Home | History | Annotate | Download | only in gob
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 //go:generate go run encgen.go -output enc_helpers.go
      6 
      7 package gob
      8 
      9 import (
     10 	"encoding"
     11 	"math"
     12 	"reflect"
     13 	"sync"
     14 )
     15 
     16 const uint64Size = 8
     17 
     18 type encHelper func(state *encoderState, v reflect.Value) bool
     19 
     20 // encoderState is the global execution state of an instance of the encoder.
     21 // Field numbers are delta encoded and always increase. The field
     22 // number is initialized to -1 so 0 comes out as delta(1). A delta of
     23 // 0 terminates the structure.
     24 type encoderState struct {
     25 	enc      *Encoder
     26 	b        *encBuffer
     27 	sendZero bool                 // encoding an array element or map key/value pair; send zero values
     28 	fieldnum int                  // the last field number written.
     29 	buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
     30 	next     *encoderState        // for free list
     31 }
     32 
     33 // encBuffer is an extremely simple, fast implementation of a write-only byte buffer.
     34 // It never returns a non-nil error, but Write returns an error value so it matches io.Writer.
     35 type encBuffer struct {
     36 	data    []byte
     37 	scratch [64]byte
     38 }
     39 
     40 var encBufferPool = sync.Pool{
     41 	New: func() interface{} {
     42 		e := new(encBuffer)
     43 		e.data = e.scratch[0:0]
     44 		return e
     45 	},
     46 }
     47 
     48 func (e *encBuffer) WriteByte(c byte) {
     49 	e.data = append(e.data, c)
     50 }
     51 
     52 func (e *encBuffer) Write(p []byte) (int, error) {
     53 	e.data = append(e.data, p...)
     54 	return len(p), nil
     55 }
     56 
     57 func (e *encBuffer) WriteString(s string) {
     58 	e.data = append(e.data, s...)
     59 }
     60 
     61 func (e *encBuffer) Len() int {
     62 	return len(e.data)
     63 }
     64 
     65 func (e *encBuffer) Bytes() []byte {
     66 	return e.data
     67 }
     68 
     69 func (e *encBuffer) Reset() {
     70 	if len(e.data) >= tooBig {
     71 		e.data = e.scratch[0:0]
     72 	} else {
     73 		e.data = e.data[0:0]
     74 	}
     75 }
     76 
     77 func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState {
     78 	e := enc.freeList
     79 	if e == nil {
     80 		e = new(encoderState)
     81 		e.enc = enc
     82 	} else {
     83 		enc.freeList = e.next
     84 	}
     85 	e.sendZero = false
     86 	e.fieldnum = 0
     87 	e.b = b
     88 	if len(b.data) == 0 {
     89 		b.data = b.scratch[0:0]
     90 	}
     91 	return e
     92 }
     93 
     94 func (enc *Encoder) freeEncoderState(e *encoderState) {
     95 	e.next = enc.freeList
     96 	enc.freeList = e
     97 }
     98 
     99 // Unsigned integers have a two-state encoding. If the number is less
    100 // than 128 (0 through 0x7F), its value is written directly.
    101 // Otherwise the value is written in big-endian byte order preceded
    102 // by the byte length, negated.
    103 
    104 // encodeUint writes an encoded unsigned integer to state.b.
    105 func (state *encoderState) encodeUint(x uint64) {
    106 	if x <= 0x7F {
    107 		state.b.WriteByte(uint8(x))
    108 		return
    109 	}
    110 	i := uint64Size
    111 	for x > 0 {
    112 		state.buf[i] = uint8(x)
    113 		x >>= 8
    114 		i--
    115 	}
    116 	state.buf[i] = uint8(i - uint64Size) // = loop count, negated
    117 	state.b.Write(state.buf[i : uint64Size+1])
    118 }
    119 
    120 // encodeInt writes an encoded signed integer to state.w.
    121 // The low bit of the encoding says whether to bit complement the (other bits of the)
    122 // uint to recover the int.
    123 func (state *encoderState) encodeInt(i int64) {
    124 	var x uint64
    125 	if i < 0 {
    126 		x = uint64(^i<<1) | 1
    127 	} else {
    128 		x = uint64(i << 1)
    129 	}
    130 	state.encodeUint(x)
    131 }
    132 
    133 // encOp is the signature of an encoding operator for a given type.
    134 type encOp func(i *encInstr, state *encoderState, v reflect.Value)
    135 
    136 // The 'instructions' of the encoding machine
    137 type encInstr struct {
    138 	op    encOp
    139 	field int   // field number in input
    140 	index []int // struct index
    141 	indir int   // how many pointer indirections to reach the value in the struct
    142 }
    143 
    144 // update emits a field number and updates the state to record its value for delta encoding.
    145 // If the instruction pointer is nil, it does nothing
    146 func (state *encoderState) update(instr *encInstr) {
    147 	if instr != nil {
    148 		state.encodeUint(uint64(instr.field - state.fieldnum))
    149 		state.fieldnum = instr.field
    150 	}
    151 }
    152 
    153 // Each encoder for a composite is responsible for handling any
    154 // indirections associated with the elements of the data structure.
    155 // If any pointer so reached is nil, no bytes are written. If the
    156 // data item is zero, no bytes are written. Single values - ints,
    157 // strings etc. - are indirected before calling their encoders.
    158 // Otherwise, the output (for a scalar) is the field number, as an
    159 // encoded integer, followed by the field data in its appropriate
    160 // format.
    161 
    162 // encIndirect dereferences pv indir times and returns the result.
    163 func encIndirect(pv reflect.Value, indir int) reflect.Value {
    164 	for ; indir > 0; indir-- {
    165 		if pv.IsNil() {
    166 			break
    167 		}
    168 		pv = pv.Elem()
    169 	}
    170 	return pv
    171 }
    172 
    173 // encBool encodes the bool referenced by v as an unsigned 0 or 1.
    174 func encBool(i *encInstr, state *encoderState, v reflect.Value) {
    175 	b := v.Bool()
    176 	if b || state.sendZero {
    177 		state.update(i)
    178 		if b {
    179 			state.encodeUint(1)
    180 		} else {
    181 			state.encodeUint(0)
    182 		}
    183 	}
    184 }
    185 
    186 // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
    187 func encInt(i *encInstr, state *encoderState, v reflect.Value) {
    188 	value := v.Int()
    189 	if value != 0 || state.sendZero {
    190 		state.update(i)
    191 		state.encodeInt(value)
    192 	}
    193 }
    194 
    195 // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
    196 func encUint(i *encInstr, state *encoderState, v reflect.Value) {
    197 	value := v.Uint()
    198 	if value != 0 || state.sendZero {
    199 		state.update(i)
    200 		state.encodeUint(value)
    201 	}
    202 }
    203 
    204 // floatBits returns a uint64 holding the bits of a floating-point number.
    205 // Floating-point numbers are transmitted as uint64s holding the bits
    206 // of the underlying representation. They are sent byte-reversed, with
    207 // the exponent end coming out first, so integer floating point numbers
    208 // (for example) transmit more compactly. This routine does the
    209 // swizzling.
    210 func floatBits(f float64) uint64 {
    211 	u := math.Float64bits(f)
    212 	var v uint64
    213 	for i := 0; i < 8; i++ {
    214 		v <<= 8
    215 		v |= u & 0xFF
    216 		u >>= 8
    217 	}
    218 	return v
    219 }
    220 
    221 // encFloat encodes the floating point value (float32 float64) referenced by v.
    222 func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
    223 	f := v.Float()
    224 	if f != 0 || state.sendZero {
    225 		bits := floatBits(f)
    226 		state.update(i)
    227 		state.encodeUint(bits)
    228 	}
    229 }
    230 
    231 // encComplex encodes the complex value (complex64 complex128) referenced by v.
    232 // Complex numbers are just a pair of floating-point numbers, real part first.
    233 func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
    234 	c := v.Complex()
    235 	if c != 0+0i || state.sendZero {
    236 		rpart := floatBits(real(c))
    237 		ipart := floatBits(imag(c))
    238 		state.update(i)
    239 		state.encodeUint(rpart)
    240 		state.encodeUint(ipart)
    241 	}
    242 }
    243 
    244 // encUint8Array encodes the byte array referenced by v.
    245 // Byte arrays are encoded as an unsigned count followed by the raw bytes.
    246 func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
    247 	b := v.Bytes()
    248 	if len(b) > 0 || state.sendZero {
    249 		state.update(i)
    250 		state.encodeUint(uint64(len(b)))
    251 		state.b.Write(b)
    252 	}
    253 }
    254 
    255 // encString encodes the string referenced by v.
    256 // Strings are encoded as an unsigned count followed by the raw bytes.
    257 func encString(i *encInstr, state *encoderState, v reflect.Value) {
    258 	s := v.String()
    259 	if len(s) > 0 || state.sendZero {
    260 		state.update(i)
    261 		state.encodeUint(uint64(len(s)))
    262 		state.b.WriteString(s)
    263 	}
    264 }
    265 
    266 // encStructTerminator encodes the end of an encoded struct
    267 // as delta field number of 0.
    268 func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
    269 	state.encodeUint(0)
    270 }
    271 
    272 // Execution engine
    273 
    274 // encEngine an array of instructions indexed by field number of the encoding
    275 // data, typically a struct. It is executed top to bottom, walking the struct.
    276 type encEngine struct {
    277 	instr []encInstr
    278 }
    279 
    280 const singletonField = 0
    281 
    282 // valid reports whether the value is valid and a non-nil pointer.
    283 // (Slices, maps, and chans take care of themselves.)
    284 func valid(v reflect.Value) bool {
    285 	switch v.Kind() {
    286 	case reflect.Invalid:
    287 		return false
    288 	case reflect.Ptr:
    289 		return !v.IsNil()
    290 	}
    291 	return true
    292 }
    293 
    294 // encodeSingle encodes a single top-level non-struct value.
    295 func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) {
    296 	state := enc.newEncoderState(b)
    297 	defer enc.freeEncoderState(state)
    298 	state.fieldnum = singletonField
    299 	// There is no surrounding struct to frame the transmission, so we must
    300 	// generate data even if the item is zero. To do this, set sendZero.
    301 	state.sendZero = true
    302 	instr := &engine.instr[singletonField]
    303 	if instr.indir > 0 {
    304 		value = encIndirect(value, instr.indir)
    305 	}
    306 	if valid(value) {
    307 		instr.op(instr, state, value)
    308 	}
    309 }
    310 
    311 // encodeStruct encodes a single struct value.
    312 func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) {
    313 	if !valid(value) {
    314 		return
    315 	}
    316 	state := enc.newEncoderState(b)
    317 	defer enc.freeEncoderState(state)
    318 	state.fieldnum = -1
    319 	for i := 0; i < len(engine.instr); i++ {
    320 		instr := &engine.instr[i]
    321 		if i >= value.NumField() {
    322 			// encStructTerminator
    323 			instr.op(instr, state, reflect.Value{})
    324 			break
    325 		}
    326 		field := value.FieldByIndex(instr.index)
    327 		if instr.indir > 0 {
    328 			field = encIndirect(field, instr.indir)
    329 			// TODO: Is field guaranteed valid? If so we could avoid this check.
    330 			if !valid(field) {
    331 				continue
    332 			}
    333 		}
    334 		instr.op(instr, state, field)
    335 	}
    336 }
    337 
    338 // encodeArray encodes an array.
    339 func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) {
    340 	state := enc.newEncoderState(b)
    341 	defer enc.freeEncoderState(state)
    342 	state.fieldnum = -1
    343 	state.sendZero = true
    344 	state.encodeUint(uint64(length))
    345 	if helper != nil && helper(state, value) {
    346 		return
    347 	}
    348 	for i := 0; i < length; i++ {
    349 		elem := value.Index(i)
    350 		if elemIndir > 0 {
    351 			elem = encIndirect(elem, elemIndir)
    352 			// TODO: Is elem guaranteed valid? If so we could avoid this check.
    353 			if !valid(elem) {
    354 				errorf("encodeArray: nil element")
    355 			}
    356 		}
    357 		op(nil, state, elem)
    358 	}
    359 }
    360 
    361 // encodeReflectValue is a helper for maps. It encodes the value v.
    362 func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
    363 	for i := 0; i < indir && v.IsValid(); i++ {
    364 		v = reflect.Indirect(v)
    365 	}
    366 	if !v.IsValid() {
    367 		errorf("encodeReflectValue: nil element")
    368 	}
    369 	op(nil, state, v)
    370 }
    371 
    372 // encodeMap encodes a map as unsigned count followed by key:value pairs.
    373 func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
    374 	state := enc.newEncoderState(b)
    375 	state.fieldnum = -1
    376 	state.sendZero = true
    377 	keys := mv.MapKeys()
    378 	state.encodeUint(uint64(len(keys)))
    379 	for _, key := range keys {
    380 		encodeReflectValue(state, key, keyOp, keyIndir)
    381 		encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
    382 	}
    383 	enc.freeEncoderState(state)
    384 }
    385 
    386 // encodeInterface encodes the interface value iv.
    387 // To send an interface, we send a string identifying the concrete type, followed
    388 // by the type identifier (which might require defining that type right now), followed
    389 // by the concrete value. A nil value gets sent as the empty string for the name,
    390 // followed by no value.
    391 func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) {
    392 	// Gobs can encode nil interface values but not typed interface
    393 	// values holding nil pointers, since nil pointers point to no value.
    394 	elem := iv.Elem()
    395 	if elem.Kind() == reflect.Ptr && elem.IsNil() {
    396 		errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
    397 	}
    398 	state := enc.newEncoderState(b)
    399 	state.fieldnum = -1
    400 	state.sendZero = true
    401 	if iv.IsNil() {
    402 		state.encodeUint(0)
    403 		return
    404 	}
    405 
    406 	ut := userType(iv.Elem().Type())
    407 	registerLock.RLock()
    408 	name, ok := concreteTypeToName[ut.base]
    409 	registerLock.RUnlock()
    410 	if !ok {
    411 		errorf("type not registered for interface: %s", ut.base)
    412 	}
    413 	// Send the name.
    414 	state.encodeUint(uint64(len(name)))
    415 	state.b.WriteString(name)
    416 	// Define the type id if necessary.
    417 	enc.sendTypeDescriptor(enc.writer(), state, ut)
    418 	// Send the type id.
    419 	enc.sendTypeId(state, ut)
    420 	// Encode the value into a new buffer. Any nested type definitions
    421 	// should be written to b, before the encoded value.
    422 	enc.pushWriter(b)
    423 	data := encBufferPool.Get().(*encBuffer)
    424 	data.Write(spaceForLength)
    425 	enc.encode(data, elem, ut)
    426 	if enc.err != nil {
    427 		error_(enc.err)
    428 	}
    429 	enc.popWriter()
    430 	enc.writeMessage(b, data)
    431 	data.Reset()
    432 	encBufferPool.Put(data)
    433 	if enc.err != nil {
    434 		error_(enc.err)
    435 	}
    436 	enc.freeEncoderState(state)
    437 }
    438 
    439 // isZero reports whether the value is the zero of its type.
    440 func isZero(val reflect.Value) bool {
    441 	switch val.Kind() {
    442 	case reflect.Array:
    443 		for i := 0; i < val.Len(); i++ {
    444 			if !isZero(val.Index(i)) {
    445 				return false
    446 			}
    447 		}
    448 		return true
    449 	case reflect.Map, reflect.Slice, reflect.String:
    450 		return val.Len() == 0
    451 	case reflect.Bool:
    452 		return !val.Bool()
    453 	case reflect.Complex64, reflect.Complex128:
    454 		return val.Complex() == 0
    455 	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
    456 		return val.IsNil()
    457 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
    458 		return val.Int() == 0
    459 	case reflect.Float32, reflect.Float64:
    460 		return val.Float() == 0
    461 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
    462 		return val.Uint() == 0
    463 	case reflect.Struct:
    464 		for i := 0; i < val.NumField(); i++ {
    465 			if !isZero(val.Field(i)) {
    466 				return false
    467 			}
    468 		}
    469 		return true
    470 	}
    471 	panic("unknown type in isZero " + val.Type().String())
    472 }
    473 
    474 // encGobEncoder encodes a value that implements the GobEncoder interface.
    475 // The data is sent as a byte array.
    476 func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) {
    477 	// TODO: should we catch panics from the called method?
    478 
    479 	var data []byte
    480 	var err error
    481 	// We know it's one of these.
    482 	switch ut.externalEnc {
    483 	case xGob:
    484 		data, err = v.Interface().(GobEncoder).GobEncode()
    485 	case xBinary:
    486 		data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
    487 	case xText:
    488 		data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
    489 	}
    490 	if err != nil {
    491 		error_(err)
    492 	}
    493 	state := enc.newEncoderState(b)
    494 	state.fieldnum = -1
    495 	state.encodeUint(uint64(len(data)))
    496 	state.b.Write(data)
    497 	enc.freeEncoderState(state)
    498 }
    499 
    500 var encOpTable = [...]encOp{
    501 	reflect.Bool:       encBool,
    502 	reflect.Int:        encInt,
    503 	reflect.Int8:       encInt,
    504 	reflect.Int16:      encInt,
    505 	reflect.Int32:      encInt,
    506 	reflect.Int64:      encInt,
    507 	reflect.Uint:       encUint,
    508 	reflect.Uint8:      encUint,
    509 	reflect.Uint16:     encUint,
    510 	reflect.Uint32:     encUint,
    511 	reflect.Uint64:     encUint,
    512 	reflect.Uintptr:    encUint,
    513 	reflect.Float32:    encFloat,
    514 	reflect.Float64:    encFloat,
    515 	reflect.Complex64:  encComplex,
    516 	reflect.Complex128: encComplex,
    517 	reflect.String:     encString,
    518 }
    519 
    520 // encOpFor returns (a pointer to) the encoding op for the base type under rt and
    521 // the indirection count to reach it.
    522 func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) {
    523 	ut := userType(rt)
    524 	// If the type implements GobEncoder, we handle it without further processing.
    525 	if ut.externalEnc != 0 {
    526 		return gobEncodeOpFor(ut)
    527 	}
    528 	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
    529 	// Return the pointer to the op we're already building.
    530 	if opPtr := inProgress[rt]; opPtr != nil {
    531 		return opPtr, ut.indir
    532 	}
    533 	typ := ut.base
    534 	indir := ut.indir
    535 	k := typ.Kind()
    536 	var op encOp
    537 	if int(k) < len(encOpTable) {
    538 		op = encOpTable[k]
    539 	}
    540 	if op == nil {
    541 		inProgress[rt] = &op
    542 		// Special cases
    543 		switch t := typ; t.Kind() {
    544 		case reflect.Slice:
    545 			if t.Elem().Kind() == reflect.Uint8 {
    546 				op = encUint8Array
    547 				break
    548 			}
    549 			// Slices have a header; we decode it to find the underlying array.
    550 			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
    551 			helper := encSliceHelper[t.Elem().Kind()]
    552 			op = func(i *encInstr, state *encoderState, slice reflect.Value) {
    553 				if !state.sendZero && slice.Len() == 0 {
    554 					return
    555 				}
    556 				state.update(i)
    557 				state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper)
    558 			}
    559 		case reflect.Array:
    560 			// True arrays have size in the type.
    561 			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
    562 			helper := encArrayHelper[t.Elem().Kind()]
    563 			op = func(i *encInstr, state *encoderState, array reflect.Value) {
    564 				state.update(i)
    565 				state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper)
    566 			}
    567 		case reflect.Map:
    568 			keyOp, keyIndir := encOpFor(t.Key(), inProgress, building)
    569 			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
    570 			op = func(i *encInstr, state *encoderState, mv reflect.Value) {
    571 				// We send zero-length (but non-nil) maps because the
    572 				// receiver might want to use the map.  (Maps don't use append.)
    573 				if !state.sendZero && mv.IsNil() {
    574 					return
    575 				}
    576 				state.update(i)
    577 				state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
    578 			}
    579 		case reflect.Struct:
    580 			// Generate a closure that calls out to the engine for the nested type.
    581 			getEncEngine(userType(typ), building)
    582 			info := mustGetTypeInfo(typ)
    583 			op = func(i *encInstr, state *encoderState, sv reflect.Value) {
    584 				state.update(i)
    585 				// indirect through info to delay evaluation for recursive structs
    586 				enc := info.encoder.Load().(*encEngine)
    587 				state.enc.encodeStruct(state.b, enc, sv)
    588 			}
    589 		case reflect.Interface:
    590 			op = func(i *encInstr, state *encoderState, iv reflect.Value) {
    591 				if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
    592 					return
    593 				}
    594 				state.update(i)
    595 				state.enc.encodeInterface(state.b, iv)
    596 			}
    597 		}
    598 	}
    599 	if op == nil {
    600 		errorf("can't happen: encode type %s", rt)
    601 	}
    602 	return &op, indir
    603 }
    604 
    605 // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
    606 func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
    607 	rt := ut.user
    608 	if ut.encIndir == -1 {
    609 		rt = reflect.PtrTo(rt)
    610 	} else if ut.encIndir > 0 {
    611 		for i := int8(0); i < ut.encIndir; i++ {
    612 			rt = rt.Elem()
    613 		}
    614 	}
    615 	var op encOp
    616 	op = func(i *encInstr, state *encoderState, v reflect.Value) {
    617 		if ut.encIndir == -1 {
    618 			// Need to climb up one level to turn value into pointer.
    619 			if !v.CanAddr() {
    620 				errorf("unaddressable value of type %s", rt)
    621 			}
    622 			v = v.Addr()
    623 		}
    624 		if !state.sendZero && isZero(v) {
    625 			return
    626 		}
    627 		state.update(i)
    628 		state.enc.encodeGobEncoder(state.b, ut, v)
    629 	}
    630 	return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
    631 }
    632 
    633 // compileEnc returns the engine to compile the type.
    634 func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
    635 	srt := ut.base
    636 	engine := new(encEngine)
    637 	seen := make(map[reflect.Type]*encOp)
    638 	rt := ut.base
    639 	if ut.externalEnc != 0 {
    640 		rt = ut.user
    641 	}
    642 	if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
    643 		for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
    644 			f := srt.Field(fieldNum)
    645 			if !isSent(&f) {
    646 				continue
    647 			}
    648 			op, indir := encOpFor(f.Type, seen, building)
    649 			engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
    650 			wireFieldNum++
    651 		}
    652 		if srt.NumField() > 0 && len(engine.instr) == 0 {
    653 			errorf("type %s has no exported fields", rt)
    654 		}
    655 		engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
    656 	} else {
    657 		engine.instr = make([]encInstr, 1)
    658 		op, indir := encOpFor(rt, seen, building)
    659 		engine.instr[0] = encInstr{*op, singletonField, nil, indir}
    660 	}
    661 	return engine
    662 }
    663 
    664 // getEncEngine returns the engine to compile the type.
    665 func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
    666 	info, err := getTypeInfo(ut)
    667 	if err != nil {
    668 		error_(err)
    669 	}
    670 	enc, ok := info.encoder.Load().(*encEngine)
    671 	if !ok {
    672 		enc = buildEncEngine(info, ut, building)
    673 	}
    674 	return enc
    675 }
    676 
    677 func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
    678 	// Check for recursive types.
    679 	if building != nil && building[info] {
    680 		return nil
    681 	}
    682 	info.encInit.Lock()
    683 	defer info.encInit.Unlock()
    684 	enc, ok := info.encoder.Load().(*encEngine)
    685 	if !ok {
    686 		if building == nil {
    687 			building = make(map[*typeInfo]bool)
    688 		}
    689 		building[info] = true
    690 		enc = compileEnc(ut, building)
    691 		info.encoder.Store(enc)
    692 	}
    693 	return enc
    694 }
    695 
    696 func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) {
    697 	defer catchError(&enc.err)
    698 	engine := getEncEngine(ut, nil)
    699 	indir := ut.indir
    700 	if ut.externalEnc != 0 {
    701 		indir = int(ut.encIndir)
    702 	}
    703 	for i := 0; i < indir; i++ {
    704 		value = reflect.Indirect(value)
    705 	}
    706 	if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
    707 		enc.encodeStruct(b, engine, value)
    708 	} else {
    709 		enc.encodeSingle(b, engine, value)
    710 	}
    711 }
    712