Home | History | Annotate | Download | only in DisplayHardware
      1 /*
      2  * Copyright 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H
     18 #define ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H
     19 
     20 #include "DisplaySurface.h"
     21 #include "HWComposerBufferCache.h"
     22 
     23 #include <gui/ConsumerBase.h>
     24 #include <gui/IGraphicBufferProducer.h>
     25 
     26 // ---------------------------------------------------------------------------
     27 namespace android {
     28 // ---------------------------------------------------------------------------
     29 
     30 class HWComposer;
     31 class IProducerListener;
     32 
     33 /* This DisplaySurface implementation supports virtual displays, where GLES
     34  * and/or HWC compose into a buffer that is then passed to an arbitrary
     35  * consumer (the sink) running in another process.
     36  *
     37  * The simplest case is when the virtual display will never use the h/w
     38  * composer -- either the h/w composer doesn't support writing to buffers, or
     39  * there are more virtual displays than it supports simultaneously. In this
     40  * case, the GLES driver works directly with the output buffer queue, and
     41  * calls to the VirtualDisplay from SurfaceFlinger and DisplayHardware do
     42  * nothing.
     43  *
     44  * If h/w composer might be used, then each frame will fall into one of three
     45  * configurations: GLES-only, HWC-only, and MIXED composition. In all of these,
     46  * we must provide a FB target buffer and output buffer for the HWC set() call.
     47  *
     48  * In GLES-only composition, the GLES driver is given a buffer from the sink to
     49  * render into. When the GLES driver queues the buffer to the
     50  * VirtualDisplaySurface, the VirtualDisplaySurface holds onto it instead of
     51  * immediately queueing it to the sink. The buffer is used as both the FB
     52  * target and output buffer for HWC, though on these frames the HWC doesn't
     53  * do any work for this display and doesn't write to the output buffer. After
     54  * composition is complete, the buffer is queued to the sink.
     55  *
     56  * In HWC-only composition, the VirtualDisplaySurface dequeues a buffer from
     57  * the sink and passes it to HWC as both the FB target buffer and output
     58  * buffer. The HWC doesn't need to read from the FB target buffer, but does
     59  * write to the output buffer. After composition is complete, the buffer is
     60  * queued to the sink.
     61  *
     62  * On MIXED frames, things become more complicated, since some h/w composer
     63  * implementations can't read from and write to the same buffer. This class has
     64  * an internal BufferQueue that it uses as a scratch buffer pool. The GLES
     65  * driver is given a scratch buffer to render into. When it finishes rendering,
     66  * the buffer is queued and then immediately acquired by the
     67  * VirtualDisplaySurface. The scratch buffer is then used as the FB target
     68  * buffer for HWC, and a separate buffer is dequeued from the sink and used as
     69  * the HWC output buffer. When HWC composition is complete, the scratch buffer
     70  * is released and the output buffer is queued to the sink.
     71  */
     72 class VirtualDisplaySurface : public DisplaySurface,
     73                               public BnGraphicBufferProducer,
     74                               private ConsumerBase {
     75 public:
     76     VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
     77             const sp<IGraphicBufferProducer>& sink,
     78             const sp<IGraphicBufferProducer>& bqProducer,
     79             const sp<IGraphicBufferConsumer>& bqConsumer,
     80             const String8& name);
     81 
     82     //
     83     // DisplaySurface interface
     84     //
     85     virtual status_t beginFrame(bool mustRecompose);
     86     virtual status_t prepareFrame(CompositionType compositionType);
     87 #ifndef USE_HWC2
     88     virtual status_t compositionComplete();
     89 #endif
     90     virtual status_t advanceFrame();
     91     virtual void onFrameCommitted();
     92     virtual void dumpAsString(String8& result) const;
     93     virtual void resizeBuffers(const uint32_t w, const uint32_t h);
     94     virtual const sp<Fence>& getClientTargetAcquireFence() const override;
     95 
     96 private:
     97     enum Source {SOURCE_SINK = 0, SOURCE_SCRATCH = 1};
     98 
     99     virtual ~VirtualDisplaySurface();
    100 
    101     //
    102     // IGraphicBufferProducer interface, used by the GLES driver.
    103     //
    104     virtual status_t requestBuffer(int pslot, sp<GraphicBuffer>* outBuf);
    105     virtual status_t setMaxDequeuedBufferCount(int maxDequeuedBuffers);
    106     virtual status_t setAsyncMode(bool async);
    107     virtual status_t dequeueBuffer(int* pslot, sp<Fence>* fence, uint32_t w, uint32_t h,
    108                                    PixelFormat format, uint64_t usage, uint64_t* outBufferAge,
    109                                    FrameEventHistoryDelta* outTimestamps);
    110     virtual status_t detachBuffer(int slot);
    111     virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer,
    112             sp<Fence>* outFence);
    113     virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer);
    114     virtual status_t queueBuffer(int pslot,
    115             const QueueBufferInput& input, QueueBufferOutput* output);
    116     virtual status_t cancelBuffer(int pslot, const sp<Fence>& fence);
    117     virtual int query(int what, int* value);
    118     virtual status_t connect(const sp<IProducerListener>& listener,
    119             int api, bool producerControlledByApp, QueueBufferOutput* output);
    120     virtual status_t disconnect(int api, DisconnectMode mode);
    121     virtual status_t setSidebandStream(const sp<NativeHandle>& stream);
    122     virtual void allocateBuffers(uint32_t width, uint32_t height,
    123             PixelFormat format, uint64_t usage);
    124     virtual status_t allowAllocation(bool allow);
    125     virtual status_t setGenerationNumber(uint32_t generationNumber);
    126     virtual String8 getConsumerName() const override;
    127     virtual status_t setSharedBufferMode(bool sharedBufferMode) override;
    128     virtual status_t setAutoRefresh(bool autoRefresh) override;
    129     virtual status_t setDequeueTimeout(nsecs_t timeout) override;
    130     virtual status_t getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer,
    131             sp<Fence>* outFence, float outTransformMatrix[16]) override;
    132     virtual status_t getUniqueId(uint64_t* outId) const override;
    133     virtual status_t getConsumerUsage(uint64_t* outUsage) const override;
    134 
    135     //
    136     // Utility methods
    137     //
    138     static Source fbSourceForCompositionType(CompositionType type);
    139     status_t dequeueBuffer(Source source, PixelFormat format, uint64_t usage,
    140             int* sslot, sp<Fence>* fence);
    141     void updateQueueBufferOutput(QueueBufferOutput&& qbo);
    142     void resetPerFrameState();
    143     status_t refreshOutputBuffer();
    144 
    145     // Both the sink and scratch buffer pools have their own set of slots
    146     // ("source slots", or "sslot"). We have to merge these into the single
    147     // set of slots used by the GLES producer ("producer slots" or "pslot") and
    148     // internally in the VirtualDisplaySurface. To minimize the number of times
    149     // a producer slot switches which source it comes from, we map source slot
    150     // numbers to producer slot numbers differently for each source.
    151     static int mapSource2ProducerSlot(Source source, int sslot);
    152     static int mapProducer2SourceSlot(Source source, int pslot);
    153 
    154     //
    155     // Immutable after construction
    156     //
    157     HWComposer& mHwc;
    158     const int32_t mDisplayId;
    159     const String8 mDisplayName;
    160     sp<IGraphicBufferProducer> mSource[2]; // indexed by SOURCE_*
    161     uint32_t mDefaultOutputFormat;
    162 
    163     //
    164     // Inter-frame state
    165     //
    166 
    167     // To avoid buffer reallocations, we track the buffer usage and format
    168     // we used on the previous frame and use it again on the new frame. If
    169     // the composition type changes or the GLES driver starts requesting
    170     // different usage/format, we'll get a new buffer.
    171     uint32_t mOutputFormat;
    172     uint64_t mOutputUsage;
    173 
    174     // Since we present a single producer interface to the GLES driver, but
    175     // are internally muxing between the sink and scratch producers, we have
    176     // to keep track of which source last returned each producer slot from
    177     // dequeueBuffer. Each bit in mProducerSlotSource corresponds to a producer
    178     // slot. Both mProducerSlotSource and mProducerBuffers are indexed by a
    179     // "producer slot"; see the mapSlot*() functions.
    180     uint64_t mProducerSlotSource;
    181     sp<GraphicBuffer> mProducerBuffers[BufferQueueDefs::NUM_BUFFER_SLOTS];
    182 
    183     // The QueueBufferOutput with the latest info from the sink, and with the
    184     // transform hint cleared. Since we defer queueBuffer from the GLES driver
    185     // to the sink, we have to return the previous version.
    186     // Moves instead of copies are performed to avoid duplicate
    187     // FrameEventHistoryDeltas.
    188     QueueBufferOutput mQueueBufferOutput;
    189 
    190     // Details of the current sink buffer. These become valid when a buffer is
    191     // dequeued from the sink, and are used when queueing the buffer.
    192     uint32_t mSinkBufferWidth, mSinkBufferHeight;
    193 
    194     //
    195     // Intra-frame state
    196     //
    197 
    198     // Composition type and GLES buffer source for the current frame.
    199     // Valid after prepareFrame(), cleared in onFrameCommitted.
    200     CompositionType mCompositionType;
    201 
    202     // mFbFence is the fence HWC should wait for before reading the framebuffer
    203     // target buffer.
    204     sp<Fence> mFbFence;
    205 
    206     // mOutputFence is the fence HWC should wait for before writing to the
    207     // output buffer.
    208     sp<Fence> mOutputFence;
    209 
    210     // Producer slot numbers for the buffers to use for HWC framebuffer target
    211     // and output.
    212     int mFbProducerSlot;
    213     int mOutputProducerSlot;
    214 
    215     // Debug only -- track the sequence of events in each frame so we can make
    216     // sure they happen in the order we expect. This class implicitly models
    217     // a state machine; this enum/variable makes it explicit.
    218     //
    219     // +-----------+-------------------+-------------+
    220     // | State     | Event             || Next State |
    221     // +-----------+-------------------+-------------+
    222     // | IDLE      | beginFrame        || BEGUN      |
    223     // | BEGUN     | prepareFrame      || PREPARED   |
    224     // | PREPARED  | dequeueBuffer [1] || GLES       |
    225     // | PREPARED  | advanceFrame [2]  || HWC        |
    226     // | GLES      | queueBuffer       || GLES_DONE  |
    227     // | GLES_DONE | advanceFrame      || HWC        |
    228     // | HWC       | onFrameCommitted  || IDLE       |
    229     // +-----------+-------------------++------------+
    230     // [1] COMPOSITION_GLES and COMPOSITION_MIXED frames.
    231     // [2] COMPOSITION_HWC frames.
    232     //
    233     enum DbgState {
    234         // no buffer dequeued, don't know anything about the next frame
    235         DBG_STATE_IDLE,
    236         // output buffer dequeued, framebuffer source not yet known
    237         DBG_STATE_BEGUN,
    238         // output buffer dequeued, framebuffer source known but not provided
    239         // to GLES yet.
    240         DBG_STATE_PREPARED,
    241         // GLES driver has a buffer dequeued
    242         DBG_STATE_GLES,
    243         // GLES driver has queued the buffer, we haven't sent it to HWC yet
    244         DBG_STATE_GLES_DONE,
    245         // HWC has the buffer for this frame
    246         DBG_STATE_HWC,
    247     };
    248     DbgState mDbgState;
    249     CompositionType mDbgLastCompositionType;
    250 
    251     const char* dbgStateStr() const;
    252     static const char* dbgSourceStr(Source s);
    253 
    254     bool mMustRecompose;
    255 
    256 #ifdef USE_HWC2
    257     HWComposerBufferCache mHwcBufferCache;
    258 #endif
    259 
    260 
    261     bool mForceHwcCopy;
    262 };
    263 
    264 // ---------------------------------------------------------------------------
    265 } // namespace android
    266 // ---------------------------------------------------------------------------
    267 
    268 #endif // ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H
    269