Home | History | Annotate | Download | only in common_time
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define __STDC_LIMIT_MACROS
     18 
     19 #include "LinearTransform.h"
     20 #include <assert.h>
     21 
     22 
     23 // disable sanitize as these functions may intentionally overflow (see comments below).
     24 // the ifdef can be removed when host builds use clang.
     25 #if defined(__clang__)
     26 #define ATTRIBUTE_NO_SANITIZE_INTEGER __attribute__((no_sanitize("integer")))
     27 #else
     28 #define ATTRIBUTE_NO_SANITIZE_INTEGER
     29 #endif
     30 
     31 namespace android {
     32 
     33 // sanitize failure with T = int32_t and x = 0x80000000
     34 template<class T>
     35 ATTRIBUTE_NO_SANITIZE_INTEGER
     36 static inline T ABS(T x) { return (x < 0) ? -x : x; }
     37 
     38 // Static math methods involving linear transformations
     39 // remote sanitize failure on overflow case.
     40 ATTRIBUTE_NO_SANITIZE_INTEGER
     41 static bool scale_u64_to_u64(
     42         uint64_t val,
     43         uint32_t N,
     44         uint32_t D,
     45         uint64_t* res,
     46         bool round_up_not_down) {
     47     uint64_t tmp1, tmp2;
     48     uint32_t r;
     49 
     50     assert(res);
     51     assert(D);
     52 
     53     // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
     54     // integer X.
     55     // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
     56     // integer X.
     57     // Let X[A, B] with A <= B denote bits A through B of the integer X.
     58     // Let (A | B) denote the concatination of two 32 bit ints, A and B.
     59     // IOW X = (A | B) => U32(X) == A && L32(X) == B
     60     //
     61     // compute M = val * N (a 96 bit int)
     62     // ---------------------------------
     63     // tmp2 = U32(val) * N (a 64 bit int)
     64     // tmp1 = L32(val) * N (a 64 bit int)
     65     // which means
     66     // M = val * N = (tmp2 << 32) + tmp1
     67     tmp2 = (val >> 32) * N;
     68     tmp1 = (val & UINT32_MAX) * N;
     69 
     70     // compute M[32, 95]
     71     // tmp2 = tmp2 + U32(tmp1)
     72     //      = (U32(val) * N) + U32(L32(val) * N)
     73     //      = M[32, 95]
     74     tmp2 += tmp1 >> 32;
     75 
     76     // if M[64, 95] >= D, then M/D has bits > 63 set and we have
     77     // an overflow.
     78     if ((tmp2 >> 32) >= D) {
     79         *res = UINT64_MAX;
     80         return false;
     81     }
     82 
     83     // Divide.  Going in we know
     84     // tmp2 = M[32, 95]
     85     // U32(tmp2) < D
     86     r = tmp2 % D;
     87     tmp2 /= D;
     88 
     89     // At this point
     90     // tmp1      = L32(val) * N
     91     // tmp2      = M[32, 95] / D
     92     //           = (M / D)[32, 95]
     93     // r         = M[32, 95] % D
     94     // U32(tmp2) = 0
     95     //
     96     // compute tmp1 = (r | M[0, 31])
     97     tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
     98 
     99     // Divide again.  Keep the remainder around in order to round properly.
    100     r = tmp1 % D;
    101     tmp1 /= D;
    102 
    103     // At this point
    104     // tmp2      = (M / D)[32, 95]
    105     // tmp1      = (M / D)[ 0, 31]
    106     // r         =  M % D
    107     // U32(tmp1) = 0
    108     // U32(tmp2) = 0
    109 
    110     // Pack the result and deal with the round-up case (As well as the
    111     // remote possiblility over overflow in such a case).
    112     *res = (tmp2 << 32) | tmp1;
    113     if (r && round_up_not_down) {
    114         ++(*res);
    115         if (!(*res)) {
    116             *res = UINT64_MAX;
    117             return false;
    118         }
    119     }
    120 
    121     return true;
    122 }
    123 
    124 // at least one known sanitize failure (see comment below)
    125 ATTRIBUTE_NO_SANITIZE_INTEGER
    126 static bool linear_transform_s64_to_s64(
    127         int64_t  val,
    128         int64_t  basis1,
    129         int32_t  N,
    130         uint32_t D,
    131         bool     invert_frac,
    132         int64_t  basis2,
    133         int64_t* out) {
    134     uint64_t scaled, res;
    135     uint64_t abs_val;
    136     bool is_neg;
    137 
    138     if (!out)
    139         return false;
    140 
    141     // Compute abs(val - basis_64). Keep track of whether or not this delta
    142     // will be negative after the scale opertaion.
    143     if (val < basis1) {
    144         is_neg = true;
    145         abs_val = basis1 - val;
    146     } else {
    147         is_neg = false;
    148         abs_val = val - basis1;
    149     }
    150 
    151     if (N < 0)
    152         is_neg = !is_neg;
    153 
    154     if (!scale_u64_to_u64(abs_val,
    155                           invert_frac ? D : ABS(N),
    156                           invert_frac ? ABS(N) : D,
    157                           &scaled,
    158                           is_neg))
    159         return false; // overflow/undeflow
    160 
    161     // if scaled is >= 0x8000<etc>, then we are going to overflow or
    162     // underflow unless ABS(basis2) is large enough to pull us back into the
    163     // non-overflow/underflow region.
    164     if (scaled & INT64_MIN) {
    165         if (is_neg && (basis2 < 0))
    166             return false; // certain underflow
    167 
    168         if (!is_neg && (basis2 >= 0))
    169             return false; // certain overflow
    170 
    171         if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
    172             return false; // not enough
    173 
    174         // Looks like we are OK
    175         *out = (is_neg ? (-scaled) : scaled) + basis2;
    176     } else {
    177         // Scaled fits within signed bounds, so we just need to check for
    178         // over/underflow for two signed integers.  Basically, if both scaled
    179         // and basis2 have the same sign bit, and the result has a different
    180         // sign bit, then we have under/overflow.  An easy way to compute this
    181         // is
    182         // (scaled_signbit XNOR basis_signbit) &&
    183         // (scaled_signbit XOR res_signbit)
    184         // ==
    185         // (scaled_signbit XOR basis_signbit XOR 1) &&
    186         // (scaled_signbit XOR res_signbit)
    187 
    188         if (is_neg)
    189             scaled = -scaled; // known sanitize failure
    190         res = scaled + basis2;
    191 
    192         if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
    193             return false;
    194 
    195         *out = res;
    196     }
    197 
    198     return true;
    199 }
    200 
    201 bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
    202     if (0 == a_to_b_denom)
    203         return false;
    204 
    205     return linear_transform_s64_to_s64(a_in,
    206                                        a_zero,
    207                                        a_to_b_numer,
    208                                        a_to_b_denom,
    209                                        false,
    210                                        b_zero,
    211                                        b_out);
    212 }
    213 
    214 bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
    215     if (0 == a_to_b_numer)
    216         return false;
    217 
    218     return linear_transform_s64_to_s64(b_in,
    219                                        b_zero,
    220                                        a_to_b_numer,
    221                                        a_to_b_denom,
    222                                        true,
    223                                        a_zero,
    224                                        a_out);
    225 }
    226 
    227 template <class T> void LinearTransform::reduce(T* N, T* D) {
    228     T a, b;
    229     if (!N || !D || !(*D)) {
    230         assert(false);
    231         return;
    232     }
    233 
    234     a = *N;
    235     b = *D;
    236 
    237     if (a == 0) {
    238         *D = 1;
    239         return;
    240     }
    241 
    242     // This implements Euclid's method to find GCD.
    243     if (a < b) {
    244         T tmp = a;
    245         a = b;
    246         b = tmp;
    247     }
    248 
    249     while (1) {
    250         // a is now the greater of the two.
    251         const T remainder = a % b;
    252         if (remainder == 0) {
    253             *N /= b;
    254             *D /= b;
    255             return;
    256         }
    257         // by swapping remainder and b, we are guaranteeing that a is
    258         // still the greater of the two upon entrance to the loop.
    259         a = b;
    260         b = remainder;
    261     }
    262 };
    263 
    264 template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
    265 template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
    266 
    267 // sanitize failure if *N = 0x80000000
    268 ATTRIBUTE_NO_SANITIZE_INTEGER
    269 void LinearTransform::reduce(int32_t* N, uint32_t* D) {
    270     if (N && D && *D) {
    271         if (*N < 0) {
    272             *N = -(*N);
    273             reduce(reinterpret_cast<uint32_t*>(N), D);
    274             *N = -(*N);
    275         } else {
    276             reduce(reinterpret_cast<uint32_t*>(N), D);
    277         }
    278     }
    279 }
    280 
    281 }  // namespace android
    282