Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class DataLayout;
     25 class TargetRegisterClass;
     26 class Type;
     27 class MachineFunction;
     28 class MachineBasicBlock;
     29 class TargetFrameLowering;
     30 class TargetMachine;
     31 class BitVector;
     32 class Value;
     33 class AllocaInst;
     34 
     35 /// The CalleeSavedInfo class tracks the information need to locate where a
     36 /// callee saved register is in the current frame.
     37 class CalleeSavedInfo {
     38   unsigned Reg;
     39   int FrameIdx;
     40 
     41 public:
     42   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     43   : Reg(R), FrameIdx(FI) {}
     44 
     45   // Accessors.
     46   unsigned getReg()                        const { return Reg; }
     47   int getFrameIdx()                        const { return FrameIdx; }
     48   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     49 };
     50 
     51 /// The MachineFrameInfo class represents an abstract stack frame until
     52 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     53 /// representation optimizations, such as frame pointer elimination.  It also
     54 /// allows more mundane (but still important) optimizations, such as reordering
     55 /// of abstract objects on the stack frame.
     56 ///
     57 /// To support this, the class assigns unique integer identifiers to stack
     58 /// objects requested clients.  These identifiers are negative integers for
     59 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     60 /// for objects that may be reordered.  Instructions which refer to stack
     61 /// objects use a special MO_FrameIndex operand to represent these frame
     62 /// indexes.
     63 ///
     64 /// Because this class keeps track of all references to the stack frame, it
     65 /// knows when a variable sized object is allocated on the stack.  This is the
     66 /// sole condition which prevents frame pointer elimination, which is an
     67 /// important optimization on register-poor architectures.  Because original
     68 /// variable sized alloca's in the source program are the only source of
     69 /// variable sized stack objects, it is safe to decide whether there will be
     70 /// any variable sized objects before all stack objects are known (for
     71 /// example, register allocator spill code never needs variable sized
     72 /// objects).
     73 ///
     74 /// When prolog/epilog code emission is performed, the final stack frame is
     75 /// built and the machine instructions are modified to refer to the actual
     76 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     77 /// the program.
     78 ///
     79 /// @brief Abstract Stack Frame Information
     80 class MachineFrameInfo {
     81 
     82   // Represent a single object allocated on the stack.
     83   struct StackObject {
     84     // The offset of this object from the stack pointer on entry to
     85     // the function.  This field has no meaning for a variable sized element.
     86     int64_t SPOffset;
     87 
     88     // The size of this object on the stack. 0 means a variable sized object,
     89     // ~0ULL means a dead object.
     90     uint64_t Size;
     91 
     92     // The required alignment of this stack slot.
     93     unsigned Alignment;
     94 
     95     // If true, the value of the stack object is set before
     96     // entering the function and is not modified inside the function. By
     97     // default, fixed objects are immutable unless marked otherwise.
     98     bool isImmutable;
     99 
    100     // If true the stack object is used as spill slot. It
    101     // cannot alias any other memory objects.
    102     bool isSpillSlot;
    103 
    104     /// If true, this stack slot is used to spill a value (could be deopt
    105     /// and/or GC related) over a statepoint. We know that the address of the
    106     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
    107     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
    108     /// register allocator.
    109     bool isStatepointSpillSlot;
    110 
    111     /// If this stack object is originated from an Alloca instruction
    112     /// this value saves the original IR allocation. Can be NULL.
    113     const AllocaInst *Alloca;
    114 
    115     // If true, the object was mapped into the local frame
    116     // block and doesn't need additional handling for allocation beyond that.
    117     bool PreAllocated;
    118 
    119     // If true, an LLVM IR value might point to this object.
    120     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    121     // objects, but there are exceptions (on PowerPC, for example, some byval
    122     // arguments have ABI-prescribed offsets).
    123     bool isAliased;
    124 
    125     /// If true, the object has been zero-extended.
    126     bool isZExt;
    127 
    128     /// If true, the object has been zero-extended.
    129     bool isSExt;
    130 
    131     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
    132                 bool isSS, const AllocaInst *Val, bool A)
    133       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
    134         isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
    135         PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
    136   };
    137 
    138   /// The alignment of the stack.
    139   unsigned StackAlignment;
    140 
    141   /// Can the stack be realigned. This can be false if the target does not
    142   /// support stack realignment, or if the user asks us not to realign the
    143   /// stack. In this situation, overaligned allocas are all treated as dynamic
    144   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
    145   /// lowering. All non-alloca stack objects have their alignment clamped to the
    146   /// base ABI stack alignment.
    147   /// FIXME: There is room for improvement in this case, in terms of
    148   /// grouping overaligned allocas into a "secondary stack frame" and
    149   /// then only use a single alloca to allocate this frame and only a
    150   /// single virtual register to access it. Currently, without such an
    151   /// optimization, each such alloca gets its own dynamic realignment.
    152   bool StackRealignable;
    153 
    154   /// Whether the function has the \c alignstack attribute.
    155   bool ForcedRealign;
    156 
    157   /// The list of stack objects allocated.
    158   std::vector<StackObject> Objects;
    159 
    160   /// This contains the number of fixed objects contained on
    161   /// the stack.  Because fixed objects are stored at a negative index in the
    162   /// Objects list, this is also the index to the 0th object in the list.
    163   unsigned NumFixedObjects = 0;
    164 
    165   /// This boolean keeps track of whether any variable
    166   /// sized objects have been allocated yet.
    167   bool HasVarSizedObjects = false;
    168 
    169   /// This boolean keeps track of whether there is a call
    170   /// to builtin \@llvm.frameaddress.
    171   bool FrameAddressTaken = false;
    172 
    173   /// This boolean keeps track of whether there is a call
    174   /// to builtin \@llvm.returnaddress.
    175   bool ReturnAddressTaken = false;
    176 
    177   /// This boolean keeps track of whether there is a call
    178   /// to builtin \@llvm.experimental.stackmap.
    179   bool HasStackMap = false;
    180 
    181   /// This boolean keeps track of whether there is a call
    182   /// to builtin \@llvm.experimental.patchpoint.
    183   bool HasPatchPoint = false;
    184 
    185   /// The prolog/epilog code inserter calculates the final stack
    186   /// offsets for all of the fixed size objects, updating the Objects list
    187   /// above.  It then updates StackSize to contain the number of bytes that need
    188   /// to be allocated on entry to the function.
    189   uint64_t StackSize = 0;
    190 
    191   /// The amount that a frame offset needs to be adjusted to
    192   /// have the actual offset from the stack/frame pointer.  The exact usage of
    193   /// this is target-dependent, but it is typically used to adjust between
    194   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    195   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    196   /// to the distance between the initial SP and the value in FP.  For many
    197   /// targets, this value is only used when generating debug info (via
    198   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
    199   /// corresponding adjustments are performed directly.
    200   int OffsetAdjustment = 0;
    201 
    202   /// The prolog/epilog code inserter may process objects that require greater
    203   /// alignment than the default alignment the target provides.
    204   /// To handle this, MaxAlignment is set to the maximum alignment
    205   /// needed by the objects on the current frame.  If this is greater than the
    206   /// native alignment maintained by the compiler, dynamic alignment code will
    207   /// be needed.
    208   ///
    209   unsigned MaxAlignment = 0;
    210 
    211   /// Set to true if this function adjusts the stack -- e.g.,
    212   /// when calling another function. This is only valid during and after
    213   /// prolog/epilog code insertion.
    214   bool AdjustsStack = false;
    215 
    216   /// Set to true if this function has any function calls.
    217   bool HasCalls = false;
    218 
    219   /// The frame index for the stack protector.
    220   int StackProtectorIdx = -1;
    221 
    222   /// The frame index for the function context. Used for SjLj exceptions.
    223   int FunctionContextIdx = -1;
    224 
    225   /// This contains the size of the largest call frame if the target uses frame
    226   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
    227   /// class).  This information is important for frame pointer elimination.
    228   /// It is only valid during and after prolog/epilog code insertion.
    229   unsigned MaxCallFrameSize = 0;
    230 
    231   /// The prolog/epilog code inserter fills in this vector with each
    232   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    233   /// epilog code inserter, this data used for debug info and exception
    234   /// handling.
    235   std::vector<CalleeSavedInfo> CSInfo;
    236 
    237   /// Has CSInfo been set yet?
    238   bool CSIValid = false;
    239 
    240   /// References to frame indices which are mapped
    241   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    242   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    243 
    244   /// Size of the pre-allocated local frame block.
    245   int64_t LocalFrameSize = 0;
    246 
    247   /// Required alignment of the local object blob, which is the strictest
    248   /// alignment of any object in it.
    249   unsigned LocalFrameMaxAlign = 0;
    250 
    251   /// Whether the local object blob needs to be allocated together. If not,
    252   /// PEI should ignore the isPreAllocated flags on the stack objects and
    253   /// just allocate them normally.
    254   bool UseLocalStackAllocationBlock = false;
    255 
    256   /// True if the function dynamically adjusts the stack pointer through some
    257   /// opaque mechanism like inline assembly or Win32 EH.
    258   bool HasOpaqueSPAdjustment = false;
    259 
    260   /// True if the function contains operations which will lower down to
    261   /// instructions which manipulate the stack pointer.
    262   bool HasCopyImplyingStackAdjustment = false;
    263 
    264   /// True if the function contains a call to the llvm.vastart intrinsic.
    265   bool HasVAStart = false;
    266 
    267   /// True if this is a varargs function that contains a musttail call.
    268   bool HasMustTailInVarArgFunc = false;
    269 
    270   /// True if this function contains a tail call. If so immutable objects like
    271   /// function arguments are no longer so. A tail call *can* override fixed
    272   /// stack objects like arguments so we can't treat them as immutable.
    273   bool HasTailCall = false;
    274 
    275   /// Not null, if shrink-wrapping found a better place for the prologue.
    276   MachineBasicBlock *Save = nullptr;
    277   /// Not null, if shrink-wrapping found a better place for the epilogue.
    278   MachineBasicBlock *Restore = nullptr;
    279 
    280 public:
    281   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
    282                             bool ForcedRealign)
    283       : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
    284         ForcedRealign(ForcedRealign) {}
    285 
    286   /// Return true if there are any stack objects in this function.
    287   bool hasStackObjects() const { return !Objects.empty(); }
    288 
    289   /// This method may be called any time after instruction
    290   /// selection is complete to determine if the stack frame for this function
    291   /// contains any variable sized objects.
    292   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    293 
    294   /// Return the index for the stack protector object.
    295   int getStackProtectorIndex() const { return StackProtectorIdx; }
    296   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    297   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
    298 
    299   /// Return the index for the function context object.
    300   /// This object is used for SjLj exceptions.
    301   int getFunctionContextIndex() const { return FunctionContextIdx; }
    302   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    303 
    304   /// This method may be called any time after instruction
    305   /// selection is complete to determine if there is a call to
    306   /// \@llvm.frameaddress in this function.
    307   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    308   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    309 
    310   /// This method may be called any time after
    311   /// instruction selection is complete to determine if there is a call to
    312   /// \@llvm.returnaddress in this function.
    313   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    314   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    315 
    316   /// This method may be called any time after instruction
    317   /// selection is complete to determine if there is a call to builtin
    318   /// \@llvm.experimental.stackmap.
    319   bool hasStackMap() const { return HasStackMap; }
    320   void setHasStackMap(bool s = true) { HasStackMap = s; }
    321 
    322   /// This method may be called any time after instruction
    323   /// selection is complete to determine if there is a call to builtin
    324   /// \@llvm.experimental.patchpoint.
    325   bool hasPatchPoint() const { return HasPatchPoint; }
    326   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    327 
    328   /// Return the minimum frame object index.
    329   int getObjectIndexBegin() const { return -NumFixedObjects; }
    330 
    331   /// Return one past the maximum frame object index.
    332   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    333 
    334   /// Return the number of fixed objects.
    335   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    336 
    337   /// Return the number of objects.
    338   unsigned getNumObjects() const { return Objects.size(); }
    339 
    340   /// Map a frame index into the local object block
    341   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    342     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    343     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    344   }
    345 
    346   /// Get the local offset mapping for a for an object.
    347   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
    348     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    349             "Invalid local object reference!");
    350     return LocalFrameObjects[i];
    351   }
    352 
    353   /// Return the number of objects allocated into the local object block.
    354   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
    355 
    356   /// Set the size of the local object blob.
    357   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    358 
    359   /// Get the size of the local object blob.
    360   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    361 
    362   /// Required alignment of the local object blob,
    363   /// which is the strictest alignment of any object in it.
    364   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    365 
    366   /// Return the required alignment of the local object blob.
    367   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    368 
    369   /// Get whether the local allocation blob should be allocated together or
    370   /// let PEI allocate the locals in it directly.
    371   bool getUseLocalStackAllocationBlock() const {
    372     return UseLocalStackAllocationBlock;
    373   }
    374 
    375   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    376   /// should be allocated together or let PEI allocate the locals in it
    377   /// directly.
    378   void setUseLocalStackAllocationBlock(bool v) {
    379     UseLocalStackAllocationBlock = v;
    380   }
    381 
    382   /// Return true if the object was pre-allocated into the local block.
    383   bool isObjectPreAllocated(int ObjectIdx) const {
    384     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    385            "Invalid Object Idx!");
    386     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    387   }
    388 
    389   /// Return the size of the specified object.
    390   int64_t getObjectSize(int ObjectIdx) const {
    391     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    392            "Invalid Object Idx!");
    393     return Objects[ObjectIdx+NumFixedObjects].Size;
    394   }
    395 
    396   /// Change the size of the specified stack object.
    397   void setObjectSize(int ObjectIdx, int64_t Size) {
    398     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    399            "Invalid Object Idx!");
    400     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    401   }
    402 
    403   /// Return the alignment of the specified stack object.
    404   unsigned getObjectAlignment(int ObjectIdx) const {
    405     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    406            "Invalid Object Idx!");
    407     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    408   }
    409 
    410   /// setObjectAlignment - Change the alignment of the specified stack object.
    411   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    412     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    413            "Invalid Object Idx!");
    414     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    415     ensureMaxAlignment(Align);
    416   }
    417 
    418   /// Return the underlying Alloca of the specified
    419   /// stack object if it exists. Returns 0 if none exists.
    420   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    421     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    422            "Invalid Object Idx!");
    423     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    424   }
    425 
    426   /// Return the assigned stack offset of the specified object
    427   /// from the incoming stack pointer.
    428   int64_t getObjectOffset(int ObjectIdx) const {
    429     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    430            "Invalid Object Idx!");
    431     assert(!isDeadObjectIndex(ObjectIdx) &&
    432            "Getting frame offset for a dead object?");
    433     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    434   }
    435 
    436   bool isObjectZExt(int ObjectIdx) const {
    437     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    438            "Invalid Object Idx!");
    439     return Objects[ObjectIdx+NumFixedObjects].isZExt;
    440   }
    441 
    442   void setObjectZExt(int ObjectIdx, bool IsZExt) {
    443     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    444            "Invalid Object Idx!");
    445     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
    446   }
    447 
    448   bool isObjectSExt(int ObjectIdx) const {
    449     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    450            "Invalid Object Idx!");
    451     return Objects[ObjectIdx+NumFixedObjects].isSExt;
    452   }
    453 
    454   void setObjectSExt(int ObjectIdx, bool IsSExt) {
    455     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    456            "Invalid Object Idx!");
    457     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
    458   }
    459 
    460   /// Set the stack frame offset of the specified object. The
    461   /// offset is relative to the stack pointer on entry to the function.
    462   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    463     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    464            "Invalid Object Idx!");
    465     assert(!isDeadObjectIndex(ObjectIdx) &&
    466            "Setting frame offset for a dead object?");
    467     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    468   }
    469 
    470   /// Return the number of bytes that must be allocated to hold
    471   /// all of the fixed size frame objects.  This is only valid after
    472   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    473   uint64_t getStackSize() const { return StackSize; }
    474 
    475   /// Set the size of the stack.
    476   void setStackSize(uint64_t Size) { StackSize = Size; }
    477 
    478   /// Estimate and return the size of the stack frame.
    479   unsigned estimateStackSize(const MachineFunction &MF) const;
    480 
    481   /// Return the correction for frame offsets.
    482   int getOffsetAdjustment() const { return OffsetAdjustment; }
    483 
    484   /// Set the correction for frame offsets.
    485   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    486 
    487   /// Return the alignment in bytes that this function must be aligned to,
    488   /// which is greater than the default stack alignment provided by the target.
    489   unsigned getMaxAlignment() const { return MaxAlignment; }
    490 
    491   /// Make sure the function is at least Align bytes aligned.
    492   void ensureMaxAlignment(unsigned Align);
    493 
    494   /// Return true if this function adjusts the stack -- e.g.,
    495   /// when calling another function. This is only valid during and after
    496   /// prolog/epilog code insertion.
    497   bool adjustsStack() const { return AdjustsStack; }
    498   void setAdjustsStack(bool V) { AdjustsStack = V; }
    499 
    500   /// Return true if the current function has any function calls.
    501   bool hasCalls() const { return HasCalls; }
    502   void setHasCalls(bool V) { HasCalls = V; }
    503 
    504   /// Returns true if the function contains opaque dynamic stack adjustments.
    505   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
    506   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
    507 
    508   /// Returns true if the function contains operations which will lower down to
    509   /// instructions which manipulate the stack pointer.
    510   bool hasCopyImplyingStackAdjustment() const {
    511     return HasCopyImplyingStackAdjustment;
    512   }
    513   void setHasCopyImplyingStackAdjustment(bool B) {
    514     HasCopyImplyingStackAdjustment = B;
    515   }
    516 
    517   /// Returns true if the function calls the llvm.va_start intrinsic.
    518   bool hasVAStart() const { return HasVAStart; }
    519   void setHasVAStart(bool B) { HasVAStart = B; }
    520 
    521   /// Returns true if the function is variadic and contains a musttail call.
    522   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    523   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    524 
    525   /// Returns true if the function contains a tail call.
    526   bool hasTailCall() const { return HasTailCall; }
    527   void setHasTailCall() { HasTailCall = true; }
    528 
    529   /// Return the maximum size of a call frame that must be
    530   /// allocated for an outgoing function call.  This is only available if
    531   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    532   /// then only during or after prolog/epilog code insertion.
    533   ///
    534   unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
    535   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    536 
    537   /// Create a new object at a fixed location on the stack.
    538   /// All fixed objects should be created before other objects are created for
    539   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    540   /// values. This returns an index with a negative value.
    541   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
    542                         bool isAliased = false);
    543 
    544   /// Create a spill slot at a fixed location on the stack.
    545   /// Returns an index with a negative value.
    546   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
    547                                   bool Immutable = false);
    548 
    549   /// Returns true if the specified index corresponds to a fixed stack object.
    550   bool isFixedObjectIndex(int ObjectIdx) const {
    551     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    552   }
    553 
    554   /// Returns true if the specified index corresponds
    555   /// to an object that might be pointed to by an LLVM IR value.
    556   bool isAliasedObjectIndex(int ObjectIdx) const {
    557     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    558            "Invalid Object Idx!");
    559     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    560   }
    561 
    562   /// Returns true if the specified index corresponds to an immutable object.
    563   bool isImmutableObjectIndex(int ObjectIdx) const {
    564     // Tail calling functions can clobber their function arguments.
    565     if (HasTailCall)
    566       return false;
    567     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    568            "Invalid Object Idx!");
    569     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    570   }
    571 
    572   /// Marks the immutability of an object.
    573   void setIsImmutableObjectIndex(int ObjectIdx, bool Immutable) {
    574     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    575            "Invalid Object Idx!");
    576     Objects[ObjectIdx+NumFixedObjects].isImmutable = Immutable;
    577   }
    578 
    579   /// Returns true if the specified index corresponds to a spill slot.
    580   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    581     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    582            "Invalid Object Idx!");
    583     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    584   }
    585 
    586   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
    587     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    588            "Invalid Object Idx!");
    589     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
    590   }
    591 
    592   /// Returns true if the specified index corresponds to a dead object.
    593   bool isDeadObjectIndex(int ObjectIdx) const {
    594     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    595            "Invalid Object Idx!");
    596     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    597   }
    598 
    599   /// Returns true if the specified index corresponds to a variable sized
    600   /// object.
    601   bool isVariableSizedObjectIndex(int ObjectIdx) const {
    602     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
    603            "Invalid Object Idx!");
    604     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
    605   }
    606 
    607   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
    608     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    609            "Invalid Object Idx!");
    610     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
    611     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
    612   }
    613 
    614   /// Create a new statically sized stack object, returning
    615   /// a nonnegative identifier to represent it.
    616   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
    617                         const AllocaInst *Alloca = nullptr);
    618 
    619   /// Create a new statically sized stack object that represents a spill slot,
    620   /// returning a nonnegative identifier to represent it.
    621   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    622 
    623   /// Remove or mark dead a statically sized stack object.
    624   void RemoveStackObject(int ObjectIdx) {
    625     // Mark it dead.
    626     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    627   }
    628 
    629   /// Notify the MachineFrameInfo object that a variable sized object has been
    630   /// created.  This must be created whenever a variable sized object is
    631   /// created, whether or not the index returned is actually used.
    632   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    633 
    634   /// Returns a reference to call saved info vector for the current function.
    635   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    636     return CSInfo;
    637   }
    638 
    639   /// Used by prolog/epilog inserter to set the function's callee saved
    640   /// information.
    641   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    642     CSInfo = CSI;
    643   }
    644 
    645   /// Has the callee saved info been calculated yet?
    646   bool isCalleeSavedInfoValid() const { return CSIValid; }
    647 
    648   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    649 
    650   MachineBasicBlock *getSavePoint() const { return Save; }
    651   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
    652   MachineBasicBlock *getRestorePoint() const { return Restore; }
    653   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
    654 
    655   /// Return a set of physical registers that are pristine.
    656   ///
    657   /// Pristine registers hold a value that is useless to the current function,
    658   /// but that must be preserved - they are callee saved registers that are not
    659   /// saved.
    660   ///
    661   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    662   /// method always returns an empty set.
    663   BitVector getPristineRegs(const MachineFunction &MF) const;
    664 
    665   /// Used by the MachineFunction printer to print information about
    666   /// stack objects. Implemented in MachineFunction.cpp.
    667   void print(const MachineFunction &MF, raw_ostream &OS) const;
    668 
    669   /// dump - Print the function to stderr.
    670   void dump(const MachineFunction &MF) const;
    671 };
    672 
    673 } // End llvm namespace
    674 
    675 #endif
    676