
   1490       With gcc 4.4.3 and before, DRD may report data races on the C++
   1491       class <code class="literal">std::string</code> in a multithreaded program. This is
   1492       a know <code class="literal">libstdc++</code> issue -- see also GCC bug
   1493       <a class="ulink" href="http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518" target="_top">40518</a>
   1494       for more information.
   1495     </p></li>
   1496 <li class="listitem"><p>
   1497       If you compile the DRD source code yourself, you need GCC 3.0 or
   1498       later. GCC 2.95 is not supported.
   1499     </p></li>
   1500 <li class="listitem"><p>
   1501       Of the two POSIX threads implementations for Linux, only the
   1502       NPTL (Native POSIX Thread Library) is supported. The older
   1503       LinuxThreads library is not supported.
   1504     </p></li>
   1505 </ul></div>
   1506 </div>
   1507 <div class="sect1">
   1508 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1509 <a name="drd-manual.feedback"></a>8.5.Feedback</h2></div></div></div>
   1510 <p>
   1511 If you have any comments, suggestions, feedback or bug reports about
   1512 DRD, feel free to either post a message on the Valgrind users mailing
   1513 list or to file a bug report. See also <a class="ulink" href="http://www.valgrind.org/" target="_top">http://www.valgrind.org/</a> for more information.
   1514 </p>
   1515 </div>
   1516 </div>
   1517 <div>
   1518 <br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
   1519 <tr>
   1520 <td rowspan="2" width="40%" align="left">
   1521 <a accesskey="p" href="hg-manual.html">&lt;&lt;7.Helgrind: a thread error detector</a></td>
   1522 <td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
   1523 <td rowspan="2" width="40%" align="right"><a accesskey="n" href="ms-manual.html">9.Massif: a heap profiler&gt;&gt;</a>
   1524 </td>
   1525 </tr>
   1526 <tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
   1527 </table>
   1528 </div>
   1529 </body>
   1530 </html>
   1531