Home | History | Annotate | Download | only in draw
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package draw provides image composition functions.
      6 //
      7 // See "The Go image/draw package" for an introduction to this package:
      8 // https://golang.org/doc/articles/image_draw.html
      9 package draw
     10 
     11 import (
     12 	"image"
     13 	"image/color"
     14 	"image/internal/imageutil"
     15 )
     16 
     17 // m is the maximum color value returned by image.Color.RGBA.
     18 const m = 1<<16 - 1
     19 
     20 // Image is an image.Image with a Set method to change a single pixel.
     21 type Image interface {
     22 	image.Image
     23 	Set(x, y int, c color.Color)
     24 }
     25 
     26 // Quantizer produces a palette for an image.
     27 type Quantizer interface {
     28 	// Quantize appends up to cap(p) - len(p) colors to p and returns the
     29 	// updated palette suitable for converting m to a paletted image.
     30 	Quantize(p color.Palette, m image.Image) color.Palette
     31 }
     32 
     33 // Op is a Porter-Duff compositing operator.
     34 type Op int
     35 
     36 const (
     37 	// Over specifies ``(src in mask) over dst''.
     38 	Over Op = iota
     39 	// Src specifies ``src in mask''.
     40 	Src
     41 )
     42 
     43 // Draw implements the Drawer interface by calling the Draw function with this
     44 // Op.
     45 func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
     46 	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
     47 }
     48 
     49 // Drawer contains the Draw method.
     50 type Drawer interface {
     51 	// Draw aligns r.Min in dst with sp in src and then replaces the
     52 	// rectangle r in dst with the result of drawing src on dst.
     53 	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
     54 }
     55 
     56 // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
     57 // diffusion.
     58 var FloydSteinberg Drawer = floydSteinberg{}
     59 
     60 type floydSteinberg struct{}
     61 
     62 func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
     63 	clip(dst, &r, src, &sp, nil, nil)
     64 	if r.Empty() {
     65 		return
     66 	}
     67 	drawPaletted(dst, r, src, sp, true)
     68 }
     69 
     70 // clip clips r against each image's bounds (after translating into the
     71 // destination image's coordinate space) and shifts the points sp and mp by
     72 // the same amount as the change in r.Min.
     73 func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
     74 	orig := r.Min
     75 	*r = r.Intersect(dst.Bounds())
     76 	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
     77 	if mask != nil {
     78 		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
     79 	}
     80 	dx := r.Min.X - orig.X
     81 	dy := r.Min.Y - orig.Y
     82 	if dx == 0 && dy == 0 {
     83 		return
     84 	}
     85 	sp.X += dx
     86 	sp.Y += dy
     87 	if mp != nil {
     88 		mp.X += dx
     89 		mp.Y += dy
     90 	}
     91 }
     92 
     93 func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool {
     94 	return image.Image(dst) == src &&
     95 		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
     96 		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
     97 }
     98 
     99 // Draw calls DrawMask with a nil mask.
    100 func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
    101 	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
    102 }
    103 
    104 // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
    105 // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
    106 func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
    107 	clip(dst, &r, src, &sp, mask, &mp)
    108 	if r.Empty() {
    109 		return
    110 	}
    111 
    112 	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
    113 	switch dst0 := dst.(type) {
    114 	case *image.RGBA:
    115 		if op == Over {
    116 			if mask == nil {
    117 				switch src0 := src.(type) {
    118 				case *image.Uniform:
    119 					sr, sg, sb, sa := src0.RGBA()
    120 					if sa == 0xffff {
    121 						drawFillSrc(dst0, r, sr, sg, sb, sa)
    122 					} else {
    123 						drawFillOver(dst0, r, sr, sg, sb, sa)
    124 					}
    125 					return
    126 				case *image.RGBA:
    127 					drawCopyOver(dst0, r, src0, sp)
    128 					return
    129 				case *image.NRGBA:
    130 					drawNRGBAOver(dst0, r, src0, sp)
    131 					return
    132 				case *image.YCbCr:
    133 					// An image.YCbCr is always fully opaque, and so if the
    134 					// mask is nil (i.e. fully opaque) then the op is
    135 					// effectively always Src. Similarly for image.Gray and
    136 					// image.CMYK.
    137 					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
    138 						return
    139 					}
    140 				case *image.Gray:
    141 					drawGray(dst0, r, src0, sp)
    142 					return
    143 				case *image.CMYK:
    144 					drawCMYK(dst0, r, src0, sp)
    145 					return
    146 				}
    147 			} else if mask0, ok := mask.(*image.Alpha); ok {
    148 				switch src0 := src.(type) {
    149 				case *image.Uniform:
    150 					drawGlyphOver(dst0, r, src0, mask0, mp)
    151 					return
    152 				}
    153 			}
    154 		} else {
    155 			if mask == nil {
    156 				switch src0 := src.(type) {
    157 				case *image.Uniform:
    158 					sr, sg, sb, sa := src0.RGBA()
    159 					drawFillSrc(dst0, r, sr, sg, sb, sa)
    160 					return
    161 				case *image.RGBA:
    162 					drawCopySrc(dst0, r, src0, sp)
    163 					return
    164 				case *image.NRGBA:
    165 					drawNRGBASrc(dst0, r, src0, sp)
    166 					return
    167 				case *image.YCbCr:
    168 					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
    169 						return
    170 					}
    171 				case *image.Gray:
    172 					drawGray(dst0, r, src0, sp)
    173 					return
    174 				case *image.CMYK:
    175 					drawCMYK(dst0, r, src0, sp)
    176 					return
    177 				}
    178 			}
    179 		}
    180 		drawRGBA(dst0, r, src, sp, mask, mp, op)
    181 		return
    182 	case *image.Paletted:
    183 		if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
    184 			drawPaletted(dst0, r, src, sp, false)
    185 			return
    186 		}
    187 	}
    188 
    189 	x0, x1, dx := r.Min.X, r.Max.X, 1
    190 	y0, y1, dy := r.Min.Y, r.Max.Y, 1
    191 	if processBackward(dst, r, src, sp) {
    192 		x0, x1, dx = x1-1, x0-1, -1
    193 		y0, y1, dy = y1-1, y0-1, -1
    194 	}
    195 
    196 	var out color.RGBA64
    197 	sy := sp.Y + y0 - r.Min.Y
    198 	my := mp.Y + y0 - r.Min.Y
    199 	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
    200 		sx := sp.X + x0 - r.Min.X
    201 		mx := mp.X + x0 - r.Min.X
    202 		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
    203 			ma := uint32(m)
    204 			if mask != nil {
    205 				_, _, _, ma = mask.At(mx, my).RGBA()
    206 			}
    207 			switch {
    208 			case ma == 0:
    209 				if op == Over {
    210 					// No-op.
    211 				} else {
    212 					dst.Set(x, y, color.Transparent)
    213 				}
    214 			case ma == m && op == Src:
    215 				dst.Set(x, y, src.At(sx, sy))
    216 			default:
    217 				sr, sg, sb, sa := src.At(sx, sy).RGBA()
    218 				if op == Over {
    219 					dr, dg, db, da := dst.At(x, y).RGBA()
    220 					a := m - (sa * ma / m)
    221 					out.R = uint16((dr*a + sr*ma) / m)
    222 					out.G = uint16((dg*a + sg*ma) / m)
    223 					out.B = uint16((db*a + sb*ma) / m)
    224 					out.A = uint16((da*a + sa*ma) / m)
    225 				} else {
    226 					out.R = uint16(sr * ma / m)
    227 					out.G = uint16(sg * ma / m)
    228 					out.B = uint16(sb * ma / m)
    229 					out.A = uint16(sa * ma / m)
    230 				}
    231 				// The third argument is &out instead of out (and out is
    232 				// declared outside of the inner loop) to avoid the implicit
    233 				// conversion to color.Color here allocating memory in the
    234 				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
    235 				dst.Set(x, y, &out)
    236 			}
    237 		}
    238 	}
    239 }
    240 
    241 func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
    242 	// The 0x101 is here for the same reason as in drawRGBA.
    243 	a := (m - sa) * 0x101
    244 	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
    245 	i1 := i0 + r.Dx()*4
    246 	for y := r.Min.Y; y != r.Max.Y; y++ {
    247 		for i := i0; i < i1; i += 4 {
    248 			dr := &dst.Pix[i+0]
    249 			dg := &dst.Pix[i+1]
    250 			db := &dst.Pix[i+2]
    251 			da := &dst.Pix[i+3]
    252 
    253 			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
    254 			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
    255 			*db = uint8((uint32(*db)*a/m + sb) >> 8)
    256 			*da = uint8((uint32(*da)*a/m + sa) >> 8)
    257 		}
    258 		i0 += dst.Stride
    259 		i1 += dst.Stride
    260 	}
    261 }
    262 
    263 func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
    264 	sr8 := uint8(sr >> 8)
    265 	sg8 := uint8(sg >> 8)
    266 	sb8 := uint8(sb >> 8)
    267 	sa8 := uint8(sa >> 8)
    268 	// The built-in copy function is faster than a straightforward for loop to fill the destination with
    269 	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
    270 	// then use the first row as the slice source for the remaining rows.
    271 	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
    272 	i1 := i0 + r.Dx()*4
    273 	for i := i0; i < i1; i += 4 {
    274 		dst.Pix[i+0] = sr8
    275 		dst.Pix[i+1] = sg8
    276 		dst.Pix[i+2] = sb8
    277 		dst.Pix[i+3] = sa8
    278 	}
    279 	firstRow := dst.Pix[i0:i1]
    280 	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
    281 		i0 += dst.Stride
    282 		i1 += dst.Stride
    283 		copy(dst.Pix[i0:i1], firstRow)
    284 	}
    285 }
    286 
    287 func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
    288 	dx, dy := r.Dx(), r.Dy()
    289 	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
    290 	s0 := src.PixOffset(sp.X, sp.Y)
    291 	var (
    292 		ddelta, sdelta int
    293 		i0, i1, idelta int
    294 	)
    295 	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
    296 		ddelta = dst.Stride
    297 		sdelta = src.Stride
    298 		i0, i1, idelta = 0, dx*4, +4
    299 	} else {
    300 		// If the source start point is higher than the destination start point, or equal height but to the left,
    301 		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
    302 		d0 += (dy - 1) * dst.Stride
    303 		s0 += (dy - 1) * src.Stride
    304 		ddelta = -dst.Stride
    305 		sdelta = -src.Stride
    306 		i0, i1, idelta = (dx-1)*4, -4, -4
    307 	}
    308 	for ; dy > 0; dy-- {
    309 		dpix := dst.Pix[d0:]
    310 		spix := src.Pix[s0:]
    311 		for i := i0; i != i1; i += idelta {
    312 			sr := uint32(spix[i+0]) * 0x101
    313 			sg := uint32(spix[i+1]) * 0x101
    314 			sb := uint32(spix[i+2]) * 0x101
    315 			sa := uint32(spix[i+3]) * 0x101
    316 
    317 			dr := &dpix[i+0]
    318 			dg := &dpix[i+1]
    319 			db := &dpix[i+2]
    320 			da := &dpix[i+3]
    321 
    322 			// The 0x101 is here for the same reason as in drawRGBA.
    323 			a := (m - sa) * 0x101
    324 
    325 			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
    326 			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
    327 			*db = uint8((uint32(*db)*a/m + sb) >> 8)
    328 			*da = uint8((uint32(*da)*a/m + sa) >> 8)
    329 		}
    330 		d0 += ddelta
    331 		s0 += sdelta
    332 	}
    333 }
    334 
    335 func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
    336 	n, dy := 4*r.Dx(), r.Dy()
    337 	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
    338 	s0 := src.PixOffset(sp.X, sp.Y)
    339 	var ddelta, sdelta int
    340 	if r.Min.Y <= sp.Y {
    341 		ddelta = dst.Stride
    342 		sdelta = src.Stride
    343 	} else {
    344 		// If the source start point is higher than the destination start
    345 		// point, then we compose the rows in bottom-up order instead of
    346 		// top-down. Unlike the drawCopyOver function, we don't have to check
    347 		// the x coordinates because the built-in copy function can handle
    348 		// overlapping slices.
    349 		d0 += (dy - 1) * dst.Stride
    350 		s0 += (dy - 1) * src.Stride
    351 		ddelta = -dst.Stride
    352 		sdelta = -src.Stride
    353 	}
    354 	for ; dy > 0; dy-- {
    355 		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
    356 		d0 += ddelta
    357 		s0 += sdelta
    358 	}
    359 }
    360 
    361 func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
    362 	i0 := (r.Min.X - dst.Rect.Min.X) * 4
    363 	i1 := (r.Max.X - dst.Rect.Min.X) * 4
    364 	si0 := (sp.X - src.Rect.Min.X) * 4
    365 	yMax := r.Max.Y - dst.Rect.Min.Y
    366 
    367 	y := r.Min.Y - dst.Rect.Min.Y
    368 	sy := sp.Y - src.Rect.Min.Y
    369 	for ; y != yMax; y, sy = y+1, sy+1 {
    370 		dpix := dst.Pix[y*dst.Stride:]
    371 		spix := src.Pix[sy*src.Stride:]
    372 
    373 		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
    374 			// Convert from non-premultiplied color to pre-multiplied color.
    375 			sa := uint32(spix[si+3]) * 0x101
    376 			sr := uint32(spix[si+0]) * sa / 0xff
    377 			sg := uint32(spix[si+1]) * sa / 0xff
    378 			sb := uint32(spix[si+2]) * sa / 0xff
    379 
    380 			dr := uint32(dpix[i+0])
    381 			dg := uint32(dpix[i+1])
    382 			db := uint32(dpix[i+2])
    383 			da := uint32(dpix[i+3])
    384 
    385 			// The 0x101 is here for the same reason as in drawRGBA.
    386 			a := (m - sa) * 0x101
    387 
    388 			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
    389 			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
    390 			dpix[i+2] = uint8((db*a/m + sb) >> 8)
    391 			dpix[i+3] = uint8((da*a/m + sa) >> 8)
    392 		}
    393 	}
    394 }
    395 
    396 func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
    397 	i0 := (r.Min.X - dst.Rect.Min.X) * 4
    398 	i1 := (r.Max.X - dst.Rect.Min.X) * 4
    399 	si0 := (sp.X - src.Rect.Min.X) * 4
    400 	yMax := r.Max.Y - dst.Rect.Min.Y
    401 
    402 	y := r.Min.Y - dst.Rect.Min.Y
    403 	sy := sp.Y - src.Rect.Min.Y
    404 	for ; y != yMax; y, sy = y+1, sy+1 {
    405 		dpix := dst.Pix[y*dst.Stride:]
    406 		spix := src.Pix[sy*src.Stride:]
    407 
    408 		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
    409 			// Convert from non-premultiplied color to pre-multiplied color.
    410 			sa := uint32(spix[si+3]) * 0x101
    411 			sr := uint32(spix[si+0]) * sa / 0xff
    412 			sg := uint32(spix[si+1]) * sa / 0xff
    413 			sb := uint32(spix[si+2]) * sa / 0xff
    414 
    415 			dpix[i+0] = uint8(sr >> 8)
    416 			dpix[i+1] = uint8(sg >> 8)
    417 			dpix[i+2] = uint8(sb >> 8)
    418 			dpix[i+3] = uint8(sa >> 8)
    419 		}
    420 	}
    421 }
    422 
    423 func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) {
    424 	i0 := (r.Min.X - dst.Rect.Min.X) * 4
    425 	i1 := (r.Max.X - dst.Rect.Min.X) * 4
    426 	si0 := (sp.X - src.Rect.Min.X) * 1
    427 	yMax := r.Max.Y - dst.Rect.Min.Y
    428 
    429 	y := r.Min.Y - dst.Rect.Min.Y
    430 	sy := sp.Y - src.Rect.Min.Y
    431 	for ; y != yMax; y, sy = y+1, sy+1 {
    432 		dpix := dst.Pix[y*dst.Stride:]
    433 		spix := src.Pix[sy*src.Stride:]
    434 
    435 		for i, si := i0, si0; i < i1; i, si = i+4, si+1 {
    436 			p := spix[si]
    437 			dpix[i+0] = p
    438 			dpix[i+1] = p
    439 			dpix[i+2] = p
    440 			dpix[i+3] = 255
    441 		}
    442 	}
    443 }
    444 
    445 func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) {
    446 	i0 := (r.Min.X - dst.Rect.Min.X) * 4
    447 	i1 := (r.Max.X - dst.Rect.Min.X) * 4
    448 	si0 := (sp.X - src.Rect.Min.X) * 4
    449 	yMax := r.Max.Y - dst.Rect.Min.Y
    450 
    451 	y := r.Min.Y - dst.Rect.Min.Y
    452 	sy := sp.Y - src.Rect.Min.Y
    453 	for ; y != yMax; y, sy = y+1, sy+1 {
    454 		dpix := dst.Pix[y*dst.Stride:]
    455 		spix := src.Pix[sy*src.Stride:]
    456 
    457 		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
    458 			dpix[i+0], dpix[i+1], dpix[i+2] =
    459 				color.CMYKToRGB(spix[si+0], spix[si+1], spix[si+2], spix[si+3])
    460 			dpix[i+3] = 255
    461 		}
    462 	}
    463 }
    464 
    465 func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
    466 	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
    467 	i1 := i0 + r.Dx()*4
    468 	mi0 := mask.PixOffset(mp.X, mp.Y)
    469 	sr, sg, sb, sa := src.RGBA()
    470 	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
    471 		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
    472 			ma := uint32(mask.Pix[mi])
    473 			if ma == 0 {
    474 				continue
    475 			}
    476 			ma |= ma << 8
    477 
    478 			dr := &dst.Pix[i+0]
    479 			dg := &dst.Pix[i+1]
    480 			db := &dst.Pix[i+2]
    481 			da := &dst.Pix[i+3]
    482 
    483 			// The 0x101 is here for the same reason as in drawRGBA.
    484 			a := (m - (sa * ma / m)) * 0x101
    485 
    486 			*dr = uint8((uint32(*dr)*a + sr*ma) / m >> 8)
    487 			*dg = uint8((uint32(*dg)*a + sg*ma) / m >> 8)
    488 			*db = uint8((uint32(*db)*a + sb*ma) / m >> 8)
    489 			*da = uint8((uint32(*da)*a + sa*ma) / m >> 8)
    490 		}
    491 		i0 += dst.Stride
    492 		i1 += dst.Stride
    493 		mi0 += mask.Stride
    494 	}
    495 }
    496 
    497 func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
    498 	x0, x1, dx := r.Min.X, r.Max.X, 1
    499 	y0, y1, dy := r.Min.Y, r.Max.Y, 1
    500 	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
    501 		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
    502 			x0, x1, dx = x1-1, x0-1, -1
    503 			y0, y1, dy = y1-1, y0-1, -1
    504 		}
    505 	}
    506 
    507 	sy := sp.Y + y0 - r.Min.Y
    508 	my := mp.Y + y0 - r.Min.Y
    509 	sx0 := sp.X + x0 - r.Min.X
    510 	mx0 := mp.X + x0 - r.Min.X
    511 	sx1 := sx0 + (x1 - x0)
    512 	i0 := dst.PixOffset(x0, y0)
    513 	di := dx * 4
    514 	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
    515 		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
    516 			ma := uint32(m)
    517 			if mask != nil {
    518 				_, _, _, ma = mask.At(mx, my).RGBA()
    519 			}
    520 			sr, sg, sb, sa := src.At(sx, sy).RGBA()
    521 			if op == Over {
    522 				dr := uint32(dst.Pix[i+0])
    523 				dg := uint32(dst.Pix[i+1])
    524 				db := uint32(dst.Pix[i+2])
    525 				da := uint32(dst.Pix[i+3])
    526 
    527 				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
    528 				// We work in 16-bit color, and so would normally do:
    529 				// dr |= dr << 8
    530 				// and similarly for dg, db and da, but instead we multiply a
    531 				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
    532 				// This yields the same result, but is fewer arithmetic operations.
    533 				a := (m - (sa * ma / m)) * 0x101
    534 
    535 				dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
    536 				dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
    537 				dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
    538 				dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
    539 
    540 			} else {
    541 				dst.Pix[i+0] = uint8(sr * ma / m >> 8)
    542 				dst.Pix[i+1] = uint8(sg * ma / m >> 8)
    543 				dst.Pix[i+2] = uint8(sb * ma / m >> 8)
    544 				dst.Pix[i+3] = uint8(sa * ma / m >> 8)
    545 			}
    546 		}
    547 		i0 += dy * dst.Stride
    548 	}
    549 }
    550 
    551 // clamp clamps i to the interval [0, 0xffff].
    552 func clamp(i int32) int32 {
    553 	if i < 0 {
    554 		return 0
    555 	}
    556 	if i > 0xffff {
    557 		return 0xffff
    558 	}
    559 	return i
    560 }
    561 
    562 // sqDiff returns the squared-difference of x and y, shifted by 2 so that
    563 // adding four of those won't overflow a uint32.
    564 //
    565 // x and y are both assumed to be in the range [0, 0xffff].
    566 func sqDiff(x, y int32) uint32 {
    567 	var d uint32
    568 	if x > y {
    569 		d = uint32(x - y)
    570 	} else {
    571 		d = uint32(y - x)
    572 	}
    573 	return (d * d) >> 2
    574 }
    575 
    576 func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
    577 	// TODO(nigeltao): handle the case where the dst and src overlap.
    578 	// Does it even make sense to try and do Floyd-Steinberg whilst
    579 	// walking the image backward (right-to-left bottom-to-top)?
    580 
    581 	// If dst is an *image.Paletted, we have a fast path for dst.Set and
    582 	// dst.At. The dst.Set equivalent is a batch version of the algorithm
    583 	// used by color.Palette's Index method in image/color/color.go, plus
    584 	// optional Floyd-Steinberg error diffusion.
    585 	palette, pix, stride := [][4]int32(nil), []byte(nil), 0
    586 	if p, ok := dst.(*image.Paletted); ok {
    587 		palette = make([][4]int32, len(p.Palette))
    588 		for i, col := range p.Palette {
    589 			r, g, b, a := col.RGBA()
    590 			palette[i][0] = int32(r)
    591 			palette[i][1] = int32(g)
    592 			palette[i][2] = int32(b)
    593 			palette[i][3] = int32(a)
    594 		}
    595 		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
    596 	}
    597 
    598 	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
    599 	// errors that have been propagated to the pixels in the current and next
    600 	// rows. The +2 simplifies calculation near the edges.
    601 	var quantErrorCurr, quantErrorNext [][4]int32
    602 	if floydSteinberg {
    603 		quantErrorCurr = make([][4]int32, r.Dx()+2)
    604 		quantErrorNext = make([][4]int32, r.Dx()+2)
    605 	}
    606 
    607 	// Loop over each source pixel.
    608 	out := color.RGBA64{A: 0xffff}
    609 	for y := 0; y != r.Dy(); y++ {
    610 		for x := 0; x != r.Dx(); x++ {
    611 			// er, eg and eb are the pixel's R,G,B values plus the
    612 			// optional Floyd-Steinberg error.
    613 			sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
    614 			er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa)
    615 			if floydSteinberg {
    616 				er = clamp(er + quantErrorCurr[x+1][0]/16)
    617 				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
    618 				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
    619 				ea = clamp(ea + quantErrorCurr[x+1][3]/16)
    620 			}
    621 
    622 			if palette != nil {
    623 				// Find the closest palette color in Euclidean R,G,B,A space:
    624 				// the one that minimizes sum-squared-difference.
    625 				// TODO(nigeltao): consider smarter algorithms.
    626 				bestIndex, bestSum := 0, uint32(1<<32-1)
    627 				for index, p := range palette {
    628 					sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3])
    629 					if sum < bestSum {
    630 						bestIndex, bestSum = index, sum
    631 						if sum == 0 {
    632 							break
    633 						}
    634 					}
    635 				}
    636 				pix[y*stride+x] = byte(bestIndex)
    637 
    638 				if !floydSteinberg {
    639 					continue
    640 				}
    641 				er -= palette[bestIndex][0]
    642 				eg -= palette[bestIndex][1]
    643 				eb -= palette[bestIndex][2]
    644 				ea -= palette[bestIndex][3]
    645 
    646 			} else {
    647 				out.R = uint16(er)
    648 				out.G = uint16(eg)
    649 				out.B = uint16(eb)
    650 				out.A = uint16(ea)
    651 				// The third argument is &out instead of out (and out is
    652 				// declared outside of the inner loop) to avoid the implicit
    653 				// conversion to color.Color here allocating memory in the
    654 				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
    655 				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
    656 
    657 				if !floydSteinberg {
    658 					continue
    659 				}
    660 				sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
    661 				er -= int32(sr)
    662 				eg -= int32(sg)
    663 				eb -= int32(sb)
    664 				ea -= int32(sa)
    665 			}
    666 
    667 			// Propagate the Floyd-Steinberg quantization error.
    668 			quantErrorNext[x+0][0] += er * 3
    669 			quantErrorNext[x+0][1] += eg * 3
    670 			quantErrorNext[x+0][2] += eb * 3
    671 			quantErrorNext[x+0][3] += ea * 3
    672 			quantErrorNext[x+1][0] += er * 5
    673 			quantErrorNext[x+1][1] += eg * 5
    674 			quantErrorNext[x+1][2] += eb * 5
    675 			quantErrorNext[x+1][3] += ea * 5
    676 			quantErrorNext[x+2][0] += er * 1
    677 			quantErrorNext[x+2][1] += eg * 1
    678 			quantErrorNext[x+2][2] += eb * 1
    679 			quantErrorNext[x+2][3] += ea * 1
    680 			quantErrorCurr[x+2][0] += er * 7
    681 			quantErrorCurr[x+2][1] += eg * 7
    682 			quantErrorCurr[x+2][2] += eb * 7
    683 			quantErrorCurr[x+2][3] += ea * 7
    684 		}
    685 
    686 		// Recycle the quantization error buffers.
    687 		if floydSteinberg {
    688 			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
    689 			for i := range quantErrorNext {
    690 				quantErrorNext[i] = [4]int32{}
    691 			}
    692 		}
    693 	}
    694 }
    695