Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of some decoding functions (idct, loop filtering).
     11 //
     12 // Author: somnath (at) google.com (Somnath Banerjee)
     13 //         cduvivier (at) google.com (Christian Duvivier)
     14 
     15 #include "./dsp.h"
     16 
     17 #if defined(WEBP_USE_SSE2)
     18 
     19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
     20 // one it seems => disable it by default. Uncomment the following to enable:
     21 // #define USE_TRANSFORM_AC3
     22 
     23 #include <emmintrin.h>
     24 #include "./common_sse2.h"
     25 #include "../dec/vp8i_dec.h"
     26 #include "../utils/utils.h"
     27 
     28 //------------------------------------------------------------------------------
     29 // Transforms (Paragraph 14.4)
     30 
     31 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
     32   // This implementation makes use of 16-bit fixed point versions of two
     33   // multiply constants:
     34   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     35   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     36   //
     37   // To be able to use signed 16-bit integers, we use the following trick to
     38   // have constants within range:
     39   // - Associated constants are obtained by subtracting the 16-bit fixed point
     40   //   version of one:
     41   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     42   //      K1 = 85267  =>  k1 =  20091
     43   //      K2 = 35468  =>  k2 = -30068
     44   // - The multiplication of a variable by a constant become the sum of the
     45   //   variable and the multiplication of that variable by the associated
     46   //   constant:
     47   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     48   const __m128i k1 = _mm_set1_epi16(20091);
     49   const __m128i k2 = _mm_set1_epi16(-30068);
     50   __m128i T0, T1, T2, T3;
     51 
     52   // Load and concatenate the transform coefficients (we'll do two transforms
     53   // in parallel). In the case of only one transform, the second half of the
     54   // vectors will just contain random value we'll never use nor store.
     55   __m128i in0, in1, in2, in3;
     56   {
     57     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
     58     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
     59     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
     60     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
     61     // a00 a10 a20 a30   x x x x
     62     // a01 a11 a21 a31   x x x x
     63     // a02 a12 a22 a32   x x x x
     64     // a03 a13 a23 a33   x x x x
     65     if (do_two) {
     66       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
     67       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
     68       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
     69       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
     70       in0 = _mm_unpacklo_epi64(in0, inB0);
     71       in1 = _mm_unpacklo_epi64(in1, inB1);
     72       in2 = _mm_unpacklo_epi64(in2, inB2);
     73       in3 = _mm_unpacklo_epi64(in3, inB3);
     74       // a00 a10 a20 a30   b00 b10 b20 b30
     75       // a01 a11 a21 a31   b01 b11 b21 b31
     76       // a02 a12 a22 a32   b02 b12 b22 b32
     77       // a03 a13 a23 a33   b03 b13 b23 b33
     78     }
     79   }
     80 
     81   // Vertical pass and subsequent transpose.
     82   {
     83     // First pass, c and d calculations are longer because of the "trick"
     84     // multiplications.
     85     const __m128i a = _mm_add_epi16(in0, in2);
     86     const __m128i b = _mm_sub_epi16(in0, in2);
     87     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
     88     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
     89     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
     90     const __m128i c3 = _mm_sub_epi16(in1, in3);
     91     const __m128i c4 = _mm_sub_epi16(c1, c2);
     92     const __m128i c = _mm_add_epi16(c3, c4);
     93     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
     94     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
     95     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
     96     const __m128i d3 = _mm_add_epi16(in1, in3);
     97     const __m128i d4 = _mm_add_epi16(d1, d2);
     98     const __m128i d = _mm_add_epi16(d3, d4);
     99 
    100     // Second pass.
    101     const __m128i tmp0 = _mm_add_epi16(a, d);
    102     const __m128i tmp1 = _mm_add_epi16(b, c);
    103     const __m128i tmp2 = _mm_sub_epi16(b, c);
    104     const __m128i tmp3 = _mm_sub_epi16(a, d);
    105 
    106     // Transpose the two 4x4.
    107     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
    108   }
    109 
    110   // Horizontal pass and subsequent transpose.
    111   {
    112     // First pass, c and d calculations are longer because of the "trick"
    113     // multiplications.
    114     const __m128i four = _mm_set1_epi16(4);
    115     const __m128i dc = _mm_add_epi16(T0, four);
    116     const __m128i a =  _mm_add_epi16(dc, T2);
    117     const __m128i b =  _mm_sub_epi16(dc, T2);
    118     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    119     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    120     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    121     const __m128i c3 = _mm_sub_epi16(T1, T3);
    122     const __m128i c4 = _mm_sub_epi16(c1, c2);
    123     const __m128i c = _mm_add_epi16(c3, c4);
    124     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    125     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    126     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    127     const __m128i d3 = _mm_add_epi16(T1, T3);
    128     const __m128i d4 = _mm_add_epi16(d1, d2);
    129     const __m128i d = _mm_add_epi16(d3, d4);
    130 
    131     // Second pass.
    132     const __m128i tmp0 = _mm_add_epi16(a, d);
    133     const __m128i tmp1 = _mm_add_epi16(b, c);
    134     const __m128i tmp2 = _mm_sub_epi16(b, c);
    135     const __m128i tmp3 = _mm_sub_epi16(a, d);
    136     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    137     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    138     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    139     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    140 
    141     // Transpose the two 4x4.
    142     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
    143                            &T2, &T3);
    144   }
    145 
    146   // Add inverse transform to 'dst' and store.
    147   {
    148     const __m128i zero = _mm_setzero_si128();
    149     // Load the reference(s).
    150     __m128i dst0, dst1, dst2, dst3;
    151     if (do_two) {
    152       // Load eight bytes/pixels per line.
    153       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
    154       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
    155       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
    156       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
    157     } else {
    158       // Load four bytes/pixels per line.
    159       dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
    160       dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
    161       dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
    162       dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
    163     }
    164     // Convert to 16b.
    165     dst0 = _mm_unpacklo_epi8(dst0, zero);
    166     dst1 = _mm_unpacklo_epi8(dst1, zero);
    167     dst2 = _mm_unpacklo_epi8(dst2, zero);
    168     dst3 = _mm_unpacklo_epi8(dst3, zero);
    169     // Add the inverse transform(s).
    170     dst0 = _mm_add_epi16(dst0, T0);
    171     dst1 = _mm_add_epi16(dst1, T1);
    172     dst2 = _mm_add_epi16(dst2, T2);
    173     dst3 = _mm_add_epi16(dst3, T3);
    174     // Unsigned saturate to 8b.
    175     dst0 = _mm_packus_epi16(dst0, dst0);
    176     dst1 = _mm_packus_epi16(dst1, dst1);
    177     dst2 = _mm_packus_epi16(dst2, dst2);
    178     dst3 = _mm_packus_epi16(dst3, dst3);
    179     // Store the results.
    180     if (do_two) {
    181       // Store eight bytes/pixels per line.
    182       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
    183       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
    184       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
    185       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
    186     } else {
    187       // Store four bytes/pixels per line.
    188       WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
    189       WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
    190       WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
    191       WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
    192     }
    193   }
    194 }
    195 
    196 #if defined(USE_TRANSFORM_AC3)
    197 #define MUL(a, b) (((a) * (b)) >> 16)
    198 static void TransformAC3(const int16_t* in, uint8_t* dst) {
    199   static const int kC1 = 20091 + (1 << 16);
    200   static const int kC2 = 35468;
    201   const __m128i A = _mm_set1_epi16(in[0] + 4);
    202   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
    203   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
    204   const int c1 = MUL(in[1], kC2);
    205   const int d1 = MUL(in[1], kC1);
    206   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
    207   const __m128i B = _mm_adds_epi16(A, CD);
    208   const __m128i m0 = _mm_adds_epi16(B, d4);
    209   const __m128i m1 = _mm_adds_epi16(B, c4);
    210   const __m128i m2 = _mm_subs_epi16(B, c4);
    211   const __m128i m3 = _mm_subs_epi16(B, d4);
    212   const __m128i zero = _mm_setzero_si128();
    213   // Load the source pixels.
    214   __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
    215   __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
    216   __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
    217   __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
    218   // Convert to 16b.
    219   dst0 = _mm_unpacklo_epi8(dst0, zero);
    220   dst1 = _mm_unpacklo_epi8(dst1, zero);
    221   dst2 = _mm_unpacklo_epi8(dst2, zero);
    222   dst3 = _mm_unpacklo_epi8(dst3, zero);
    223   // Add the inverse transform.
    224   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
    225   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
    226   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
    227   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
    228   // Unsigned saturate to 8b.
    229   dst0 = _mm_packus_epi16(dst0, dst0);
    230   dst1 = _mm_packus_epi16(dst1, dst1);
    231   dst2 = _mm_packus_epi16(dst2, dst2);
    232   dst3 = _mm_packus_epi16(dst3, dst3);
    233   // Store the results.
    234   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
    235   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
    236   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
    237   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
    238 }
    239 #undef MUL
    240 #endif   // USE_TRANSFORM_AC3
    241 
    242 //------------------------------------------------------------------------------
    243 // Loop Filter (Paragraph 15)
    244 
    245 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
    246 #define MM_ABS(p, q)  _mm_or_si128(                                            \
    247     _mm_subs_epu8((q), (p)),                                                   \
    248     _mm_subs_epu8((p), (q)))
    249 
    250 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
    251 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
    252   const __m128i zero = _mm_setzero_si128();
    253   const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
    254   const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
    255   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
    256   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
    257   *x = _mm_packs_epi16(lo_1, hi_1);
    258 }
    259 
    260 #define FLIP_SIGN_BIT2(a, b) {                                                 \
    261   a = _mm_xor_si128(a, sign_bit);                                              \
    262   b = _mm_xor_si128(b, sign_bit);                                              \
    263 }
    264 
    265 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
    266   FLIP_SIGN_BIT2(a, b);                                                        \
    267   FLIP_SIGN_BIT2(c, d);                                                        \
    268 }
    269 
    270 // input/output is uint8_t
    271 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
    272                                   const __m128i* const p0,
    273                                   const __m128i* const q0,
    274                                   const __m128i* const q1,
    275                                   int hev_thresh, __m128i* const not_hev) {
    276   const __m128i zero = _mm_setzero_si128();
    277   const __m128i t_1 = MM_ABS(*p1, *p0);
    278   const __m128i t_2 = MM_ABS(*q1, *q0);
    279 
    280   const __m128i h = _mm_set1_epi8(hev_thresh);
    281   const __m128i t_max = _mm_max_epu8(t_1, t_2);
    282 
    283   const __m128i t_max_h = _mm_subs_epu8(t_max, h);
    284   *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
    285 }
    286 
    287 // input pixels are int8_t
    288 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
    289                                      const __m128i* const p0,
    290                                      const __m128i* const q0,
    291                                      const __m128i* const q1,
    292                                      __m128i* const delta) {
    293   // beware of addition order, for saturation!
    294   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
    295   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
    296   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
    297   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
    298   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
    299   *delta = s3;
    300 }
    301 
    302 // input and output are int8_t
    303 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
    304                                        const __m128i* const fl) {
    305   const __m128i k3 = _mm_set1_epi8(3);
    306   const __m128i k4 = _mm_set1_epi8(4);
    307   __m128i v3 = _mm_adds_epi8(*fl, k3);
    308   __m128i v4 = _mm_adds_epi8(*fl, k4);
    309 
    310   SignedShift8b(&v4);                  // v4 >> 3
    311   SignedShift8b(&v3);                  // v3 >> 3
    312   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
    313   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
    314 }
    315 
    316 // Updates values of 2 pixels at MB edge during complex filtering.
    317 // Update operations:
    318 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
    319 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
    320 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
    321                                       const __m128i* const a0_lo,
    322                                       const __m128i* const a0_hi) {
    323   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
    324   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
    325   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
    326   const __m128i sign_bit = _mm_set1_epi8(0x80);
    327   *pi = _mm_adds_epi8(*pi, delta);
    328   *qi = _mm_subs_epi8(*qi, delta);
    329   FLIP_SIGN_BIT2(*pi, *qi);
    330 }
    331 
    332 // input pixels are uint8_t
    333 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
    334                                     const __m128i* const p0,
    335                                     const __m128i* const q0,
    336                                     const __m128i* const q1,
    337                                     int thresh, __m128i* const mask) {
    338   const __m128i m_thresh = _mm_set1_epi8(thresh);
    339   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
    340   const __m128i kFE = _mm_set1_epi8(0xFE);
    341   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
    342   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
    343 
    344   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
    345   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
    346   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
    347 
    348   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
    349   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
    350 }
    351 
    352 //------------------------------------------------------------------------------
    353 // Edge filtering functions
    354 
    355 // Applies filter on 2 pixels (p0 and q0)
    356 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
    357                                   __m128i* const q0, __m128i* const q1,
    358                                   int thresh) {
    359   __m128i a, mask;
    360   const __m128i sign_bit = _mm_set1_epi8(0x80);
    361   // convert p1/q1 to int8_t (for GetBaseDelta)
    362   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
    363   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
    364 
    365   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
    366 
    367   FLIP_SIGN_BIT2(*p0, *q0);
    368   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
    369   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
    370   DoSimpleFilter(p0, q0, &a);
    371   FLIP_SIGN_BIT2(*p0, *q0);
    372 }
    373 
    374 // Applies filter on 4 pixels (p1, p0, q0 and q1)
    375 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
    376                                   __m128i* const q0, __m128i* const q1,
    377                                   const __m128i* const mask, int hev_thresh) {
    378   const __m128i zero = _mm_setzero_si128();
    379   const __m128i sign_bit = _mm_set1_epi8(0x80);
    380   const __m128i k64 = _mm_set1_epi8(64);
    381   const __m128i k3 = _mm_set1_epi8(3);
    382   const __m128i k4 = _mm_set1_epi8(4);
    383   __m128i not_hev;
    384   __m128i t1, t2, t3;
    385 
    386   // compute hev mask
    387   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    388 
    389   // convert to signed values
    390   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    391 
    392   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
    393   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
    394   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
    395   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
    396   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
    397   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
    398   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
    399 
    400   t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
    401   t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
    402   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
    403   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
    404   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
    405   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
    406   FLIP_SIGN_BIT2(*p0, *q0);
    407 
    408   // this is equivalent to signed (a + 1) >> 1 calculation
    409   t2 = _mm_add_epi8(t3, sign_bit);
    410   t3 = _mm_avg_epu8(t2, zero);
    411   t3 = _mm_sub_epi8(t3, k64);
    412 
    413   t3 = _mm_and_si128(not_hev, t3);   // if !hev
    414   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
    415   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
    416   FLIP_SIGN_BIT2(*p1, *q1);
    417 }
    418 
    419 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
    420 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
    421                                   __m128i* const p0, __m128i* const q0,
    422                                   __m128i* const q1, __m128i* const q2,
    423                                   const __m128i* const mask, int hev_thresh) {
    424   const __m128i zero = _mm_setzero_si128();
    425   const __m128i sign_bit = _mm_set1_epi8(0x80);
    426   __m128i a, not_hev;
    427 
    428   // compute hev mask
    429   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
    430 
    431   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
    432   FLIP_SIGN_BIT2(*p2, *q2);
    433   GetBaseDelta(p1, p0, q0, q1, &a);
    434 
    435   { // do simple filter on pixels with hev
    436     const __m128i m = _mm_andnot_si128(not_hev, *mask);
    437     const __m128i f = _mm_and_si128(a, m);
    438     DoSimpleFilter(p0, q0, &f);
    439   }
    440 
    441   { // do strong filter on pixels with not hev
    442     const __m128i k9 = _mm_set1_epi16(0x0900);
    443     const __m128i k63 = _mm_set1_epi16(63);
    444 
    445     const __m128i m = _mm_and_si128(not_hev, *mask);
    446     const __m128i f = _mm_and_si128(a, m);
    447 
    448     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
    449     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
    450 
    451     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
    452     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
    453 
    454     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
    455     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
    456 
    457     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
    458     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
    459 
    460     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
    461     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
    462 
    463     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
    464     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
    465     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
    466   }
    467 }
    468 
    469 // reads 8 rows across a vertical edge.
    470 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
    471                                 __m128i* const p, __m128i* const q) {
    472   // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
    473   // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
    474   const __m128i A0 = _mm_set_epi32(
    475       WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
    476       WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
    477   const __m128i A1 = _mm_set_epi32(
    478       WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
    479       WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
    480 
    481   // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
    482   // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
    483   const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
    484   const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
    485 
    486   // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
    487   // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
    488   const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
    489   const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
    490 
    491   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    492   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    493   *p = _mm_unpacklo_epi32(C0, C1);
    494   *q = _mm_unpackhi_epi32(C0, C1);
    495 }
    496 
    497 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
    498                                  const uint8_t* const r8,
    499                                  int stride,
    500                                  __m128i* const p1, __m128i* const p0,
    501                                  __m128i* const q0, __m128i* const q1) {
    502   // Assume the pixels around the edge (|) are numbered as follows
    503   //                00 01 | 02 03
    504   //                10 11 | 12 13
    505   //                 ...  |  ...
    506   //                e0 e1 | e2 e3
    507   //                f0 f1 | f2 f3
    508   //
    509   // r0 is pointing to the 0th row (00)
    510   // r8 is pointing to the 8th row (80)
    511 
    512   // Load
    513   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
    514   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
    515   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
    516   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
    517   Load8x4(r0, stride, p1, q0);
    518   Load8x4(r8, stride, p0, q1);
    519 
    520   {
    521     // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
    522     // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
    523     // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
    524     // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
    525     const __m128i t1 = *p1;
    526     const __m128i t2 = *q0;
    527     *p1 = _mm_unpacklo_epi64(t1, *p0);
    528     *p0 = _mm_unpackhi_epi64(t1, *p0);
    529     *q0 = _mm_unpacklo_epi64(t2, *q1);
    530     *q1 = _mm_unpackhi_epi64(t2, *q1);
    531   }
    532 }
    533 
    534 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
    535   int i;
    536   for (i = 0; i < 4; ++i, dst += stride) {
    537     WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
    538     *x = _mm_srli_si128(*x, 4);
    539   }
    540 }
    541 
    542 // Transpose back and store
    543 static WEBP_INLINE void Store16x4(const __m128i* const p1,
    544                                   const __m128i* const p0,
    545                                   const __m128i* const q0,
    546                                   const __m128i* const q1,
    547                                   uint8_t* r0, uint8_t* r8,
    548                                   int stride) {
    549   __m128i t1, p1_s, p0_s, q0_s, q1_s;
    550 
    551   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
    552   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
    553   t1 = *p0;
    554   p0_s = _mm_unpacklo_epi8(*p1, t1);
    555   p1_s = _mm_unpackhi_epi8(*p1, t1);
    556 
    557   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
    558   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
    559   t1 = *q0;
    560   q0_s = _mm_unpacklo_epi8(t1, *q1);
    561   q1_s = _mm_unpackhi_epi8(t1, *q1);
    562 
    563   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
    564   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
    565   t1 = p0_s;
    566   p0_s = _mm_unpacklo_epi16(t1, q0_s);
    567   q0_s = _mm_unpackhi_epi16(t1, q0_s);
    568 
    569   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
    570   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
    571   t1 = p1_s;
    572   p1_s = _mm_unpacklo_epi16(t1, q1_s);
    573   q1_s = _mm_unpackhi_epi16(t1, q1_s);
    574 
    575   Store4x4(&p0_s, r0, stride);
    576   r0 += 4 * stride;
    577   Store4x4(&q0_s, r0, stride);
    578 
    579   Store4x4(&p1_s, r8, stride);
    580   r8 += 4 * stride;
    581   Store4x4(&q1_s, r8, stride);
    582 }
    583 
    584 //------------------------------------------------------------------------------
    585 // Simple In-loop filtering (Paragraph 15.2)
    586 
    587 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
    588   // Load
    589   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
    590   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
    591   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
    592   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
    593 
    594   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    595 
    596   // Store
    597   _mm_storeu_si128((__m128i*)&p[-stride], p0);
    598   _mm_storeu_si128((__m128i*)&p[0], q0);
    599 }
    600 
    601 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
    602   __m128i p1, p0, q0, q1;
    603 
    604   p -= 2;  // beginning of p1
    605 
    606   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
    607   DoFilter2(&p1, &p0, &q0, &q1, thresh);
    608   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
    609 }
    610 
    611 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
    612   int k;
    613   for (k = 3; k > 0; --k) {
    614     p += 4 * stride;
    615     SimpleVFilter16(p, stride, thresh);
    616   }
    617 }
    618 
    619 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
    620   int k;
    621   for (k = 3; k > 0; --k) {
    622     p += 4;
    623     SimpleHFilter16(p, stride, thresh);
    624   }
    625 }
    626 
    627 //------------------------------------------------------------------------------
    628 // Complex In-loop filtering (Paragraph 15.3)
    629 
    630 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
    631   m = MM_ABS(p1, p0);                                                          \
    632   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    633   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    634 } while (0)
    635 
    636 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
    637   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
    638   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
    639   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
    640 } while (0)
    641 
    642 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
    643   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
    644   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
    645   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
    646   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
    647 }
    648 
    649 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
    650   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
    651   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
    652   p = _mm_unpacklo_epi64(U, V);                                                \
    653 } while (0)
    654 
    655 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
    656   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
    657   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
    658   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
    659   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
    660 }
    661 
    662 #define STOREUV(p, u, v, stride) {                                             \
    663   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
    664   p = _mm_srli_si128(p, 8);                                                    \
    665   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
    666 }
    667 
    668 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
    669                                     const __m128i* const p0,
    670                                     const __m128i* const q0,
    671                                     const __m128i* const q1,
    672                                     int thresh, int ithresh,
    673                                     __m128i* const mask) {
    674   const __m128i it = _mm_set1_epi8(ithresh);
    675   const __m128i diff = _mm_subs_epu8(*mask, it);
    676   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
    677   __m128i filter_mask;
    678   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
    679   *mask = _mm_and_si128(thresh_mask, filter_mask);
    680 }
    681 
    682 // on macroblock edges
    683 static void VFilter16(uint8_t* p, int stride,
    684                       int thresh, int ithresh, int hev_thresh) {
    685   __m128i t1;
    686   __m128i mask;
    687   __m128i p2, p1, p0, q0, q1, q2;
    688 
    689   // Load p3, p2, p1, p0
    690   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
    691   MAX_DIFF1(t1, p2, p1, p0, mask);
    692 
    693   // Load q0, q1, q2, q3
    694   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
    695   MAX_DIFF2(t1, q2, q1, q0, mask);
    696 
    697   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    698   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    699 
    700   // Store
    701   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
    702   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
    703   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
    704   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
    705   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
    706   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
    707 }
    708 
    709 static void HFilter16(uint8_t* p, int stride,
    710                       int thresh, int ithresh, int hev_thresh) {
    711   __m128i mask;
    712   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    713 
    714   uint8_t* const b = p - 4;
    715   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    716   MAX_DIFF1(p3, p2, p1, p0, mask);
    717 
    718   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
    719   MAX_DIFF2(q3, q2, q1, q0, mask);
    720 
    721   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    722   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    723 
    724   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
    725   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
    726 }
    727 
    728 // on three inner edges
    729 static void VFilter16i(uint8_t* p, int stride,
    730                        int thresh, int ithresh, int hev_thresh) {
    731   int k;
    732   __m128i p3, p2, p1, p0;   // loop invariants
    733 
    734   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
    735 
    736   for (k = 3; k > 0; --k) {
    737     __m128i mask, tmp1, tmp2;
    738     uint8_t* const b = p + 2 * stride;   // beginning of p1
    739     p += 4 * stride;
    740 
    741     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    742     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
    743     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    744 
    745     // p3 and p2 are not just temporary variables here: they will be
    746     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
    747     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    748     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    749 
    750     // Store
    751     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
    752     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
    753     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
    754     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
    755 
    756     // rotate samples
    757     p1 = tmp1;
    758     p0 = tmp2;
    759   }
    760 }
    761 
    762 static void HFilter16i(uint8_t* p, int stride,
    763                        int thresh, int ithresh, int hev_thresh) {
    764   int k;
    765   __m128i p3, p2, p1, p0;   // loop invariants
    766 
    767   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
    768 
    769   for (k = 3; k > 0; --k) {
    770     __m128i mask, tmp1, tmp2;
    771     uint8_t* const b = p + 2;   // beginning of p1
    772 
    773     p += 4;  // beginning of q0 (and next span)
    774 
    775     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
    776     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
    777     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
    778 
    779     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
    780     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
    781 
    782     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
    783 
    784     // rotate samples
    785     p1 = tmp1;
    786     p0 = tmp2;
    787   }
    788 }
    789 
    790 // 8-pixels wide variant, for chroma filtering
    791 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
    792                      int thresh, int ithresh, int hev_thresh) {
    793   __m128i mask;
    794   __m128i t1, p2, p1, p0, q0, q1, q2;
    795 
    796   // Load p3, p2, p1, p0
    797   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
    798   MAX_DIFF1(t1, p2, p1, p0, mask);
    799 
    800   // Load q0, q1, q2, q3
    801   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
    802   MAX_DIFF2(t1, q2, q1, q0, mask);
    803 
    804   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    805   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    806 
    807   // Store
    808   STOREUV(p2, u, v, -3 * stride);
    809   STOREUV(p1, u, v, -2 * stride);
    810   STOREUV(p0, u, v, -1 * stride);
    811   STOREUV(q0, u, v, 0 * stride);
    812   STOREUV(q1, u, v, 1 * stride);
    813   STOREUV(q2, u, v, 2 * stride);
    814 }
    815 
    816 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
    817                      int thresh, int ithresh, int hev_thresh) {
    818   __m128i mask;
    819   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
    820 
    821   uint8_t* const tu = u - 4;
    822   uint8_t* const tv = v - 4;
    823   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
    824   MAX_DIFF1(p3, p2, p1, p0, mask);
    825 
    826   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
    827   MAX_DIFF2(q3, q2, q1, q0, mask);
    828 
    829   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    830   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
    831 
    832   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
    833   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
    834 }
    835 
    836 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
    837                       int thresh, int ithresh, int hev_thresh) {
    838   __m128i mask;
    839   __m128i t1, t2, p1, p0, q0, q1;
    840 
    841   // Load p3, p2, p1, p0
    842   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
    843   MAX_DIFF1(t2, t1, p1, p0, mask);
    844 
    845   u += 4 * stride;
    846   v += 4 * stride;
    847 
    848   // Load q0, q1, q2, q3
    849   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
    850   MAX_DIFF2(t2, t1, q1, q0, mask);
    851 
    852   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    853   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    854 
    855   // Store
    856   STOREUV(p1, u, v, -2 * stride);
    857   STOREUV(p0, u, v, -1 * stride);
    858   STOREUV(q0, u, v, 0 * stride);
    859   STOREUV(q1, u, v, 1 * stride);
    860 }
    861 
    862 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
    863                       int thresh, int ithresh, int hev_thresh) {
    864   __m128i mask;
    865   __m128i t1, t2, p1, p0, q0, q1;
    866   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
    867   MAX_DIFF1(t2, t1, p1, p0, mask);
    868 
    869   u += 4;  // beginning of q0
    870   v += 4;
    871   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
    872   MAX_DIFF2(t2, t1, q1, q0, mask);
    873 
    874   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
    875   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
    876 
    877   u -= 2;  // beginning of p1
    878   v -= 2;
    879   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
    880 }
    881 
    882 //------------------------------------------------------------------------------
    883 // 4x4 predictions
    884 
    885 #define DST(x, y) dst[(x) + (y) * BPS]
    886 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
    887 
    888 // We use the following 8b-arithmetic tricks:
    889 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
    890 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
    891 // and:
    892 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
    893 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
    894 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
    895 
    896 static void VE4(uint8_t* dst) {    // vertical
    897   const __m128i one = _mm_set1_epi8(1);
    898   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
    899   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    900   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    901   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
    902   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
    903   const __m128i b = _mm_subs_epu8(a, lsb);
    904   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
    905   const uint32_t vals = _mm_cvtsi128_si32(avg);
    906   int i;
    907   for (i = 0; i < 4; ++i) {
    908     WebPUint32ToMem(dst + i * BPS, vals);
    909   }
    910 }
    911 
    912 static void LD4(uint8_t* dst) {   // Down-Left
    913   const __m128i one = _mm_set1_epi8(1);
    914   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
    915   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    916   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    917   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
    918   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
    919   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
    920   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    921   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
    922   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
    923   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
    924   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
    925   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
    926 }
    927 
    928 static void VR4(uint8_t* dst) {   // Vertical-Right
    929   const __m128i one = _mm_set1_epi8(1);
    930   const int I = dst[-1 + 0 * BPS];
    931   const int J = dst[-1 + 1 * BPS];
    932   const int K = dst[-1 + 2 * BPS];
    933   const int X = dst[-1 - BPS];
    934   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
    935   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
    936   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
    937   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
    938   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
    939   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
    940   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
    941   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    942   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
    943   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
    944   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
    945   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
    946   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
    947 
    948   // these two are hard to implement in SSE2, so we keep the C-version:
    949   DST(0, 2) = AVG3(J, I, X);
    950   DST(0, 3) = AVG3(K, J, I);
    951 }
    952 
    953 static void VL4(uint8_t* dst) {   // Vertical-Left
    954   const __m128i one = _mm_set1_epi8(1);
    955   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
    956   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
    957   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
    958   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
    959   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
    960   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
    961   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
    962   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
    963   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
    964   const __m128i abbc = _mm_or_si128(ab, bc);
    965   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
    966   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
    967   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
    968   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
    969   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
    970   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
    971   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
    972 
    973   // these two are hard to get and irregular
    974   DST(3, 2) = (extra_out >> 0) & 0xff;
    975   DST(3, 3) = (extra_out >> 8) & 0xff;
    976 }
    977 
    978 static void RD4(uint8_t* dst) {   // Down-right
    979   const __m128i one = _mm_set1_epi8(1);
    980   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
    981   const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
    982   const uint32_t I = dst[-1 + 0 * BPS];
    983   const uint32_t J = dst[-1 + 1 * BPS];
    984   const uint32_t K = dst[-1 + 2 * BPS];
    985   const uint32_t L = dst[-1 + 3 * BPS];
    986   const __m128i LKJI_____ =
    987       _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
    988   const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
    989   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
    990   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
    991   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
    992   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
    993   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    994   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
    995   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
    996   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
    997   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
    998   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
    999 }
   1000 
   1001 #undef DST
   1002 #undef AVG3
   1003 
   1004 //------------------------------------------------------------------------------
   1005 // Luma 16x16
   1006 
   1007 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
   1008   const uint8_t* top = dst - BPS;
   1009   const __m128i zero = _mm_setzero_si128();
   1010   int y;
   1011   if (size == 4) {
   1012     const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
   1013     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
   1014     for (y = 0; y < 4; ++y, dst += BPS) {
   1015       const int val = dst[-1] - top[-1];
   1016       const __m128i base = _mm_set1_epi16(val);
   1017       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
   1018       WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
   1019     }
   1020   } else if (size == 8) {
   1021     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
   1022     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
   1023     for (y = 0; y < 8; ++y, dst += BPS) {
   1024       const int val = dst[-1] - top[-1];
   1025       const __m128i base = _mm_set1_epi16(val);
   1026       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
   1027       _mm_storel_epi64((__m128i*)dst, out);
   1028     }
   1029   } else {
   1030     const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
   1031     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
   1032     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
   1033     for (y = 0; y < 16; ++y, dst += BPS) {
   1034       const int val = dst[-1] - top[-1];
   1035       const __m128i base = _mm_set1_epi16(val);
   1036       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
   1037       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
   1038       const __m128i out = _mm_packus_epi16(out_0, out_1);
   1039       _mm_storeu_si128((__m128i*)dst, out);
   1040     }
   1041   }
   1042 }
   1043 
   1044 static void TM4(uint8_t* dst)   { TrueMotion(dst, 4); }
   1045 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
   1046 static void TM16(uint8_t* dst)  { TrueMotion(dst, 16); }
   1047 
   1048 static void VE16(uint8_t* dst) {
   1049   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1050   int j;
   1051   for (j = 0; j < 16; ++j) {
   1052     _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
   1053   }
   1054 }
   1055 
   1056 static void HE16(uint8_t* dst) {     // horizontal
   1057   int j;
   1058   for (j = 16; j > 0; --j) {
   1059     const __m128i values = _mm_set1_epi8(dst[-1]);
   1060     _mm_storeu_si128((__m128i*)dst, values);
   1061     dst += BPS;
   1062   }
   1063 }
   1064 
   1065 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
   1066   int j;
   1067   const __m128i values = _mm_set1_epi8(v);
   1068   for (j = 0; j < 16; ++j) {
   1069     _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
   1070   }
   1071 }
   1072 
   1073 static void DC16(uint8_t* dst) {    // DC
   1074   const __m128i zero = _mm_setzero_si128();
   1075   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1076   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
   1077   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
   1078   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
   1079   int left = 0;
   1080   int j;
   1081   for (j = 0; j < 16; ++j) {
   1082     left += dst[-1 + j * BPS];
   1083   }
   1084   {
   1085     const int DC = _mm_cvtsi128_si32(sum) + left + 16;
   1086     Put16(DC >> 5, dst);
   1087   }
   1088 }
   1089 
   1090 static void DC16NoTop(uint8_t* dst) {   // DC with top samples not available
   1091   int DC = 8;
   1092   int j;
   1093   for (j = 0; j < 16; ++j) {
   1094     DC += dst[-1 + j * BPS];
   1095   }
   1096   Put16(DC >> 4, dst);
   1097 }
   1098 
   1099 static void DC16NoLeft(uint8_t* dst) {  // DC with left samples not available
   1100   const __m128i zero = _mm_setzero_si128();
   1101   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
   1102   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
   1103   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
   1104   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
   1105   const int DC = _mm_cvtsi128_si32(sum) + 8;
   1106   Put16(DC >> 4, dst);
   1107 }
   1108 
   1109 static void DC16NoTopLeft(uint8_t* dst) {  // DC with no top and left samples
   1110   Put16(0x80, dst);
   1111 }
   1112 
   1113 //------------------------------------------------------------------------------
   1114 // Chroma
   1115 
   1116 static void VE8uv(uint8_t* dst) {    // vertical
   1117   int j;
   1118   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1119   for (j = 0; j < 8; ++j) {
   1120     _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
   1121   }
   1122 }
   1123 
   1124 static void HE8uv(uint8_t* dst) {    // horizontal
   1125   int j;
   1126   for (j = 0; j < 8; ++j) {
   1127     const __m128i values = _mm_set1_epi8(dst[-1]);
   1128     _mm_storel_epi64((__m128i*)dst, values);
   1129     dst += BPS;
   1130   }
   1131 }
   1132 
   1133 // helper for chroma-DC predictions
   1134 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
   1135   int j;
   1136   const __m128i values = _mm_set1_epi8(v);
   1137   for (j = 0; j < 8; ++j) {
   1138     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
   1139   }
   1140 }
   1141 
   1142 static void DC8uv(uint8_t* dst) {     // DC
   1143   const __m128i zero = _mm_setzero_si128();
   1144   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1145   const __m128i sum = _mm_sad_epu8(top, zero);
   1146   int left = 0;
   1147   int j;
   1148   for (j = 0; j < 8; ++j) {
   1149     left += dst[-1 + j * BPS];
   1150   }
   1151   {
   1152     const int DC = _mm_cvtsi128_si32(sum) + left + 8;
   1153     Put8x8uv(DC >> 4, dst);
   1154   }
   1155 }
   1156 
   1157 static void DC8uvNoLeft(uint8_t* dst) {   // DC with no left samples
   1158   const __m128i zero = _mm_setzero_si128();
   1159   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
   1160   const __m128i sum = _mm_sad_epu8(top, zero);
   1161   const int DC = _mm_cvtsi128_si32(sum) + 4;
   1162   Put8x8uv(DC >> 3, dst);
   1163 }
   1164 
   1165 static void DC8uvNoTop(uint8_t* dst) {  // DC with no top samples
   1166   int dc0 = 4;
   1167   int i;
   1168   for (i = 0; i < 8; ++i) {
   1169     dc0 += dst[-1 + i * BPS];
   1170   }
   1171   Put8x8uv(dc0 >> 3, dst);
   1172 }
   1173 
   1174 static void DC8uvNoTopLeft(uint8_t* dst) {    // DC with nothing
   1175   Put8x8uv(0x80, dst);
   1176 }
   1177 
   1178 //------------------------------------------------------------------------------
   1179 // Entry point
   1180 
   1181 extern void VP8DspInitSSE2(void);
   1182 
   1183 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
   1184   VP8Transform = Transform;
   1185 #if defined(USE_TRANSFORM_AC3)
   1186   VP8TransformAC3 = TransformAC3;
   1187 #endif
   1188 
   1189   VP8VFilter16 = VFilter16;
   1190   VP8HFilter16 = HFilter16;
   1191   VP8VFilter8 = VFilter8;
   1192   VP8HFilter8 = HFilter8;
   1193   VP8VFilter16i = VFilter16i;
   1194   VP8HFilter16i = HFilter16i;
   1195   VP8VFilter8i = VFilter8i;
   1196   VP8HFilter8i = HFilter8i;
   1197 
   1198   VP8SimpleVFilter16 = SimpleVFilter16;
   1199   VP8SimpleHFilter16 = SimpleHFilter16;
   1200   VP8SimpleVFilter16i = SimpleVFilter16i;
   1201   VP8SimpleHFilter16i = SimpleHFilter16i;
   1202 
   1203   VP8PredLuma4[1] = TM4;
   1204   VP8PredLuma4[2] = VE4;
   1205   VP8PredLuma4[4] = RD4;
   1206   VP8PredLuma4[5] = VR4;
   1207   VP8PredLuma4[6] = LD4;
   1208   VP8PredLuma4[7] = VL4;
   1209 
   1210   VP8PredLuma16[0] = DC16;
   1211   VP8PredLuma16[1] = TM16;
   1212   VP8PredLuma16[2] = VE16;
   1213   VP8PredLuma16[3] = HE16;
   1214   VP8PredLuma16[4] = DC16NoTop;
   1215   VP8PredLuma16[5] = DC16NoLeft;
   1216   VP8PredLuma16[6] = DC16NoTopLeft;
   1217 
   1218   VP8PredChroma8[0] = DC8uv;
   1219   VP8PredChroma8[1] = TM8uv;
   1220   VP8PredChroma8[2] = VE8uv;
   1221   VP8PredChroma8[3] = HE8uv;
   1222   VP8PredChroma8[4] = DC8uvNoTop;
   1223   VP8PredChroma8[5] = DC8uvNoLeft;
   1224   VP8PredChroma8[6] = DC8uvNoTopLeft;
   1225 }
   1226 
   1227 #else  // !WEBP_USE_SSE2
   1228 
   1229 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
   1230 
   1231 #endif  // WEBP_USE_SSE2
   1232