Home | History | Annotate | Download | only in libvrflinger
      1 #include "hardware_composer.h"
      2 
      3 #include <cutils/properties.h>
      4 #include <cutils/sched_policy.h>
      5 #include <fcntl.h>
      6 #include <log/log.h>
      7 #include <poll.h>
      8 #include <stdint.h>
      9 #include <sync/sync.h>
     10 #include <sys/eventfd.h>
     11 #include <sys/prctl.h>
     12 #include <sys/resource.h>
     13 #include <sys/system_properties.h>
     14 #include <sys/timerfd.h>
     15 #include <sys/types.h>
     16 #include <time.h>
     17 #include <unistd.h>
     18 #include <utils/Trace.h>
     19 
     20 #include <algorithm>
     21 #include <chrono>
     22 #include <functional>
     23 #include <map>
     24 #include <sstream>
     25 #include <string>
     26 #include <tuple>
     27 
     28 #include <dvr/dvr_display_types.h>
     29 #include <dvr/performance_client_api.h>
     30 #include <private/dvr/clock_ns.h>
     31 #include <private/dvr/ion_buffer.h>
     32 
     33 using android::hardware::Return;
     34 using android::hardware::Void;
     35 using android::pdx::ErrorStatus;
     36 using android::pdx::LocalHandle;
     37 using android::pdx::Status;
     38 using android::pdx::rpc::EmptyVariant;
     39 using android::pdx::rpc::IfAnyOf;
     40 
     41 using namespace std::chrono_literals;
     42 
     43 namespace android {
     44 namespace dvr {
     45 
     46 namespace {
     47 
     48 const char kBacklightBrightnessSysFile[] =
     49     "/sys/class/leds/lcd-backlight/brightness";
     50 
     51 const char kDvrPerformanceProperty[] = "sys.dvr.performance";
     52 const char kDvrStandaloneProperty[] = "ro.boot.vr";
     53 
     54 const char kRightEyeOffsetProperty[] = "dvr.right_eye_offset_ns";
     55 
     56 // Get time offset from a vsync to when the pose for that vsync should be
     57 // predicted out to. For example, if scanout gets halfway through the frame
     58 // at the halfway point between vsyncs, then this could be half the period.
     59 // With global shutter displays, this should be changed to the offset to when
     60 // illumination begins. Low persistence adds a frame of latency, so we predict
     61 // to the center of the next frame.
     62 inline int64_t GetPosePredictionTimeOffset(int64_t vsync_period_ns) {
     63   return (vsync_period_ns * 150) / 100;
     64 }
     65 
     66 // Attempts to set the scheduler class and partiton for the current thread.
     67 // Returns true on success or false on failure.
     68 bool SetThreadPolicy(const std::string& scheduler_class,
     69                      const std::string& partition) {
     70   int error = dvrSetSchedulerClass(0, scheduler_class.c_str());
     71   if (error < 0) {
     72     ALOGE(
     73         "SetThreadPolicy: Failed to set scheduler class \"%s\" for "
     74         "thread_id=%d: %s",
     75         scheduler_class.c_str(), gettid(), strerror(-error));
     76     return false;
     77   }
     78   error = dvrSetCpuPartition(0, partition.c_str());
     79   if (error < 0) {
     80     ALOGE(
     81         "SetThreadPolicy: Failed to set cpu partiton \"%s\" for thread_id=%d: "
     82         "%s",
     83         partition.c_str(), gettid(), strerror(-error));
     84     return false;
     85   }
     86   return true;
     87 }
     88 
     89 // Utility to generate scoped tracers with arguments.
     90 // TODO(eieio): Move/merge this into utils/Trace.h?
     91 class TraceArgs {
     92  public:
     93   template <typename... Args>
     94   TraceArgs(const char* format, Args&&... args) {
     95     std::array<char, 1024> buffer;
     96     snprintf(buffer.data(), buffer.size(), format, std::forward<Args>(args)...);
     97     atrace_begin(ATRACE_TAG, buffer.data());
     98   }
     99 
    100   ~TraceArgs() { atrace_end(ATRACE_TAG); }
    101 
    102  private:
    103   TraceArgs(const TraceArgs&) = delete;
    104   void operator=(const TraceArgs&) = delete;
    105 };
    106 
    107 // Macro to define a scoped tracer with arguments. Uses PASTE(x, y) macro
    108 // defined in utils/Trace.h.
    109 #define TRACE_FORMAT(format, ...) \
    110   TraceArgs PASTE(__tracer, __LINE__) { format, ##__VA_ARGS__ }
    111 
    112 }  // anonymous namespace
    113 
    114 HardwareComposer::HardwareComposer()
    115     : initialized_(false), request_display_callback_(nullptr) {}
    116 
    117 HardwareComposer::~HardwareComposer(void) {
    118   UpdatePostThreadState(PostThreadState::Quit, true);
    119   if (post_thread_.joinable())
    120     post_thread_.join();
    121 }
    122 
    123 bool HardwareComposer::Initialize(
    124     Hwc2::Composer* composer, RequestDisplayCallback request_display_callback) {
    125   if (initialized_) {
    126     ALOGE("HardwareComposer::Initialize: already initialized.");
    127     return false;
    128   }
    129 
    130   is_standalone_device_ = property_get_bool(kDvrStandaloneProperty, false);
    131 
    132   request_display_callback_ = request_display_callback;
    133 
    134   HWC::Error error = HWC::Error::None;
    135 
    136   Hwc2::Config config;
    137   error = composer->getActiveConfig(HWC_DISPLAY_PRIMARY, &config);
    138 
    139   if (error != HWC::Error::None) {
    140     ALOGE("HardwareComposer: Failed to get current display config : %d",
    141           config);
    142     return false;
    143   }
    144 
    145   error = GetDisplayMetrics(composer, HWC_DISPLAY_PRIMARY, config,
    146                             &native_display_metrics_);
    147 
    148   if (error != HWC::Error::None) {
    149     ALOGE(
    150         "HardwareComposer: Failed to get display attributes for current "
    151         "configuration : %d",
    152         error.value);
    153     return false;
    154   }
    155 
    156   ALOGI(
    157       "HardwareComposer: primary display attributes: width=%d height=%d "
    158       "vsync_period_ns=%d DPI=%dx%d",
    159       native_display_metrics_.width, native_display_metrics_.height,
    160       native_display_metrics_.vsync_period_ns, native_display_metrics_.dpi.x,
    161       native_display_metrics_.dpi.y);
    162 
    163   // Set the display metrics but never use rotation to avoid the long latency of
    164   // rotation processing in hwc.
    165   display_transform_ = HWC_TRANSFORM_NONE;
    166   display_metrics_ = native_display_metrics_;
    167 
    168   // Setup the display metrics used by all Layer instances.
    169   Layer::SetDisplayMetrics(native_display_metrics_);
    170 
    171   post_thread_event_fd_.Reset(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK));
    172   LOG_ALWAYS_FATAL_IF(
    173       !post_thread_event_fd_,
    174       "HardwareComposer: Failed to create interrupt event fd : %s",
    175       strerror(errno));
    176 
    177   post_thread_ = std::thread(&HardwareComposer::PostThread, this);
    178 
    179   initialized_ = true;
    180 
    181   return initialized_;
    182 }
    183 
    184 void HardwareComposer::Enable() {
    185   UpdatePostThreadState(PostThreadState::Suspended, false);
    186 }
    187 
    188 void HardwareComposer::Disable() {
    189   UpdatePostThreadState(PostThreadState::Suspended, true);
    190 }
    191 
    192 // Update the post thread quiescent state based on idle and suspended inputs.
    193 void HardwareComposer::UpdatePostThreadState(PostThreadStateType state,
    194                                              bool suspend) {
    195   std::unique_lock<std::mutex> lock(post_thread_mutex_);
    196 
    197   // Update the votes in the state variable before evaluating the effective
    198   // quiescent state. Any bits set in post_thread_state_ indicate that the post
    199   // thread should be suspended.
    200   if (suspend) {
    201     post_thread_state_ |= state;
    202   } else {
    203     post_thread_state_ &= ~state;
    204   }
    205 
    206   const bool quit = post_thread_state_ & PostThreadState::Quit;
    207   const bool effective_suspend = post_thread_state_ != PostThreadState::Active;
    208   if (quit) {
    209     post_thread_quiescent_ = true;
    210     eventfd_write(post_thread_event_fd_.Get(), 1);
    211     post_thread_wait_.notify_one();
    212   } else if (effective_suspend && !post_thread_quiescent_) {
    213     post_thread_quiescent_ = true;
    214     eventfd_write(post_thread_event_fd_.Get(), 1);
    215   } else if (!effective_suspend && post_thread_quiescent_) {
    216     post_thread_quiescent_ = false;
    217     eventfd_t value;
    218     eventfd_read(post_thread_event_fd_.Get(), &value);
    219     post_thread_wait_.notify_one();
    220   }
    221 
    222   // Wait until the post thread is in the requested state.
    223   post_thread_ready_.wait(lock, [this, effective_suspend] {
    224     return effective_suspend != post_thread_resumed_;
    225   });
    226 }
    227 
    228 void HardwareComposer::OnPostThreadResumed() {
    229   // Phones create a new composer client on resume and destroy it on pause.
    230   // Standalones only create the composer client once and then use SetPowerMode
    231   // to control the screen on pause/resume.
    232   if (!is_standalone_device_ || !composer_) {
    233     composer_.reset(new Hwc2::Composer(false));
    234     composer_callback_ = new ComposerCallback;
    235     composer_->registerCallback(composer_callback_);
    236     Layer::SetComposer(composer_.get());
    237   } else {
    238     SetPowerMode(true);
    239   }
    240 
    241   EnableVsync(true);
    242 
    243   // TODO(skiazyk): We need to do something about accessing this directly,
    244   // supposedly there is a backlight service on the way.
    245   // TODO(steventhomas): When we change the backlight setting, will surface
    246   // flinger (or something else) set it back to its original value once we give
    247   // control of the display back to surface flinger?
    248   SetBacklightBrightness(255);
    249 
    250   // Trigger target-specific performance mode change.
    251   property_set(kDvrPerformanceProperty, "performance");
    252 }
    253 
    254 void HardwareComposer::OnPostThreadPaused() {
    255   retire_fence_fds_.clear();
    256   layers_.clear();
    257 
    258   if (composer_) {
    259     EnableVsync(false);
    260   }
    261 
    262   if (!is_standalone_device_) {
    263     composer_callback_ = nullptr;
    264     composer_.reset(nullptr);
    265     Layer::SetComposer(nullptr);
    266   } else {
    267     SetPowerMode(false);
    268   }
    269 
    270   // Trigger target-specific performance mode change.
    271   property_set(kDvrPerformanceProperty, "idle");
    272 }
    273 
    274 HWC::Error HardwareComposer::Validate(hwc2_display_t display) {
    275   uint32_t num_types;
    276   uint32_t num_requests;
    277   HWC::Error error =
    278       composer_->validateDisplay(display, &num_types, &num_requests);
    279 
    280   if (error == HWC2_ERROR_HAS_CHANGES) {
    281     // TODO(skiazyk): We might need to inspect the requested changes first, but
    282     // so far it seems like we shouldn't ever hit a bad state.
    283     // error = hwc2_funcs_.accept_display_changes_fn_(hardware_composer_device_,
    284     //                                               display);
    285     error = composer_->acceptDisplayChanges(display);
    286   }
    287 
    288   return error;
    289 }
    290 
    291 HWC::Error HardwareComposer::EnableVsync(bool enabled) {
    292   return composer_->setVsyncEnabled(
    293       HWC_DISPLAY_PRIMARY,
    294       (Hwc2::IComposerClient::Vsync)(enabled ? HWC2_VSYNC_ENABLE
    295                                              : HWC2_VSYNC_DISABLE));
    296 }
    297 
    298 HWC::Error HardwareComposer::SetPowerMode(bool active) {
    299   HWC::PowerMode power_mode = active ? HWC::PowerMode::On : HWC::PowerMode::Off;
    300   return composer_->setPowerMode(
    301       HWC_DISPLAY_PRIMARY, power_mode.cast<Hwc2::IComposerClient::PowerMode>());
    302 }
    303 
    304 HWC::Error HardwareComposer::Present(hwc2_display_t display) {
    305   int32_t present_fence;
    306   HWC::Error error = composer_->presentDisplay(display, &present_fence);
    307 
    308   // According to the documentation, this fence is signaled at the time of
    309   // vsync/DMA for physical displays.
    310   if (error == HWC::Error::None) {
    311     ATRACE_INT("HardwareComposer: VsyncFence", present_fence);
    312     retire_fence_fds_.emplace_back(present_fence);
    313   } else {
    314     ATRACE_INT("HardwareComposer: PresentResult", error);
    315   }
    316 
    317   return error;
    318 }
    319 
    320 HWC::Error HardwareComposer::GetDisplayAttribute(Hwc2::Composer* composer,
    321                                                  hwc2_display_t display,
    322                                                  hwc2_config_t config,
    323                                                  hwc2_attribute_t attribute,
    324                                                  int32_t* out_value) const {
    325   return composer->getDisplayAttribute(
    326       display, config, (Hwc2::IComposerClient::Attribute)attribute, out_value);
    327 }
    328 
    329 HWC::Error HardwareComposer::GetDisplayMetrics(
    330     Hwc2::Composer* composer, hwc2_display_t display, hwc2_config_t config,
    331     HWCDisplayMetrics* out_metrics) const {
    332   HWC::Error error;
    333 
    334   error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_WIDTH,
    335                               &out_metrics->width);
    336   if (error != HWC::Error::None) {
    337     ALOGE(
    338         "HardwareComposer::GetDisplayMetrics: Failed to get display width: %s",
    339         error.to_string().c_str());
    340     return error;
    341   }
    342 
    343   error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_HEIGHT,
    344                               &out_metrics->height);
    345   if (error != HWC::Error::None) {
    346     ALOGE(
    347         "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s",
    348         error.to_string().c_str());
    349     return error;
    350   }
    351 
    352   error = GetDisplayAttribute(composer, display, config,
    353                               HWC2_ATTRIBUTE_VSYNC_PERIOD,
    354                               &out_metrics->vsync_period_ns);
    355   if (error != HWC::Error::None) {
    356     ALOGE(
    357         "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s",
    358         error.to_string().c_str());
    359     return error;
    360   }
    361 
    362   error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_DPI_X,
    363                               &out_metrics->dpi.x);
    364   if (error != HWC::Error::None) {
    365     ALOGE(
    366         "HardwareComposer::GetDisplayMetrics: Failed to get display DPI X: %s",
    367         error.to_string().c_str());
    368     return error;
    369   }
    370 
    371   error = GetDisplayAttribute(composer, display, config, HWC2_ATTRIBUTE_DPI_Y,
    372                               &out_metrics->dpi.y);
    373   if (error != HWC::Error::None) {
    374     ALOGE(
    375         "HardwareComposer::GetDisplayMetrics: Failed to get display DPI Y: %s",
    376         error.to_string().c_str());
    377     return error;
    378   }
    379 
    380   return HWC::Error::None;
    381 }
    382 
    383 std::string HardwareComposer::Dump() {
    384   std::unique_lock<std::mutex> lock(post_thread_mutex_);
    385   std::ostringstream stream;
    386 
    387   stream << "Display metrics:     " << display_metrics_.width << "x"
    388          << display_metrics_.height << " " << (display_metrics_.dpi.x / 1000.0)
    389          << "x" << (display_metrics_.dpi.y / 1000.0) << " dpi @ "
    390          << (1000000000.0 / display_metrics_.vsync_period_ns) << " Hz"
    391          << std::endl;
    392 
    393   stream << "Post thread resumed: " << post_thread_resumed_ << std::endl;
    394   stream << "Active layers:       " << layers_.size() << std::endl;
    395   stream << std::endl;
    396 
    397   for (size_t i = 0; i < layers_.size(); i++) {
    398     stream << "Layer " << i << ":";
    399     stream << " type=" << layers_[i].GetCompositionType().to_string();
    400     stream << " surface_id=" << layers_[i].GetSurfaceId();
    401     stream << " buffer_id=" << layers_[i].GetBufferId();
    402     stream << std::endl;
    403   }
    404   stream << std::endl;
    405 
    406   if (post_thread_resumed_) {
    407     stream << "Hardware Composer Debug Info:" << std::endl;
    408     stream << composer_->dumpDebugInfo();
    409   }
    410 
    411   return stream.str();
    412 }
    413 
    414 void HardwareComposer::PostLayers() {
    415   ATRACE_NAME("HardwareComposer::PostLayers");
    416 
    417   // Setup the hardware composer layers with current buffers.
    418   for (auto& layer : layers_) {
    419     layer.Prepare();
    420   }
    421 
    422   HWC::Error error = Validate(HWC_DISPLAY_PRIMARY);
    423   if (error != HWC::Error::None) {
    424     ALOGE("HardwareComposer::PostLayers: Validate failed: %s",
    425           error.to_string().c_str());
    426     return;
    427   }
    428 
    429   // Now that we have taken in a frame from the application, we have a chance
    430   // to drop the frame before passing the frame along to HWC.
    431   // If the display driver has become backed up, we detect it here and then
    432   // react by skipping this frame to catch up latency.
    433   while (!retire_fence_fds_.empty() &&
    434          (!retire_fence_fds_.front() ||
    435           sync_wait(retire_fence_fds_.front().Get(), 0) == 0)) {
    436     // There are only 2 fences in here, no performance problem to shift the
    437     // array of ints.
    438     retire_fence_fds_.erase(retire_fence_fds_.begin());
    439   }
    440 
    441   const bool is_fence_pending = static_cast<int32_t>(retire_fence_fds_.size()) >
    442                                 post_thread_config_.allowed_pending_fence_count;
    443 
    444   if (is_fence_pending) {
    445     ATRACE_INT("frame_skip_count", ++frame_skip_count_);
    446 
    447     ALOGW_IF(is_fence_pending,
    448              "Warning: dropping a frame to catch up with HWC (pending = %zd)",
    449              retire_fence_fds_.size());
    450 
    451     for (auto& layer : layers_) {
    452       layer.Drop();
    453     }
    454     return;
    455   } else {
    456     // Make the transition more obvious in systrace when the frame skip happens
    457     // above.
    458     ATRACE_INT("frame_skip_count", 0);
    459   }
    460 
    461 #if TRACE > 1
    462   for (size_t i = 0; i < layers_.size(); i++) {
    463     ALOGI("HardwareComposer::PostLayers: layer=%zu buffer_id=%d composition=%s",
    464           i, layers_[i].GetBufferId(),
    465           layers_[i].GetCompositionType().to_string().c_str());
    466   }
    467 #endif
    468 
    469   error = Present(HWC_DISPLAY_PRIMARY);
    470   if (error != HWC::Error::None) {
    471     ALOGE("HardwareComposer::PostLayers: Present failed: %s",
    472           error.to_string().c_str());
    473     return;
    474   }
    475 
    476   std::vector<Hwc2::Layer> out_layers;
    477   std::vector<int> out_fences;
    478   error = composer_->getReleaseFences(HWC_DISPLAY_PRIMARY, &out_layers,
    479                                       &out_fences);
    480   ALOGE_IF(error != HWC::Error::None,
    481            "HardwareComposer::PostLayers: Failed to get release fences: %s",
    482            error.to_string().c_str());
    483 
    484   // Perform post-frame bookkeeping.
    485   uint32_t num_elements = out_layers.size();
    486   for (size_t i = 0; i < num_elements; ++i) {
    487     for (auto& layer : layers_) {
    488       if (layer.GetLayerHandle() == out_layers[i]) {
    489         layer.Finish(out_fences[i]);
    490       }
    491     }
    492   }
    493 }
    494 
    495 void HardwareComposer::SetDisplaySurfaces(
    496     std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces) {
    497   ALOGI("HardwareComposer::SetDisplaySurfaces: surface count=%zd",
    498         surfaces.size());
    499   const bool display_idle = surfaces.size() == 0;
    500   {
    501     std::unique_lock<std::mutex> lock(post_thread_mutex_);
    502     pending_surfaces_ = std::move(surfaces);
    503   }
    504 
    505   if (request_display_callback_ && (!is_standalone_device_ || !composer_))
    506     request_display_callback_(!display_idle);
    507 
    508   // Set idle state based on whether there are any surfaces to handle.
    509   UpdatePostThreadState(PostThreadState::Idle, display_idle);
    510 }
    511 
    512 int HardwareComposer::OnNewGlobalBuffer(DvrGlobalBufferKey key,
    513                                         IonBuffer& ion_buffer) {
    514   if (key == DvrGlobalBuffers::kVsyncBuffer) {
    515     vsync_ring_ = std::make_unique<CPUMappedBroadcastRing<DvrVsyncRing>>(
    516         &ion_buffer, CPUUsageMode::WRITE_OFTEN);
    517 
    518     if (vsync_ring_->IsMapped() == false) {
    519       return -EPERM;
    520     }
    521   }
    522 
    523   if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) {
    524     return MapConfigBuffer(ion_buffer);
    525   }
    526 
    527   return 0;
    528 }
    529 
    530 void HardwareComposer::OnDeletedGlobalBuffer(DvrGlobalBufferKey key) {
    531   if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) {
    532     ConfigBufferDeleted();
    533   }
    534 }
    535 
    536 int HardwareComposer::MapConfigBuffer(IonBuffer& ion_buffer) {
    537   std::lock_guard<std::mutex> lock(shared_config_mutex_);
    538   shared_config_ring_ = DvrConfigRing();
    539 
    540   if (ion_buffer.width() < DvrConfigRing::MemorySize()) {
    541     ALOGE("HardwareComposer::MapConfigBuffer: invalid buffer size.");
    542     return -EINVAL;
    543   }
    544 
    545   void* buffer_base = 0;
    546   int result = ion_buffer.Lock(ion_buffer.usage(), 0, 0, ion_buffer.width(),
    547                                ion_buffer.height(), &buffer_base);
    548   if (result != 0) {
    549     ALOGE(
    550         "HardwareComposer::MapConfigBuffer: Failed to map vrflinger config "
    551         "buffer.");
    552     return -EPERM;
    553   }
    554 
    555   shared_config_ring_ = DvrConfigRing::Create(buffer_base, ion_buffer.width());
    556   ion_buffer.Unlock();
    557 
    558   return 0;
    559 }
    560 
    561 void HardwareComposer::ConfigBufferDeleted() {
    562   std::lock_guard<std::mutex> lock(shared_config_mutex_);
    563   shared_config_ring_ = DvrConfigRing();
    564 }
    565 
    566 void HardwareComposer::UpdateConfigBuffer() {
    567   std::lock_guard<std::mutex> lock(shared_config_mutex_);
    568   if (!shared_config_ring_.is_valid())
    569     return;
    570   // Copy from latest record in shared_config_ring_ to local copy.
    571   DvrConfig record;
    572   if (shared_config_ring_.GetNewest(&shared_config_ring_sequence_, &record)) {
    573     post_thread_config_ = record;
    574   }
    575 }
    576 
    577 int HardwareComposer::PostThreadPollInterruptible(
    578     const pdx::LocalHandle& event_fd, int requested_events, int timeout_ms) {
    579   pollfd pfd[2] = {
    580       {
    581           .fd = event_fd.Get(),
    582           .events = static_cast<short>(requested_events),
    583           .revents = 0,
    584       },
    585       {
    586           .fd = post_thread_event_fd_.Get(),
    587           .events = POLLPRI | POLLIN,
    588           .revents = 0,
    589       },
    590   };
    591   int ret, error;
    592   do {
    593     ret = poll(pfd, 2, timeout_ms);
    594     error = errno;
    595     ALOGW_IF(ret < 0,
    596              "HardwareComposer::PostThreadPollInterruptible: Error during "
    597              "poll(): %s (%d)",
    598              strerror(error), error);
    599   } while (ret < 0 && error == EINTR);
    600 
    601   if (ret < 0) {
    602     return -error;
    603   } else if (ret == 0) {
    604     return -ETIMEDOUT;
    605   } else if (pfd[0].revents != 0) {
    606     return 0;
    607   } else if (pfd[1].revents != 0) {
    608     ALOGI("VrHwcPost thread interrupted: revents=%x", pfd[1].revents);
    609     return kPostThreadInterrupted;
    610   } else {
    611     return 0;
    612   }
    613 }
    614 
    615 Status<int64_t> HardwareComposer::GetVSyncTime() {
    616   auto status = composer_callback_->GetVsyncTime(HWC_DISPLAY_PRIMARY);
    617   ALOGE_IF(!status,
    618            "HardwareComposer::GetVSyncTime: Failed to get vsync timestamp: %s",
    619            status.GetErrorMessage().c_str());
    620   return status;
    621 }
    622 
    623 // Waits for the next vsync and returns the timestamp of the vsync event. If
    624 // vsync already passed since the last call, returns the latest vsync timestamp
    625 // instead of blocking.
    626 Status<int64_t> HardwareComposer::WaitForVSync() {
    627   const int64_t predicted_vsync_time =
    628       last_vsync_timestamp_ +
    629       display_metrics_.vsync_period_ns * vsync_prediction_interval_;
    630   const int error = SleepUntil(predicted_vsync_time);
    631   if (error < 0) {
    632     ALOGE("HardwareComposer::WaifForVSync:: Failed to sleep: %s",
    633           strerror(-error));
    634     return error;
    635   }
    636   return {predicted_vsync_time};
    637 }
    638 
    639 int HardwareComposer::SleepUntil(int64_t wakeup_timestamp) {
    640   const int timer_fd = vsync_sleep_timer_fd_.Get();
    641   const itimerspec wakeup_itimerspec = {
    642       .it_interval = {.tv_sec = 0, .tv_nsec = 0},
    643       .it_value = NsToTimespec(wakeup_timestamp),
    644   };
    645   int ret =
    646       timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &wakeup_itimerspec, nullptr);
    647   int error = errno;
    648   if (ret < 0) {
    649     ALOGE("HardwareComposer::SleepUntil: Failed to set timerfd: %s",
    650           strerror(error));
    651     return -error;
    652   }
    653 
    654   return PostThreadPollInterruptible(vsync_sleep_timer_fd_, POLLIN,
    655                                      /*timeout_ms*/ -1);
    656 }
    657 
    658 void HardwareComposer::PostThread() {
    659   // NOLINTNEXTLINE(runtime/int)
    660   prctl(PR_SET_NAME, reinterpret_cast<unsigned long>("VrHwcPost"), 0, 0, 0);
    661 
    662   // Set the scheduler to SCHED_FIFO with high priority. If this fails here
    663   // there may have been a startup timing issue between this thread and
    664   // performanced. Try again later when this thread becomes active.
    665   bool thread_policy_setup =
    666       SetThreadPolicy("graphics:high", "/system/performance");
    667 
    668 #if ENABLE_BACKLIGHT_BRIGHTNESS
    669   // TODO(hendrikw): This isn't required at the moment. It's possible that there
    670   //                 is another method to access this when needed.
    671   // Open the backlight brightness control sysfs node.
    672   backlight_brightness_fd_ = LocalHandle(kBacklightBrightnessSysFile, O_RDWR);
    673   ALOGW_IF(!backlight_brightness_fd_,
    674            "HardwareComposer: Failed to open backlight brightness control: %s",
    675            strerror(errno));
    676 #endif  // ENABLE_BACKLIGHT_BRIGHTNESS
    677 
    678   // Create a timerfd based on CLOCK_MONOTINIC.
    679   vsync_sleep_timer_fd_.Reset(timerfd_create(CLOCK_MONOTONIC, 0));
    680   LOG_ALWAYS_FATAL_IF(
    681       !vsync_sleep_timer_fd_,
    682       "HardwareComposer: Failed to create vsync sleep timerfd: %s",
    683       strerror(errno));
    684 
    685   const int64_t ns_per_frame = display_metrics_.vsync_period_ns;
    686   const int64_t photon_offset_ns = GetPosePredictionTimeOffset(ns_per_frame);
    687 
    688   // TODO(jbates) Query vblank time from device, when such an API is available.
    689   // This value (6.3%) was measured on A00 in low persistence mode.
    690   int64_t vblank_ns = ns_per_frame * 63 / 1000;
    691   int64_t right_eye_photon_offset_ns = (ns_per_frame - vblank_ns) / 2;
    692 
    693   // Check property for overriding right eye offset value.
    694   right_eye_photon_offset_ns =
    695       property_get_int64(kRightEyeOffsetProperty, right_eye_photon_offset_ns);
    696 
    697   bool was_running = false;
    698 
    699   while (1) {
    700     ATRACE_NAME("HardwareComposer::PostThread");
    701 
    702     // Check for updated config once per vsync.
    703     UpdateConfigBuffer();
    704 
    705     while (post_thread_quiescent_) {
    706       std::unique_lock<std::mutex> lock(post_thread_mutex_);
    707       ALOGI("HardwareComposer::PostThread: Entering quiescent state.");
    708 
    709       // Tear down resources if necessary.
    710       if (was_running)
    711         OnPostThreadPaused();
    712 
    713       was_running = false;
    714       post_thread_resumed_ = false;
    715       post_thread_ready_.notify_all();
    716 
    717       if (post_thread_state_ & PostThreadState::Quit) {
    718         ALOGI("HardwareComposer::PostThread: Quitting.");
    719         return;
    720       }
    721 
    722       post_thread_wait_.wait(lock, [this] { return !post_thread_quiescent_; });
    723 
    724       post_thread_resumed_ = true;
    725       post_thread_ready_.notify_all();
    726 
    727       ALOGI("HardwareComposer::PostThread: Exiting quiescent state.");
    728     }
    729 
    730     if (!was_running) {
    731       // Setup resources.
    732       OnPostThreadResumed();
    733       was_running = true;
    734 
    735       // Try to setup the scheduler policy if it failed during startup. Only
    736       // attempt to do this on transitions from inactive to active to avoid
    737       // spamming the system with RPCs and log messages.
    738       if (!thread_policy_setup) {
    739         thread_policy_setup =
    740             SetThreadPolicy("graphics:high", "/system/performance");
    741       }
    742 
    743       // Initialize the last vsync timestamp with the current time. The
    744       // predictor below uses this time + the vsync interval in absolute time
    745       // units for the initial delay. Once the driver starts reporting vsync the
    746       // predictor will sync up with the real vsync.
    747       last_vsync_timestamp_ = GetSystemClockNs();
    748     }
    749 
    750     int64_t vsync_timestamp = 0;
    751     {
    752       TRACE_FORMAT("wait_vsync|vsync=%u;last_timestamp=%" PRId64
    753                    ";prediction_interval=%d|",
    754                    vsync_count_ + 1, last_vsync_timestamp_,
    755                    vsync_prediction_interval_);
    756 
    757       auto status = WaitForVSync();
    758       ALOGE_IF(
    759           !status,
    760           "HardwareComposer::PostThread: Failed to wait for vsync event: %s",
    761           status.GetErrorMessage().c_str());
    762 
    763       // If there was an error either sleeping was interrupted due to pausing or
    764       // there was an error getting the latest timestamp.
    765       if (!status)
    766         continue;
    767 
    768       // Predicted vsync timestamp for this interval. This is stable because we
    769       // use absolute time for the wakeup timer.
    770       vsync_timestamp = status.get();
    771     }
    772 
    773     // Advance the vsync counter only if the system is keeping up with hardware
    774     // vsync to give clients an indication of the delays.
    775     if (vsync_prediction_interval_ == 1)
    776       ++vsync_count_;
    777 
    778     const bool layer_config_changed = UpdateLayerConfig();
    779 
    780     // Publish the vsync event.
    781     if (vsync_ring_) {
    782       DvrVsync vsync;
    783       vsync.vsync_count = vsync_count_;
    784       vsync.vsync_timestamp_ns = vsync_timestamp;
    785       vsync.vsync_left_eye_offset_ns = photon_offset_ns;
    786       vsync.vsync_right_eye_offset_ns = right_eye_photon_offset_ns;
    787       vsync.vsync_period_ns = ns_per_frame;
    788 
    789       vsync_ring_->Publish(vsync);
    790     }
    791 
    792     // Signal all of the vsync clients. Because absolute time is used for the
    793     // wakeup time below, this can take a little time if necessary.
    794     if (vsync_callback_)
    795       vsync_callback_(HWC_DISPLAY_PRIMARY, vsync_timestamp,
    796                       /*frame_time_estimate*/ 0, vsync_count_);
    797 
    798     {
    799       // Sleep until shortly before vsync.
    800       ATRACE_NAME("sleep");
    801 
    802       const int64_t display_time_est_ns = vsync_timestamp + ns_per_frame;
    803       const int64_t now_ns = GetSystemClockNs();
    804       const int64_t sleep_time_ns = display_time_est_ns - now_ns -
    805                                     post_thread_config_.frame_post_offset_ns;
    806       const int64_t wakeup_time_ns =
    807           display_time_est_ns - post_thread_config_.frame_post_offset_ns;
    808 
    809       ATRACE_INT64("sleep_time_ns", sleep_time_ns);
    810       if (sleep_time_ns > 0) {
    811         int error = SleepUntil(wakeup_time_ns);
    812         ALOGE_IF(error < 0, "HardwareComposer::PostThread: Failed to sleep: %s",
    813                  strerror(-error));
    814         if (error == kPostThreadInterrupted) {
    815           if (layer_config_changed) {
    816             // If the layer config changed we need to validateDisplay() even if
    817             // we're going to drop the frame, to flush the Composer object's
    818             // internal command buffer and apply our layer changes.
    819             Validate(HWC_DISPLAY_PRIMARY);
    820           }
    821           continue;
    822         }
    823       }
    824     }
    825 
    826     {
    827       auto status = GetVSyncTime();
    828       if (!status) {
    829         ALOGE("HardwareComposer::PostThread: Failed to get VSYNC time: %s",
    830               status.GetErrorMessage().c_str());
    831       }
    832 
    833       // If we failed to read vsync there might be a problem with the driver.
    834       // Since there's nothing we can do just behave as though we didn't get an
    835       // updated vsync time and let the prediction continue.
    836       const int64_t current_vsync_timestamp =
    837           status ? status.get() : last_vsync_timestamp_;
    838 
    839       const bool vsync_delayed =
    840           last_vsync_timestamp_ == current_vsync_timestamp;
    841       ATRACE_INT("vsync_delayed", vsync_delayed);
    842 
    843       // If vsync was delayed advance the prediction interval and allow the
    844       // fence logic in PostLayers() to skip the frame.
    845       if (vsync_delayed) {
    846         ALOGW(
    847             "HardwareComposer::PostThread: VSYNC timestamp did not advance "
    848             "since last frame: timestamp=%" PRId64 " prediction_interval=%d",
    849             current_vsync_timestamp, vsync_prediction_interval_);
    850         vsync_prediction_interval_++;
    851       } else {
    852         // We have an updated vsync timestamp, reset the prediction interval.
    853         last_vsync_timestamp_ = current_vsync_timestamp;
    854         vsync_prediction_interval_ = 1;
    855       }
    856     }
    857 
    858     PostLayers();
    859   }
    860 }
    861 
    862 // Checks for changes in the surface stack and updates the layer config to
    863 // accomodate the new stack.
    864 bool HardwareComposer::UpdateLayerConfig() {
    865   std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces;
    866   {
    867     std::unique_lock<std::mutex> lock(post_thread_mutex_);
    868     if (pending_surfaces_.empty())
    869       return false;
    870 
    871     surfaces = std::move(pending_surfaces_);
    872   }
    873 
    874   ATRACE_NAME("UpdateLayerConfig_HwLayers");
    875 
    876   // Sort the new direct surface list by z-order to determine the relative order
    877   // of the surfaces. This relative order is used for the HWC z-order value to
    878   // insulate VrFlinger and HWC z-order semantics from each other.
    879   std::sort(surfaces.begin(), surfaces.end(), [](const auto& a, const auto& b) {
    880     return a->z_order() < b->z_order();
    881   });
    882 
    883   // Prepare a new layer stack, pulling in layers from the previous
    884   // layer stack that are still active and updating their attributes.
    885   std::vector<Layer> layers;
    886   size_t layer_index = 0;
    887   for (const auto& surface : surfaces) {
    888     // The bottom layer is opaque, other layers blend.
    889     HWC::BlendMode blending =
    890         layer_index == 0 ? HWC::BlendMode::None : HWC::BlendMode::Coverage;
    891 
    892     // Try to find a layer for this surface in the set of active layers.
    893     auto search =
    894         std::lower_bound(layers_.begin(), layers_.end(), surface->surface_id());
    895     const bool found = search != layers_.end() &&
    896                        search->GetSurfaceId() == surface->surface_id();
    897     if (found) {
    898       // Update the attributes of the layer that may have changed.
    899       search->SetBlending(blending);
    900       search->SetZOrder(layer_index);  // Relative z-order.
    901 
    902       // Move the existing layer to the new layer set and remove the empty layer
    903       // object from the current set.
    904       layers.push_back(std::move(*search));
    905       layers_.erase(search);
    906     } else {
    907       // Insert a layer for the new surface.
    908       layers.emplace_back(surface, blending, display_transform_,
    909                           HWC::Composition::Device, layer_index);
    910     }
    911 
    912     ALOGI_IF(
    913         TRACE,
    914         "HardwareComposer::UpdateLayerConfig: layer_index=%zu surface_id=%d",
    915         layer_index, layers[layer_index].GetSurfaceId());
    916 
    917     layer_index++;
    918   }
    919 
    920   // Sort the new layer stack by ascending surface id.
    921   std::sort(layers.begin(), layers.end());
    922 
    923   // Replace the previous layer set with the new layer set. The destructor of
    924   // the previous set will clean up the remaining Layers that are not moved to
    925   // the new layer set.
    926   layers_ = std::move(layers);
    927 
    928   ALOGD_IF(TRACE, "HardwareComposer::UpdateLayerConfig: %zd active layers",
    929            layers_.size());
    930   return true;
    931 }
    932 
    933 void HardwareComposer::SetVSyncCallback(VSyncCallback callback) {
    934   vsync_callback_ = callback;
    935 }
    936 
    937 void HardwareComposer::SetBacklightBrightness(int brightness) {
    938   if (backlight_brightness_fd_) {
    939     std::array<char, 32> text;
    940     const int length = snprintf(text.data(), text.size(), "%d", brightness);
    941     write(backlight_brightness_fd_.Get(), text.data(), length);
    942   }
    943 }
    944 
    945 Return<void> HardwareComposer::ComposerCallback::onHotplug(
    946     Hwc2::Display display, IComposerCallback::Connection /*conn*/) {
    947   // See if the driver supports the vsync_event node in sysfs.
    948   if (display < HWC_NUM_PHYSICAL_DISPLAY_TYPES &&
    949       !displays_[display].driver_vsync_event_fd) {
    950     std::array<char, 1024> buffer;
    951     snprintf(buffer.data(), buffer.size(),
    952              "/sys/class/graphics/fb%" PRIu64 "/vsync_event", display);
    953     if (LocalHandle handle{buffer.data(), O_RDONLY}) {
    954       ALOGI(
    955           "HardwareComposer::ComposerCallback::onHotplug: Driver supports "
    956           "vsync_event node for display %" PRIu64,
    957           display);
    958       displays_[display].driver_vsync_event_fd = std::move(handle);
    959     } else {
    960       ALOGI(
    961           "HardwareComposer::ComposerCallback::onHotplug: Driver does not "
    962           "support vsync_event node for display %" PRIu64,
    963           display);
    964     }
    965   }
    966 
    967   return Void();
    968 }
    969 
    970 Return<void> HardwareComposer::ComposerCallback::onRefresh(
    971     Hwc2::Display /*display*/) {
    972   return hardware::Void();
    973 }
    974 
    975 Return<void> HardwareComposer::ComposerCallback::onVsync(Hwc2::Display display,
    976                                                          int64_t timestamp) {
    977   TRACE_FORMAT("vsync_callback|display=%" PRIu64 ";timestamp=%" PRId64 "|",
    978                display, timestamp);
    979   if (display < HWC_NUM_PHYSICAL_DISPLAY_TYPES) {
    980     displays_[display].callback_vsync_timestamp = timestamp;
    981   } else {
    982     ALOGW(
    983         "HardwareComposer::ComposerCallback::onVsync: Received vsync on "
    984         "non-physical display: display=%" PRId64,
    985         display);
    986   }
    987   return Void();
    988 }
    989 
    990 Status<int64_t> HardwareComposer::ComposerCallback::GetVsyncTime(
    991     Hwc2::Display display) {
    992   if (display >= HWC_NUM_PHYSICAL_DISPLAY_TYPES) {
    993     ALOGE(
    994         "HardwareComposer::ComposerCallback::GetVsyncTime: Invalid physical "
    995         "display requested: display=%" PRIu64,
    996         display);
    997     return ErrorStatus(EINVAL);
    998   }
    999 
   1000   // See if the driver supports direct vsync events.
   1001   LocalHandle& event_fd = displays_[display].driver_vsync_event_fd;
   1002   if (!event_fd) {
   1003     // Fall back to returning the last timestamp returned by the vsync
   1004     // callback.
   1005     std::lock_guard<std::mutex> autolock(vsync_mutex_);
   1006     return displays_[display].callback_vsync_timestamp;
   1007   }
   1008 
   1009   // When the driver supports the vsync_event sysfs node we can use it to
   1010   // determine the latest vsync timestamp, even if the HWC callback has been
   1011   // delayed.
   1012 
   1013   // The driver returns data in the form "VSYNC=<timestamp ns>".
   1014   std::array<char, 32> data;
   1015   data.fill('\0');
   1016 
   1017   // Seek back to the beginning of the event file.
   1018   int ret = lseek(event_fd.Get(), 0, SEEK_SET);
   1019   if (ret < 0) {
   1020     const int error = errno;
   1021     ALOGE(
   1022         "HardwareComposer::ComposerCallback::GetVsyncTime: Failed to seek "
   1023         "vsync event fd: %s",
   1024         strerror(error));
   1025     return ErrorStatus(error);
   1026   }
   1027 
   1028   // Read the vsync event timestamp.
   1029   ret = read(event_fd.Get(), data.data(), data.size());
   1030   if (ret < 0) {
   1031     const int error = errno;
   1032     ALOGE_IF(error != EAGAIN,
   1033              "HardwareComposer::ComposerCallback::GetVsyncTime: Error "
   1034              "while reading timestamp: %s",
   1035              strerror(error));
   1036     return ErrorStatus(error);
   1037   }
   1038 
   1039   int64_t timestamp;
   1040   ret = sscanf(data.data(), "VSYNC=%" PRIu64,
   1041                reinterpret_cast<uint64_t*>(&timestamp));
   1042   if (ret < 0) {
   1043     const int error = errno;
   1044     ALOGE(
   1045         "HardwareComposer::ComposerCallback::GetVsyncTime: Error while "
   1046         "parsing timestamp: %s",
   1047         strerror(error));
   1048     return ErrorStatus(error);
   1049   }
   1050 
   1051   return {timestamp};
   1052 }
   1053 
   1054 Hwc2::Composer* Layer::composer_{nullptr};
   1055 HWCDisplayMetrics Layer::display_metrics_{0, 0, {0, 0}, 0};
   1056 
   1057 void Layer::Reset() {
   1058   if (hardware_composer_layer_) {
   1059     composer_->destroyLayer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_);
   1060     hardware_composer_layer_ = 0;
   1061   }
   1062 
   1063   z_order_ = 0;
   1064   blending_ = HWC::BlendMode::None;
   1065   transform_ = HWC::Transform::None;
   1066   composition_type_ = HWC::Composition::Invalid;
   1067   target_composition_type_ = composition_type_;
   1068   source_ = EmptyVariant{};
   1069   acquire_fence_.Close();
   1070   surface_rect_functions_applied_ = false;
   1071   pending_visibility_settings_ = true;
   1072   cached_buffer_map_.clear();
   1073 }
   1074 
   1075 Layer::Layer(const std::shared_ptr<DirectDisplaySurface>& surface,
   1076              HWC::BlendMode blending, HWC::Transform transform,
   1077              HWC::Composition composition_type, size_t z_order)
   1078     : z_order_{z_order},
   1079       blending_{blending},
   1080       transform_{transform},
   1081       target_composition_type_{composition_type},
   1082       source_{SourceSurface{surface}} {
   1083   CommonLayerSetup();
   1084 }
   1085 
   1086 Layer::Layer(const std::shared_ptr<IonBuffer>& buffer, HWC::BlendMode blending,
   1087              HWC::Transform transform, HWC::Composition composition_type,
   1088              size_t z_order)
   1089     : z_order_{z_order},
   1090       blending_{blending},
   1091       transform_{transform},
   1092       target_composition_type_{composition_type},
   1093       source_{SourceBuffer{buffer}} {
   1094   CommonLayerSetup();
   1095 }
   1096 
   1097 Layer::~Layer() { Reset(); }
   1098 
   1099 Layer::Layer(Layer&& other) { *this = std::move(other); }
   1100 
   1101 Layer& Layer::operator=(Layer&& other) {
   1102   if (this != &other) {
   1103     Reset();
   1104     using std::swap;
   1105     swap(hardware_composer_layer_, other.hardware_composer_layer_);
   1106     swap(z_order_, other.z_order_);
   1107     swap(blending_, other.blending_);
   1108     swap(transform_, other.transform_);
   1109     swap(composition_type_, other.composition_type_);
   1110     swap(target_composition_type_, other.target_composition_type_);
   1111     swap(source_, other.source_);
   1112     swap(acquire_fence_, other.acquire_fence_);
   1113     swap(surface_rect_functions_applied_,
   1114          other.surface_rect_functions_applied_);
   1115     swap(pending_visibility_settings_, other.pending_visibility_settings_);
   1116     swap(cached_buffer_map_, other.cached_buffer_map_);
   1117   }
   1118   return *this;
   1119 }
   1120 
   1121 void Layer::UpdateBuffer(const std::shared_ptr<IonBuffer>& buffer) {
   1122   if (source_.is<SourceBuffer>())
   1123     std::get<SourceBuffer>(source_) = {buffer};
   1124 }
   1125 
   1126 void Layer::SetBlending(HWC::BlendMode blending) {
   1127   if (blending_ != blending) {
   1128     blending_ = blending;
   1129     pending_visibility_settings_ = true;
   1130   }
   1131 }
   1132 
   1133 void Layer::SetZOrder(size_t z_order) {
   1134   if (z_order_ != z_order) {
   1135     z_order_ = z_order;
   1136     pending_visibility_settings_ = true;
   1137   }
   1138 }
   1139 
   1140 IonBuffer* Layer::GetBuffer() {
   1141   struct Visitor {
   1142     IonBuffer* operator()(SourceSurface& source) { return source.GetBuffer(); }
   1143     IonBuffer* operator()(SourceBuffer& source) { return source.GetBuffer(); }
   1144     IonBuffer* operator()(EmptyVariant) { return nullptr; }
   1145   };
   1146   return source_.Visit(Visitor{});
   1147 }
   1148 
   1149 void Layer::UpdateVisibilitySettings() {
   1150   if (pending_visibility_settings_) {
   1151     pending_visibility_settings_ = false;
   1152 
   1153     HWC::Error error;
   1154     hwc2_display_t display = HWC_DISPLAY_PRIMARY;
   1155 
   1156     error = composer_->setLayerBlendMode(
   1157         display, hardware_composer_layer_,
   1158         blending_.cast<Hwc2::IComposerClient::BlendMode>());
   1159     ALOGE_IF(error != HWC::Error::None,
   1160              "Layer::UpdateLayerSettings: Error setting layer blend mode: %s",
   1161              error.to_string().c_str());
   1162 
   1163     error =
   1164         composer_->setLayerZOrder(display, hardware_composer_layer_, z_order_);
   1165     ALOGE_IF(error != HWC::Error::None,
   1166              "Layer::UpdateLayerSettings: Error setting z_ order: %s",
   1167              error.to_string().c_str());
   1168   }
   1169 }
   1170 
   1171 void Layer::UpdateLayerSettings() {
   1172   HWC::Error error;
   1173   hwc2_display_t display = HWC_DISPLAY_PRIMARY;
   1174 
   1175   UpdateVisibilitySettings();
   1176 
   1177   // TODO(eieio): Use surface attributes or some other mechanism to control
   1178   // the layer display frame.
   1179   error = composer_->setLayerDisplayFrame(
   1180       display, hardware_composer_layer_,
   1181       {0, 0, display_metrics_.width, display_metrics_.height});
   1182   ALOGE_IF(error != HWC::Error::None,
   1183            "Layer::UpdateLayerSettings: Error setting layer display frame: %s",
   1184            error.to_string().c_str());
   1185 
   1186   error = composer_->setLayerVisibleRegion(
   1187       display, hardware_composer_layer_,
   1188       {{0, 0, display_metrics_.width, display_metrics_.height}});
   1189   ALOGE_IF(error != HWC::Error::None,
   1190            "Layer::UpdateLayerSettings: Error setting layer visible region: %s",
   1191            error.to_string().c_str());
   1192 
   1193   error =
   1194       composer_->setLayerPlaneAlpha(display, hardware_composer_layer_, 1.0f);
   1195   ALOGE_IF(error != HWC::Error::None,
   1196            "Layer::UpdateLayerSettings: Error setting layer plane alpha: %s",
   1197            error.to_string().c_str());
   1198 }
   1199 
   1200 void Layer::CommonLayerSetup() {
   1201   HWC::Error error =
   1202       composer_->createLayer(HWC_DISPLAY_PRIMARY, &hardware_composer_layer_);
   1203   ALOGE_IF(error != HWC::Error::None,
   1204            "Layer::CommonLayerSetup: Failed to create layer on primary "
   1205            "display: %s",
   1206            error.to_string().c_str());
   1207   UpdateLayerSettings();
   1208 }
   1209 
   1210 bool Layer::CheckAndUpdateCachedBuffer(std::size_t slot, int buffer_id) {
   1211   auto search = cached_buffer_map_.find(slot);
   1212   if (search != cached_buffer_map_.end() && search->second == buffer_id)
   1213     return true;
   1214 
   1215   // Assign or update the buffer slot.
   1216   if (buffer_id >= 0)
   1217     cached_buffer_map_[slot] = buffer_id;
   1218   return false;
   1219 }
   1220 
   1221 void Layer::Prepare() {
   1222   int right, bottom, id;
   1223   sp<GraphicBuffer> handle;
   1224   std::size_t slot;
   1225 
   1226   // Acquire the next buffer according to the type of source.
   1227   IfAnyOf<SourceSurface, SourceBuffer>::Call(&source_, [&](auto& source) {
   1228     std::tie(right, bottom, id, handle, acquire_fence_, slot) =
   1229         source.Acquire();
   1230   });
   1231 
   1232   TRACE_FORMAT("Layer::Prepare|buffer_id=%d;slot=%zu|", id, slot);
   1233 
   1234   // Update any visibility (blending, z-order) changes that occurred since
   1235   // last prepare.
   1236   UpdateVisibilitySettings();
   1237 
   1238   // When a layer is first setup there may be some time before the first
   1239   // buffer arrives. Setup the HWC layer as a solid color to stall for time
   1240   // until the first buffer arrives. Once the first buffer arrives there will
   1241   // always be a buffer for the frame even if it is old.
   1242   if (!handle.get()) {
   1243     if (composition_type_ == HWC::Composition::Invalid) {
   1244       composition_type_ = HWC::Composition::SolidColor;
   1245       composer_->setLayerCompositionType(
   1246           HWC_DISPLAY_PRIMARY, hardware_composer_layer_,
   1247           composition_type_.cast<Hwc2::IComposerClient::Composition>());
   1248       Hwc2::IComposerClient::Color layer_color = {0, 0, 0, 0};
   1249       composer_->setLayerColor(HWC_DISPLAY_PRIMARY, hardware_composer_layer_,
   1250                                layer_color);
   1251     } else {
   1252       // The composition type is already set. Nothing else to do until a
   1253       // buffer arrives.
   1254     }
   1255   } else {
   1256     if (composition_type_ != target_composition_type_) {
   1257       composition_type_ = target_composition_type_;
   1258       composer_->setLayerCompositionType(
   1259           HWC_DISPLAY_PRIMARY, hardware_composer_layer_,
   1260           composition_type_.cast<Hwc2::IComposerClient::Composition>());
   1261     }
   1262 
   1263     // See if the HWC cache already has this buffer.
   1264     const bool cached = CheckAndUpdateCachedBuffer(slot, id);
   1265     if (cached)
   1266       handle = nullptr;
   1267 
   1268     HWC::Error error{HWC::Error::None};
   1269     error =
   1270         composer_->setLayerBuffer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_,
   1271                                   slot, handle, acquire_fence_.Get());
   1272 
   1273     ALOGE_IF(error != HWC::Error::None,
   1274              "Layer::Prepare: Error setting layer buffer: %s",
   1275              error.to_string().c_str());
   1276 
   1277     if (!surface_rect_functions_applied_) {
   1278       const float float_right = right;
   1279       const float float_bottom = bottom;
   1280       error = composer_->setLayerSourceCrop(HWC_DISPLAY_PRIMARY,
   1281                                             hardware_composer_layer_,
   1282                                             {0, 0, float_right, float_bottom});
   1283 
   1284       ALOGE_IF(error != HWC::Error::None,
   1285                "Layer::Prepare: Error setting layer source crop: %s",
   1286                error.to_string().c_str());
   1287 
   1288       surface_rect_functions_applied_ = true;
   1289     }
   1290   }
   1291 }
   1292 
   1293 void Layer::Finish(int release_fence_fd) {
   1294   IfAnyOf<SourceSurface, SourceBuffer>::Call(
   1295       &source_, [release_fence_fd](auto& source) {
   1296         source.Finish(LocalHandle(release_fence_fd));
   1297       });
   1298 }
   1299 
   1300 void Layer::Drop() { acquire_fence_.Close(); }
   1301 
   1302 }  // namespace dvr
   1303 }  // namespace android
   1304